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Abstract—This paper presents an integrated study on possible 

topological relationship between multidimensional simple objects 

in 0,1,2 and 3D space. The formal categorisation of spatial 

relationships is completed upon the 9-intersections model. The 

focus is on the definition of a unified set of conditions for 

eliminating relationships that cannot be realised in reality. The 

negative conditions are formulated on the basis of dimension and 

co-dimension of objects, and connectivity of boundaries. The set 

of 25 conditions is sufficient for deriving all the possible 

relationships mentioned currently in the literature and for 

specifying the relationships between surface and surface in 3D 

space. Drawings of example configurations verify the obtained 

results in 3D space.  
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I.  INTRODUCTION  

The topological spatial relationships gain an increasing 
attention in the last decade. The topic of research has shifted 
from issues related to the definition of a particular formalism to 
represent topological relationships, to implementation issues 
(see [2], [3], [11]). An important implementation aspect (in 
terms of performance) is the specification of the spatial 
relationships (within a given framework) that exist in reality. 
While a lot of research is already carried out in the clarification 
of the relationships between spatial objects (points, lines and 
regions) in 2D space, the investigations in 3D space are 
fragmented and incomplete. This work is a contribution to the 
clarification of the relationships between simple spatial objects 
in 3D space and the total number of relationships that can occur 
in reality. 

To identify the spatial relationships between two objects in 3D 
space, we use the 9-intersection model (see [7]), which was 
approved by the OpenGIS consortium as a basic framework for 
implementation. Suppose two simple spatial objects A and B 
are defined in the same topological space Λ and their boundary, 
interior and exterior are denoted by ∂A, A°, A¯ , ∂B, B° and B¯ . 
The binary relationship R(A,B) between the two objects is then 
identified by composing all the possible set intersections of the 
six topological primitives, i.e. A°∩B° , ∂A∩B° , A¯  ∩ B°, 
A°∩∂B, ∂A∩∂B, A¯  ∩∂B, A°∩ B¯ , ∂A∩B¯ and A¯  ∩ B¯ , and 
detecting empty (∅ ) or non-empty (¬∅) intersections. For 
example, if two 

objects have a common boundary, the intersection between the 
boundaries is non-empty, i.e. ∂A∩∂B = ¬∅ ; if they have 
intersecting interiors, then the intersection A°∩B° is not empty, 
i.e. A°∩B° = ¬∅. Since in principle each pair of intersections 
can have either the empty or non-empty value, different 

"patterns" define different relationships. Although, the 
theoretical number of all the relationships that can be derived 
from the 9 intersections is 29, i.e. 512 relationships, only a 
small number of them can be seen in reality. The way to 
specify possible relationships is based on the elimination of 
impossible ones. To eliminate non-realisable relations, 
conditions, referred to as negative conditions, are composed. 
Some intersections (or a combination of intersections) between 
topological primitives can never occur in reality, and all the 
relationships that contain these intersections (or the 
combination) can be securely excluded from further 
considerations. 

On the basis of the 9 intersections between topological 
primitives and following the "elimination-of-
mpossiblerelationships" approach, several authors have 
identified relationships between spatial objects. Egenhofer and 
[6], [10] investigate relationships between spatial objects in 2D 
space. Egenhofer [5] presents relationships among 3D objects 
in 3D space. De Floriani [1] investigates the largest 
combinations of objects, using the basic set of conditions. 
Dogan [4] report a slightly modified approach to derive 
relationships between multidimensional objects in 3D space. 
The studies related to the 3D space are not convincing. 
Basically, the authors agree on the number of most of the 
relationships with one exception, i.e. surface and surface in 3D 
space. However, sketches of possible configurations in 3D 
space are not provided and the reader intuitively attempts to 
check results and conditions. The negative conditions used by 
the authors, however, vary significantly and complicates their 
comparison. For example, Reis et al [6] present 23 negative 
conditions for relationships in 2D space. De Floriani [1] 
operates with 40 conditions. Most of the conditions are related 
to a particular configuration of objects (e.g. conditions for line 
and line), which leads to further duplications of the effect of 
some of them. This paper aims at providing a systematised and 
integrated method for deriving relationships between 
multidimensional spatial objects. For the purpose, first a 
unified set of negative conditions is defined and second the 
possible relationships between objects of any dimension in 
0,1,2 and 3D space are derived 

 

II. NEGATIVE CONDITIONS 

The types of objects considered here correspond to simple 
geometric objects as they are defined in OpenGIS 
(http://www.opengis.org) specifications. The 0, 1,2 and 3D 
objects are referred to as points, lines, surfaces and bodies with 



         

corresponding notations P, L, S and B. Thus the notation 
R(L,S) means that the binary relationship concerns line and 
surface as the line is the first object. The relationship R(S,L) is 
the converse relationship, which is referred to by the vice versa 
part of the condition. 

For simplicity, all the intersections will be represented in a 
vector form and the empty and non-empty set will be denoted 
by 0 and 1. Thus, each relationship (being a sequence of 0 and 
1) corresponds to a binary number, which can be transformed 
to a decimal number (see [9], [10]). For example, the 
relationship between objects with non-intersecting boundaries 
and interiors can be represented as 000011111, which is the 
decimal number 31. This number will be denoted as a decimal 
code R031 (the ‘disjunct’ relationship). It is apparent that 
different ordering of the intersections will result in a different 
decimal code. In this text, we will use the order shown in Table 
1. 

The value of intersections (empty, non-empty) between 
interior, boundary and exterior depends on three parameters: 
the dimension of the objects, the dimension of the space 
(related to the co-dimension of the object) and the type of 
boundary (connected or disconnected) (see [5], [8]). The three 
parameters, however, cannot be used to define straightforward 
negative conditions because each configuration of objects has 
different parameters. Still many of the negative conditions are 
derived on the basis of one or another parameter that is used 
here to introduce grouping of conditions. To avoid multiple 
expression of the same conditions, the negative conditions that 
can be found among the ones given by Egenhofer and Herring 
1992 are represented by the same verbal expression. These 
conditions, denoted by EH (in brackets) are explicitly 
mentioned. All the negative conditions are shown in Table 1. 
The following text presents the negative conditions C (in italic) 
distributed in 12 groups (in bold) for objects with non-empty 
boundary. The conditions for relationships specific for objects 
with empty boundaries are given in the group 13. 

A.  Any objects: R(L,L) in IR ; R(L,L), R(S,S), R(L,S) and 

R(S,L) in IR 
2
; R(L,L), R(S,S), R(B,B), R(L,S), R(L,B), 

R(S,B), R(S,L), R(B,L), R(B,S) in IR 
3
. 

C1. The exteriors of two objects always intersect (EH1). 

C2. If A’s boundary intersects with B’s exterior then A’s 

interior intersects with B’s exterior too and vice versa (EH3). 

C3. A’s boundary intersects with at least one part of B and 

vice versa (EH5). 

After the first three negative conditions, the number of 
possible binary relationships is reduced to 104 for spatial 
objects with equal dimensions and to 160 for spatial objects 
with different dimensions. 

B.  Objects with equal dimensions: R(L,L) in IR; R(S,S) and 

R(L,L) in IR 
2
; R(L,L), R(S,S) and R(B,B) in IR 

3
. 

C4. If both interiors are disjoint then A’s interior intersects 

with B’s exterior and vice versa (EH2). 

C5. If A’s interior intersects with B’s boundary, then it must 

also intersect with B’s exterior and vice versa (EH4). 

C5a can be applied also for relationships when the first 
object A has the higher dimension. However, this is not 
necessary because the condition C6 (also valid for such 

objects) eliminates these combinations (compare C5a and C6 in 
Table 1), i.e. C6 is more restrictive than C5a. 

C.  Objects with different dimensions: R(S,L), R(L,S) in IR
2
; 

R(B,L), R(L,B), R(B,S), and R(S,B) in IR
3
. 

C6. The closure of higher-dimensional object A always 

intersects with the exterior of B (old: EH 16,17; 

new:C6c,C6d). 

If the two objects have different dimensions, their 
boundaries never coincide, i.e. ∂A ≠ ∂B . This implies that both 
the boundary and the interior of the object of the higher 
dimension intersect with the exterior of the object of the lower 
dimension. 

D. Objects with different dimensions and one of the objects 

with zero co-dimension: R(L,S) and R(S,L) in IR
2
 ; R(L,B), 

R(S,B), R(B,L) and R(B,S) in IR
3
. 

C7. The interior of A always intersects with at least one of the 

three topological primitives of B and vice versa (new). 

If both interiors are disjoint, then the interior of the object 
with the lowest dimension (e.g. A) can be a subset of either the 
boundary or the exterior, or both, of the opposite object (e.g. 
B). This means if the interior of A does not intersect with the 
boundary of B, it must intersect with its exterior. The condition 
is true for all the relationships between objects of the same 
dimension, i.e. R(L,L), R(S,S) and R(B,B), as well. However, 
the more restrictive condition C4, is applied in these cases. 

E. At least one of the objects has zero co-dimension: R(L,L) 

in IR ; R(S,S), R(L,S) and R(S,L) in IR 
2
; R(L,B) R(S,B), 

R(B,L), R(B,S), R(B,B) in IR 
3
. 

TABLE I.  NEGATIVE CONDITIONS FOR ELIMINATING IMPOSSIBLE 

RELATIONSHIPS IN 0,1,2 AND 3D SPACE (SEE TEXT FOR SPECIFICATION OF 

OPERANDS A AND B) 
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C1 – – – – 0 – – – – 

C2a – – – – – – – 1 0 

C2b – – – – – 1 0 – – 

C3a 0 – 0 – – – – 0 – 

C3b 0 – - 0 – 0 – – – 

C4a – 0 – – – – – – 0 

C4b – 0 – – – – 0 – – 

C5a – – – 1 – – – – 0 

C5b – – 1 – – – 0 – – 

C6a – – – – – – – – 0 

C6b – – – – – – – 0 – 

C6c – – – – – 0 – – – 

C6d – – – – – – 0 – – 

C7a – 0 – 0 – – – – 0 

C7b – 0 0 – – – 0 – – 

C8a – 0 1 – – – – – – 

C8b – 0 – 1 – – – – – 

C9a – 1 – 0 – – – – 1 

C9b – 1 0 – – – 1 – – 

C10a 1 – – 1 – 1 – – – 

C10b 1 – 1 – – – – 1 – 

C11a 0 – 1 – – – – 1 – 

C11b 0 – – 1 – 1 – – – 

C12 0 – – – – 0 – 0 – 

C13 – 0 – – – 0 – 0 – 

C14a – – – – – – – 0 1 



         

C14b – – – – – 0 1 – – 

C15a – – – – – 0 1 – 0 

C15b – – – – – – 0 0 1 

C16a – – 0 1 – – – 0 – 

C16b – – 1 0 – 0 – – – 

C17a – – 0 0 – 1 – 0 – 

C17b – – 0 0 – 0 – 1 – 

C18a – 1 1 1 – 0 – 0 – 

C18b 1 – 1 1 – 0 – 0 – 

C19a 1 1 1 1 – – – 0 – 

C19b 1 1 1 1 – 0 – – – 

C20a – 0 – 1 – – 0 – – 

C20b – 0 1 – – – – – 0 

C21a 1 0 0 – – – 0 – – 

C21b 1 0 – 0 – – – – 0 

C22a 1 – 0 – – 1 – 0  

C22b 1 – – 0 – 0 – 1 – 

C23a 1 – – – – – – – – 

C23b – – 1 – – – – – – 

C23c – – – – – – – 1 – 

C23d – – – 1 – – – – – 

C23e – – – – – 1 – – – 

C24a – 1 – 1 – – – – – 

C24b – 1 – – – – – – 1 

C24c – – – 1 – – – – 1 

C24d – 1 1 – – – – – – 

C24e – 1 – – – – 1 – – 

C24f – – 1 – – – 1 – – 

C25a – 0 – – – – 0 – – 

C25b – 0 – – – – – – 0 

 

C8. If both interiors are disjoint, then A’s boundary cannot 

intersect with B’s interior (EH6). 

C9. If A’s interior intersects with B’s interior and exterior, 

then it must intersect with B’s boundary too and vice versa 

(EH7). 

F.  At least one of the objects has a disconnected boundary: 

R(L,L), R(S,L), R(S,L), R(B,L), R(L,S), R(L,S), R(L,B). 

C10. Line object A’s boundary always intersects with at most 

two parts of B and vice versa (EH14). 

G.  Objects with connected boundaries and at least one of the 

objects has a zero co-dimension: R(S,S) in IR
2
; R(S,B) and 

R(B,S), R(B,B) in IR 
3
. 

C11. If A’s boundary intersects with B’s interior and exterior, 

then it must intersect with B’s boundary too (new). 

Since the co-dimension of B is 0, the connected boundary 
of A can intersect with B's exterior and interior if and only if it 
intersects with B's boundary. 

H. Objects with equal dimensions and zero codimensions: 

R(L,L) in IR; R(S,S) in IR 
2
 and R(B,B) in IR

3
. 

C12. If both boundaries do not coincide, then at least one 

boundary must intersect with the opposite exterior (EH8). 

C13. If both interiors do not coincide, then at least one 

boundary must intersect with the opposite exterior (EH9). 

C14. If A's interior intersect with B's exterior, then A's 

boundary must also intersect with B's exterior (EH11). 

I. Objects with equal dimensions and non-zero 

codimensions: R(L,L) in IR 
2
 and R(S,S) in IR

3
. 

C15. If A’s interior is a subset of B’s interior, then A’s exterior 

intersects with both B’s boundary and B’s interior and vice 

versa (EH 13b). 

The condition is true for every two objects of the same 
dimension, however when the co-dimension is zero the stricter 
condition C14 is applied. The non-zero codimension allows the 
intersection of the interior and the opposite exterior without 
crossing the boundary, therefore C14 cannot be used for the 
relationships R(L,L) in IR 2 and R(S,S) in IR3. 

C16. If A’s interior intersects with B’s boundary but A’s 

boundary do not intersect with B’s interior, then A’s boundary 

must intersect with B’s exterior and vice versa(new). 

If A's interior intersects with B's boundary without crossing 
A's boundary, then B's interior is a subset of either A's interior 
or A's exterior (due to the greater than zero co-dimension). In 
both cases, the exterior of B intersects with A's boundary. The 
condition is true for relationships between objects of the same 
dimension and zero co-dimensions. In this case, B's interior is 
only a subset of A's interior, which can be achieved by 
applying C12. 

J. Objects with equal dimensions, connected boundaries and 

non-zero co-dimensions: R(S,S) in IR
3
. 

C17. If A’s interior does not intersect with B’sboundary and 

A’s boundary does not intersect with B’s interior, then both 

boundaries either intersect or not with both exteriors (new). 

C18. If A’s interior and boundary intersects respectively with 

B’s boundary and interior, then at least one boundary 

intersects with the exterior of the other object (new). 

C19. If A’s closure intersects with B’s closure, then it must 

intersect with B’s exterior too, and vice versa (new). 

K. Objects with different dimensions, non-zero codimensions 

and one of them with a disconnected boundary: R(S, L) 

and R(L, S) in IR 
3
. 

C20. If A’s interior intersects with B’s boundary but not B’s 

interior, then B’s interior must intersect with A’s exterior 

(new). 

As can be realised, the condition is true for all the 
relationships between objects with different dimensions too; 
however, when the co-dimension is zero, the more restrictive 
condition C8 is applied. 

C21. If the boundary of B intersects with the boundary of A but 

the interior of B does not intersect with both the interior and 

boundary of B, then the interior must intersect with the 

exterior of A (new) 
The condition is also true for all the relationships between 

objects with different dimensions; however, when the co-
dimension is zero, the more restrictive condition C7 is applied. 

L. Objects with equal dimensions, non-zero codimension and 

disconnected boundaries: R(L,L) in IR
2
 and IR

3
. 

C22. If A's boundary is a subset of B's boundary, then the two 

boundaries coincide and vice versa (EH15a2,EH15b2). 



         

M.  At least one of the objects has empty boundary: R(P,P), 

R(P,L), R(P,S), R(P,B), R(L,P), R(S,P), R(B,P). 

C23. If A's boundary is the empty set, all the intersections 

between A's boundary and B's topological primitives will be 

the empty set and vice versa (new). 

C24. A's interior intersects only with one part of B and vice-

versa (EH20, EH23cd). 

C25. If A's interior does not intersect with B's interior, then 

A's exterior must intersect with B's interior and vice versa. 

The set of 25 negative conditions presented here is the 
minimal set reported currently in the literature. 

III. POSSIBLE RELATIONSHIPS 

The negative conditions defined above are applied to 
identify topological binary relationships between simple spatial 
objects regardless of the space in which they are embedded. A 
program in J (http://www.jsoftware.com/) computes the 
resulting possible relationships. 

Line and line relationships in IR: Lines are spatial objects 
with disconnected boundaries and connected interiors. 
Embedded in IR, their co-dimensions are zero. Therefore the 
following 19 conditions (counting all the parts of the 
conditions) have to be applied: C1, C2a, C2b, C3a, C3b, C4a, 
C4b, C5a, C5b C8a, C8b, C9a, C9b, C10a, C10b, C12, C13, 
C14a and C14b. Since the two objects have equal dimension 
both parts of all the conditions have to be used. The number of 
identified possible relationships is eight and they are given the 
names: disjoint, contains, inside, equal, meet, covers, 
coveredBy, overlap. Drawings with the interacting objects can 
be found in [5]. 

Line and line relationships in IR2 and IR3: The negative 
conditions applicable for R(L,L) in IR2 and IR3 are 17: C1, 
C2a, C2b, C3a, C3b, C4a, C4b, C5a, C5b, C10a, C10b, C15a, 
C15b C16a, C16b, C22a and C22b. Lines embedded in IR2 or 
IR3 have disconnected boundaries and connected interiors but 
the co-dimensions are non-zero. Therefore, the negative 
conditions that have to be used are the conditions for all 
objects, for objects of the same dimension, for objects with 
disconnected boundaries, for objects of the same dimension 
and non-zero codimension, and conditions for line and line 
relationships in IR2 and IR3. The number of all the relationships 
is 33. Drawing of all the relationships are given in [6]. 

Surface and line in IR2: The configuration surfaces and line 
falls in the groups of objects with different dimensions, at least 
one non-zero co-dimension and one disconnected boundary, i.e. 
the negative conditions for R(S, L) are 9: C1, C2b, C3b, C6a, 
C6b, C7b, C8b, C9b and C10a. The conditions leave 19 
possible relationships. The examples of geometric 
representations are shown in Figure 1 (the cases when the 
surface is represented as a rectangle are valid for 2D space). 

 

 

Figure 1.  Surface and line in IR3 : 31 relationships (19 in IR2, face drawn as 
rectangle) 

 

Figure 2.  Body and line in IR3 : 19 relationships 

 

Figure 3.  Surface and surface in IR3: 38 relationships 

Surface and line in IR3: Surface and line embedded in IR3 
have the same properties as surface and line in IR2, but the co-
dimensions are non-zero. The non-zero codimension permits 12 
more configurations than in IR3, i.e. the total number of all the 
possible relationships is 31 (see Figure 1). The conditions used 

 

 

 



         

for the relationship R(S,L) are 8: C1, C2b, C3b, C6a, C6b, 
C10a C20a and C21a. 

Body and line in IR3: Configurations between body and line 
can exist only in IR3, i.e. one of the codimensions is always 
zero. The two objects have different dimensions and one of 
them has disconnected boundaries. These properties require 9 
negative conditions for R(B,L): C1, C2b, C3b, C6a, C6b, C7b, 
C8b, C9b and C10a; and 9 conditions for the vice-versa 
relationship R(L,B): C1, C2a, C3a, C6c, C6d, C7a, C8a, C9a 
and C10b. The comparison with the configuration surface and 
line in IR2 shows that the negative conditions are identical and, 
consequently, the number of possible relationships is 19. 
Examples of possible geometric configurations are shown in 
Figure 2. 

Surface and surface in IR2: The configuration surface and 
surface in IR 2 has the following properties: connected 
boundaries, equal dimensions and zero co-dimensions. This 
implies that 19 negative condition has to be selected: C1, C2a, 
C2b, C3a, C3b, C4a, C4b, C5a, C5b, C8a, C8b, C9a, C9b, 
C11a, C11b, C12, C13, C14a and C14b. The conditions are 
similar to the ones applied to the relationship between line and 
line in IR. The only difference is C10, which is replaced with 
C11. Therefore the number of relationships is the same, i.e. 8, 
but one relationship, i.e. R511 is new. Drawings of the possible 
configurations are given in [5]. Visually, the relationship R511 
is the same as R255, i.e. both objects overlap each other. 
However, the intersections between the boundaries of 
topological primitives for both relationships are different. 

Surface and surface in IR3: The possible relationships 
between surface and surface are determined by the following 
properties: equal dimensions, connected boundaries and non-
zero co-dimensions. The conditions to be applied are 18, i.e. 
C1, C2a, C2b, C3a, C3b, C4a, C4b, C5a , C5b, C15a, C15b, 
16a, 16b, C17, C18a, C18b, C19a and C19b. The number of 
obtained relationships is 38 (see Figure 3). De Floriani [1] is 
the only author reporting relationships between surfaces in IR3, 
but the obtained relationships are different. Relationships 
R117, R159, R277 and R405 are not elected as possible ones 
and 12 new relationships are reported, which (in our 
judgement) require selfintersecting surfaces. The 12 new 
relationships are R279, R285, R317, R343, R407, R412, R433, 
R445, R471, R501, R503 and R509. Relationships R279 and 
R285 could not be interpreted with any geometric configuration 
between simple surfaces; relationships R317, R343, R407, 
R413, R433, R445 and R471 can be realised only by a closed 
surface (see Figure 4). 

 

Figure 4.  Examples of closed surfaces 

 

Figure 5.  Body and surface in IR3 : 19 relationships 

Body and surface in IR3: The configuration body and 
surface in IR3 has similar characteristics to surface and line in 
IR2, i.e. one of the objects has a co-dimension zero. However, 
the line has disconnected boundaries. Therefore, the condition 
C10, which refers to disconnected boundaries, must be replaced 
with C11. Thus the set of possible relationships R(B,S) can be 
obtained by 9 conditions: C1, C2b, C3b, C6a, C6b, C7b, C8b, 
C9b and C11b. The conditions C1, C2a, C3a, C6c, C6d, C7a, 
C8a, C9a and C11a determine all the converse relationships, 
i.e. R(S,B). The number of the relationships is 19 (see Figure 
5). The comparison between surface and line in IR2 (see Figure 
1), and body and surface in IR 3 (see Figure 5) shows 
difference only in one relationship, i.e. R255, which is replaced 
by R511. 

Body and body in IR3: The properties of this configuration 
are equal to the properties surface and surface in 2D space, i.e. 
equal dimensions, connected boundaries, and zero co-
dimensions. Therefore the same 19 negative conditions must be 
applied, i.e. C1, C2a, C2b, C3a, C3b, C4a, C4b, C5a, C5b, C8a, 
C8b, C9a, C9b, C11a, C11b, C12, C13, C14a and C14b. The 
number of possible relationships is again 8. Examples of 
possible geometric configurations can be found in [5]. 

Point and point: Since the points are objects with empty 
boundaries and equal dimensions, the conditions that have to be 
applied are 10: C1, C23a, C23b, C23c, C23d, C23e, C24b, 
C24e, C25a and C25b. These conditions eliminate 510 
relationships and leave only two, i.e. equal and disjoint 

Point and any other object X: R(P,X), R(X,P). The 
relationships between a point and any other object are 

only three, i.e. a point can be disjoint, lay on the boundary 
or the interior of the object. These configurations can be 
obtained by applying 11 conditions for R(P,X): C1, C6c, C6d, 
C7a, C23a, C23b, C23c, C24a, C24b, C24c and C25a; and 11 
conditions for R(X,P): C1, C6a, C6b, C7b, C23a, C23d, C23e, 
C24d, C24e, C24f and C25b. 

The comparison between conditions used by different 
authors (complete lists are given in [1],[6]), shows a significant 

 

 



         

reduction in the number needed for each configuration of 
objects. For example, Bric 1993 has obtained the relationships 
between surface and line applying 14 conditions, between body 
and line applying 15 conditions, and body and surface applying 
16 conditions. Egenhofer and Herring 1992 have reported 20 
conditions for line and line, 19 conditions (one less than above) 
for line and surface but have obtained one relationship more, 
i.e. R511, which is impossible for simple lines and surfaces. 

IV. CONCLUSIONS 

This paper presents a unified set of conditions for deriving 
the possible relationships between multidimensional simple 
spatial objects in 1,2 and 3D space. The conditions are 
systemised on the basis of dimension, co-dimension and 
connectivity of boundaries. Thus most of the conditions (15 of 
23, see [6]) derived for 2D space are propagated in 3D space 
and the overall number of conditions is reduced. All the 
relationships derived are verified with drawings. This proves 
that all the conditions are “sufficiently” restrictive, i.e. there is 
not a configuration left that cannot be represented by an 
appropriate drawing. Indeed, the question “Are the conditions 
too restrictive?” is also valid. Too restrictive conditions will 
eliminate relationships that are possible and, practically, there 
is not a way to detect this effect. As was shown above (e.g. 
R159 for surface and surface in 3D), relationships between 
complex objects might be influenced. Additional analysis of 
the intersections between exteriors contribute to the negative 
answer. 

Applying these negative conditions, the total number of 
relationships that can be identified by the 9-intersection and 
hence has to be considered for implementation, is reduced to 
69. Note that the number of relationships concerns simple 
spatial object, e.g. surfaces with holes or bodies with tunnels 
might have different relationships.  

Analysing the derived topological relationships, several 
conclusions can be drawn that can be of favour at the 
implementation level: The topological relationships are related 
to the types of objects, i.e. some of the relationships never 
occur between particular types. For example, R509 is possible 
only between body and line and body and surface. This implies 
that certain relationships (respectively the intersections 
between the topological primitives) may not be checked, if the 
dimension of the objects is known in advance. 

The relationships are related to the geometric partitioning 
performed for a particular application. This is to say that some 
relationships may not be needed because the geometric 
partitioning of the object is not appropriate. For example R455 
performed for body and surface may never be needed for urban 
applications. 

The study clearly shows inefficiency and insufficiency of 
the verbal identification of relationships. Some of the names 
established for relationships in 2D space are not applicable for 
relationships between 3D objects. The relationships between 
surfaces in 3D space are one typical example. Some of the 
names refer to formally different relationships, e.g. overlap 
stands for R511 (e.g. surface and surface in 2D) and R255 (e.g. 
surface and line in 3D). Most of the relationships are not 
associated with appropriate names and even it is difficult to 
specify the type of interaction. Many examples can be found 
among the relationships between body and surface or body and 
line. In this respect a unified coding of the relationships 
(similar to the coding used here) might be an alternative. 

Having specified the conditions for multidimensional 
simple objects, the next step has to be toward an extension for 
identifying conditions for surfaces with holes and bodies with 
tunnels. 
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