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Abstract—In this paper a method of simulated learning of
policy control is proposed for dynamic multiagent system, where
agent’s decision mechanism is represented as a function of agent’s
past experience. The system of homogeneous agents with different
sensor input and effector output is considered.

Two extensions to existed works of multiagent system simula-
tion approaches are proposed which enable to capture dynamic
behavior of agents. First, an action choosing policy depends on
the agent history of chronological order of agent observations and
actions. Agent learns not actions directly, but the performance
of policy function of what has been experienced in the past.
This history dependence in one hand expands the strategy space,
but on other hand it makes possible to describe agent policies
dynamic over interaction involving wider spectrum of behavior.
Second, policy is a function of not just a single agent action but a
function of joint action formated by a simulated learning process
of multiagent adaptation to dynamic environment.

A simulation of independent episodes and learning from
episode output as a powerful investigation tool is used for
experimental study.

Index Terms—Optimal Control, Multiagent System, Reinforce-
ment Learning, Monte Carlo Approach, Multi-vehicle Simulation

I. INTRODUCTION

Multiagent modeling and solution mechanisms have been
successfully applied to social science, economics, organiza-
tional management and other scientific work where intelligence
is expressed in obtaining good performance using achievable
resources and adapting the current situation for future benefit.
Researchers have been aiming to provide a bridge between
artificial intelligence (AI) research on real-time planning and
learning with relevant concepts and algorithms from control
theory [1], [2].

Multiagent based approach finds success in many research
methodologies due to it feature of segregating the problem into
easy solvable subtasks and assigning them to different agents.
For complex systems such as air traffic control, the multiagent
architecture with appropriate methods of agents coordination
is used to solve the decentralized control problem [3], [4], [5].
In order for the agents to be able to take their actions in a
distributed fashion, appropriate decision making mechanisms
must be additionally developed.

In terms of modeling other agents, there is much room for
improvement in the situation when a given agent does not
know the internal state or sensory inputs of another agent.
If the information is not directly available, it is essential for

an agent to learn it [6], [7]. Interacting within unknown and
uncertain environment agent learns it dynamic to use this
knowledge in own decision making. This mechanism is studied
in Reinforcement Learning (RL) research.

Agents learn from simulated experience which are gener-
ated by Monte Carlo policy control method from simulated
interactions [8], [9]. While acting and receiving some feedback
each agent gets experienced adapting and learning to behave
[10]. Some advantages of using RL for control problems are
that an agent can be trained easily to adapt to environment
changes, and trained continuously while the system is on-
line, thus improving performance all the time. On the other
hand, the coordination between agents with independent goals
and independent strategies is usually established to share
information. But in some real world systems establishing com-
munication for such coordination could be partially effective
or even impossible and then the behavior of the decision maker
is based upon observations of environment during the process.

To deal with these problems we model multiagent adapta-
tion to dynamic environment through a simulation method of
multiagent decision making based on computed policy function
with no direct communication among agents [11], [12]. Two
extensions to existed works of multiagent system simulation
approaches are proposed which enable to capture dynamic
behavior of agents. First, an action choosing policy depends
on the agent history represented by chronological order of
agent observation and action as past experience. This history
dependence in one hand expands the strategy space, but on
other hand it makes possible to describe agent policies dynamic
over interaction involving wider spectrum of behavior. Namely,
two methods of policy derivation process are considered:
policy value update in a risk aware manner and policy update
of gaining the best manner. Second, modeling of multiagent
adaptation to dynamic environment through a simulated learn-
ing of the policy is represented as a function of not just a
single agent action but a function of joint action formated by a
learning process. Here, simulation of independent episodes and
learning from episode output provides a powerful predictive
tool for systems with no direct communication among the
decision makers.

An internal model of an agent is described in Section 2.
Theoretical assumptions of decision making in a multiagent
system underlying this paper follow in Section 3. Section 4 de-
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scribes the proposed algorithm of policy control in a multiagent
system. Section 5 involves an experimental part of simulation
of multi-vehicle control example. And the concluding remarks
are given in the last Section 6.

II. AGENT MODEL.

A rational agent in stage k performs an action ak ∈ α
(action set), which results in an environment observation (or
perception) µk, followed by next stage k + 1. On every stage
agent obtains new information µ from the environment and this
information is updated to an agent internal state configuring
an agent history.

Definition 2.1: Given that the action space α is finite, an
agent history h is an internal state of an agent consisting of
a chronological sequential order of action/observation records
actually updated by an agent on each stage k.

hk = h0a1µ1a2µ2 . . .ak−1µk−1akµk = hk−1akµk. (1)

An agent performs an action ak, observes an environment
reaction µk which is determined by the environment probability
distribution ρ , a conditional probability function that the en-
vironment responses with µ1 . . .µk,µk +1 under the condition
that the agent actions are a1 . . .ak,ak+1.

ρ(µk+1) = ρ(µ0)ρ(µ1|a1,µ0) . . .ρ(µk|ak,µk−1)ak+1. (2)

Definition 2.2: In stage k the action ak of the agent is
defined by a decision rule called a policy π that is a function
of agent history on this stage: ak← π(hk−1).
By the expressions (1) and (2) and Definition 2.2

ρπ(µk+1) = ρπ(µ0µ1 . . .µk|a1a2 . . .ak)ak+1

= hkπ(hk). (3)

The above equation implies that the prior probability of envi-
ronment observation is defined by past history and following
policy function.

An agent with history hk to follow any policy must know
some evaluative criteria of the action to be chosen. A rational
agent tries to maximize the expected utility function V which
is the sum of future total rewards r, the numerical values
representing the agent measure of the environment reactions
to its actions. Let the number of timing stages be finite value
T . As the environment has a probabilistic feature the expected
accumulated reward of performing action ak+1 and following
the policy π thereafter is

V π(hk,ak+1) =
T

∑
k

r(µk+1)ρπ(µk+1). (4)

Utility function V is used to pre-analyze all actions or behav-
iors of the agent and is called policy value in the environment
with distribution ρ given history h. The maximum expected
reward is obtained by accumulating over observations µ and
maximizing over actions a. During the learning an agent
maximizes the future rewards recursively, i.e. agent updates
the policy value by sum of immediate reward and a maximum

V value of the action to be taken next. The expression (4) can
be written for stage k as

V π(hk−1,ak) = r(µk)+max
a∈α

V π(hk,ak+1). (5)

So an agent chooses the action with maximum value over the
set of possible actions α ,

ak+1 = argmax
a∈α

V π(hk−1,ak). (6)

The policy function is updated according to this choice,
π(hk) = π(hk,ak+1,µk+1).

As shown above, the policy function of agent is emanated
from history of actually taken actions/observations and the
current environment observation. Thus, an agent policy deriva-
tion is a process of mapping the past experience and current
observation into an action choice.

III. DECISION POLICY IN MULTIAGENT SYSTEM

A. Multiagent System Design

Multiagent system differs from single-agent system in that
several autonomous agents with particular properties exist in
an environment the dynamics of which caused by agents
behavior. Although this interaction could be viewed by an
agent as environmental influence not being separated from the
environment dynamics [7].

Work in [13] proposes a form of multiagent reinforcement
learning (RL) in which agents do not model each other as
agents . Instead agents consider each other as parts of the
environment and affect each other’s policies only as sensed
objects. This research shows that the agents can learn to
cooperate without modeling each other.

A Recursive Modeling Method is applied to model the
internal state of another agent in order to predict its actions
in [14]. Even though the agents know each others’ goals
and structure, they may not know each other’s future actions.
The missing pieces of information are the internal states and
sensory inputs of the other agents.

Research of [6] describes the Multiagent Markov Decision
Process (MMDP) as a general model in n-person cooperative
game in which agents share the same utility function . The
collection of agents is considered as a single agent with joint
actions and optimal joint policies which was determined as a
problem of equilibrium selection.

An application in [15] presents a multiagent cooperation
where agents must communicate with each other to share the
information needed for deciding which actions to take . Here,
each agent has its own Markov process involved in global
process and global states are known to agents at all time.

The method described in this paper is proposed for dealing
with the lack of information between the agents in multiagent
uncertain environment. There is no direct communication
among the agents and each agent observes the environment
from its own local view involving the other acting agents into
the environment dynamics. Agent simulates the environment
with a large number of different episodes, derives its own
decision policy and learns to adapt to environment dynamics.
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Fig. 1. An Agent State Transition in Multiagent System.

if the number of episodes is large enough then it could be
assumed that the agent learns the world behavior involving
the other agents’ influence and thus would be able to predict
and build its own decision policy.

Definition 3.1: The multiagent system is described by the
following parameters:

1) The set of N agents {agent1, . . . ,agentN}, the set of
possible actions of agent i, α i = {ai

1,a
i
2, . . .}.

2) The set of local observations of environment state by N
agents at stage k, {µ1

k , . . . ,µN
k }.

3) The available information set at stage k, {ς1
k , . . . ,ςN

k } of
each agent i, ς i

k = ς i
0ai

1µ i
1 . . .ai

kµ i
k.

B. Optimal Policy Considerations

Since the environment in a multiagent system is supposed
to be not static but dynamic, its reaction to an agent action is
not unique. Figure (1) reflects this point in an agent transition
from state with information set ςk−1 to state ςk, where an
action ak from action set α leads to multiple observations µ̄k

of environment with probability distribution ρ . Consequently,
the information set ςk is not unique.

The function ρ of expression (2) should be edited for
multiagent case as ρ(ςk) = ρ(µ̄k|ak,ςk−1).

An agent perceives the other agents as an environment
dynamics ρ . Thus an agent observation µ̄ , consequently, the
information set on a given stage are affected by other agents’
policy function. An agent which derives its own policy should
estimate the other agents’ policies, so that a joint policy of N
agents, Π = (π1, . . . ,πN), defines the system dynamics. Here,
the policy of an agent is optimal in sense of adaptation to other
agents’ behavior, i.e. in view of optimality of joint policy.

Definition 3.2: In multiagent system with N agents the joint
policy Π∗ = (π1∗, . . . ,πN∗) is optimal if each i agent policy
π i∗ is a best response given that the other agents follow their
policies which constitute the joint policy.
The agent i policy on stage k is a best response if no other
policies for the consistent information set of an agent has
higher value, i.e.

V π i∗
(ςk)≥V π i

(ςk), π i∗
k ∈Π∗k . (7)

Now the problem is how to evaluate the policy value if the
information set ς is not unique. Regarding the system design
issue on agents’ goal in system it could be separated two kinds
of acting manners of agents. The first is a risk aware manner,
i.e. the agent avoids the worst situations. And the second case

is where the agent strives to gain the best performance of the
actions. The agent goal of avoiding the worst in multiagent
setting is obtained by following the policy of a best response
defined by (7), where the set of policies of each agent is
selected with values minimizing over the observations µ̄ and
maximizing over its own action set α . Whereas, striving to
gain the best is described as to eliminate the set of policies
with maximum value over the environment observations and
taken actions, and apply the search of (7). By expression (5)
the above considerations are expressed as below.

1) Policy value update in a risk aware manner,

V π(ςk) =
T

∑
k

min
µk+1∈µ̄k+1

r(µk+1)+max
a∈α

V π(ςk+1). (8)

2) Policy value update of gaining the best manner,

V π(ςk) =
T

∑
k

max
µk+1∈µ̄k+1

r(µk+1)+max
a∈α

V π(ςk+1). (9)

C. Monte Carlo Approach

A Monte Carlo method of policy iteration involves alter-
nating complete steps of policy evaluation and policy im-
provement computation, beginning with an arbitrary policy and
ending with the optimal policy. For multiagent system case it
would be natural to explore joint policies of agents.

The multiagent system is simulated with M independent
episodes, e1,e2, . . .eM , each run of T stages. An episode history
of an agent consists of information set within this episode,
ςeM = ς1eM

ς2eM
. . .ςTeM

.
The experience samples of observed state space and ex-

plored actions determine the policy which is to be optimized.
The optimized matching function of information of state ob-
servations ς and action set α derives the optimal policy for
the given environment episode.

Monte Carlo method estimates the policy value consistent
with every appeared episode history. The prior probability of
agent history in a simulated environment is the product of
probabilities for every episode.

ρ(ς) =
M

∏
j=1

ρ(ςe j). (10)

From (3) ρ is the environment reaction distribution to the agent
policy π . Thus the agent policy in the system is a product of
derived policies on each episode:

π∗(ς) =
M

∏
j=1

π∗(ςe j). (11)

It is supposed to converge to a true value as the number of
generated episodes is large.

IV. POLICY CONTROL IN MULTIAGENT SYSTEM (PCMA)

In view of a simulation purpose, it is possible to evaluate
each policy for the given episode deriving policy distribution
in a state environment which represents the optimal behavior
in a given episode. On the other hand, evaluating any policy
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Fig. 2. Diagram of Policy Control Algorithm for N Agents System

for all simulation episodes could result in a policy assessment
being made for a particular simulated environment.

The proposed algorithm of Policy Control in Multiagent
System (PCMA) outlined in Table 1 and the flow diagram is
shown in Figure (2). The large number of episodes are gen-
erated with arbitrary policies for each agent. For termination
purpose of policy evaluation process the very small number ε
is used. Within the episode an agent follows the given policy
with action set α . After each action an agent observes the
environment state µ and records the information set ς as
defined in Definition 3.1. Since the environment response is
not unique an agent derives its own policy regarding the two
acting manners where the value evaluation for each information
set is held by expressions (8) and (9). Policies are updated due
to their values and the actions are generated following these
policies. On the nest step, from the view of joint policy Π
a best response policy π i∗ is selected by (7). This process is
repeated until best response policy functions in sequential runs
have about the same values. Then the optimal joint policy for
the given episode is determined by final individual policy of
each agent. At the end of simulation the agent policy in the
system and the joint policy matrix are composed by (11).

1. Generate the episode e j , j = 1 to M.

(a) Episode initialization: for i = 1 to N
ε ← very small number,
π i← arbitrary,
Π∗ ← empty list,
V i← 0,
ς i← empty list.

(b) Implement α i following π i.
(c) Collect µ̄ i = {µ i}, ς i← (ai,µ i).
(d) By (8) and (9) re-evaluate V i.
(e) Update the set of π i, generate α i = {ai}.
(f) Select π i∗ ∈Π∗ by (7).
(g) If π i∗ −π i ≥ ε then

π i = π i∗, Goto step (b),
else Goto step (h).

(h) Π∗ ← π i∗.

2. Compute π∗(ς) by (11) .
3. And compose Π(π∗) by (12).

TABLE I
ALGORITHM OF POLICY CONTROL IN MULTIAGENT SYSTEM (PCMA)

A

B1

B3

B2

Environment

B1~

B2~

B3~

Fig. 3. Multiagent Model

The next section discusses the simulation of the Multi-
vehicle Control Problem based on PCMA algorithm described
above.

V. SIMULATION OF MULTI-VEHICLE CONTROL PROBLEM

Multiple vehicles domain, where there is no communication
among the vehicles and sensing of vehicle is limited, is
represented as an application model of simulation. This model
could be used for maneuver derivation and evaluation in air
traffic control. Air vehicles have limited sensing feature and
limited action possibilities. Due to aerodynamic physics, any
action or maneuver has some defined properties and takes time
to be implemented. In uncertain unpredictable situations it is
difficult to quickly react in a proper manner. Thus the strategy
or policy of safe actions in a given situation must lead to a
safe result as well. The ability to learn the policies to match
current and future situations based on past experience, and to
avoid non-desirable results is most important.

On Figure (3), agent A models the B1, B2, B3 agents
behaviors matching them locally with its own view of opti-
mality. To do that agent A observes or senses the signals from
environment episode involving B̃1, B̃2 and B̃3 respectfully and
records the obtained observations as a state information:

µA
1...k← (B̃1, B̃2, B̃3)

ςA
k = (µA

1 , . . . ,µA
k ) (13)

Agent A simulates a situated environment while generating
dynamic episodes, perceives the other agents dynamics based
on local interactions, records and computes the necessary
values and builds an ”own” view of its surrounding world by
expression (13).

A. System Design

The following assumptions are taken for simulation con-
duction.

• The world consists of a cell representing the state of the
environment from the view of agent A.

• A senses agents B1, B2 and B3 as moving obstacles with
uncertain behavior.

• The agent A sensing function has normal distribution with
mean on its own position and fixed deviation. The region
is separated into states of perception determining the local
view of environment states, where the other agents B1,



B2 and B3 are sensed by A agent as changing state
observations value.

• The action set consists of maneuvers taken by an agent.
Each action has cost, that is depending upon how many
actions an agent carries out then the pay off increases
accordingly.

• Agent A avoids obstacles as much as possible, since
collision is probably fatal. There are 2 targets also moving
in this environment. A perceives targets as attractive goals
and tries to reach them.

Assume agent A has n number of sensing states and the sensing
parameters are limited to 2, and the local state observation
function µ is represented as 2 dimensional state space, where
each element represents the observed state transition signal
as shown by matrix (14). In order to make the observing
(or sensing) ability closer to a real world case, the agent
perceives its surrounding with a sensing function of Gaussian
distribution. Here, an agent itself has mean value, and other
agents or obstacles are sensed according to the Gaussian
variance value. In other words, the closer an obstacle or other
agent, the higher the sensing value and vice versa. The 2
dimensional sensing matrix µ size of n×n with signals from
the environment to perceive the state information involving
other moving agents or obstacles is shown below:

µ =




µ11 ... µ1i ... µ1n

.
µ j1 ... µ ji ... µ jn

.
µn1 ... µni ... µnn




(14)

where any object in state i to j sensed as activated element si j

with value according to Gaussian variance in this state.

B. Experimental Study

The action set of five kinds of possible actions are con-
sidered: action0 - No Maneuver, action1 - Speed Maneuver,
action2 - Horizontal Angle Maneuver, action3 - Vertical Angle
Maneuver, and action4 - Random Maneuver. Policy in turns
is simulated and learned by a Policy Control in Multiagent
System (PCMA) algorithm described above. Here Agent A:

• simulates the episode with initial random policy to be
gradually changed into a better one; senses environment
states while acting toward target states;

• receives the sensed signals while moving towards policy
to be evaluated; since each action has cost, policy has
value of accumulated action costs on a simulation run;

• avoids the undesirable sensed objects in future steps of
computation, i.e, computes the action values regarding
future rewards, where the future obstacle collisions may
decrease policy values in the updating process;

• learns its own optimal behavior in the range of two acting
manners, risk aware and gaining the best;

• repeats the above steps until updated policies are nearly
equal and derives the most optimal policy for the given
episode, and finally for the system.
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Fig. 4. Optimal Policy Distribution of agent A
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The above process repeats for 2000 random episodes.
Running simulation episodes provide the agent to adapt to the
surrounding environment, i.e. agent would be able to predict
the system behavior and plan its own future policy.

C. Simulation Result and Discussion

Simulation result of optimal policy distribution of agent
A which is derived by PCMA algorithm policy evaluation is
shown in Figure(5). The horizontal axis is according to number
of simulated episode runs. Vertical axis shows agent A policies
evaluation as a normalized reward function which represents
the computed optimal policy V ∗ at the end of episodes.
Since agent A learns about its surrounding environment during
simulation process, agent A strives to increase this reward
function gradually. In other words, if an agent learns a given
situation while receiving some reward price, then the next time
the agent will try to spend less resources in a similar situation
in order to obtain a higher reward.

As depicted on Figure (5) the action value evolution of
learning agent A in a multi-vehicle simulated system is in-
creasing with the increasing number of simulated episodes. At
the beginning stage, the agent is supposed to be learning the
environment which is reflected in more spending on resources
as exploration and exploitation rates are high. While the
number of simulated episodes increases, i.e. with increasing
episodes to be evaluated, the agent obtains more information
to be useful for future computations. And the policy evaluation
range eventually gets narrower.

Figure (6) shows the distribution rate of joint policy of
agents A, B1, B2, B3, computed episode-by-episode on the



basis of a discrete randomness formula

Rate(Π∗) =− ∑
π i∗∈Π∗

π i∗ log(π i∗) (15)

The joint action distribution rate (15) represents the degree of
randomness of evaluated policies during the simulated PCMA
learning. The larger this rate, the larger is the degree of
randomness of the taken policies. The nature of distribution of
joint actions in the simulated process is random for uncertain
dynamics. During the learning episodes, the degree of ran-
domness decreases due to agents policies’ convergence to the
optimal value which is defined by the Monte Carlo exploring
approach.

As each agent policy derivation process depends on other
agents policies, the policy is a function of not just a single
agent action but a function of joint action formated by a PCMA
learning process. By evaluating and improving the policies the
agent decreases the randomness of taken actions which leads
to decreased randomness of joint policies.

For a given system with 3 other dynamically moving objects
it could be seen that agent A improves its own performance
during the simulation progress. This result may lead to the
observation that in a non-communicating multi-agent domain,
where state and action spaces are discretisized due to domain
issues, each situated agent may build its ”own” view of the
environment by trial-and-error method through Reinforcement
Learning. Even if direct communication does not occur among
the agents, building their ”own” view based on ”own” senses
provides agent to fill this gap.

VI. CONCLUSION

This paper proposes a policy control algorithm for multia-
gent system. An agent learns the optimal policy by interaction
with the environment adapting its own action function based on
the local view. The Reinforcement learning method with Monte
Carlo Control approach with application to multiagent system
is used for computation. To cope with missing knowledge,
agents perceive each other’s current behavior as part of the
environment’s dynamic and build their policy derived from
sensed states of the environment. Coordination among agents
may occur through global environment influence, where pre-
diction of environment change based on past experience which
involves the influence of other agents behavior as well.

The main points of this method are:
1) Instead of directly communicating with others an agent

learns the environment dynamics which involves the
behavior influence of other agents and eventually comes
up with optimal policy control. Here the optimality is
considered by system’s joint policy setting.

2) The history dependent agent’s internal state makes it
possible to involve a wider policy evolution space and
to describe agent policies which are dynamic over inter-
action.

3) Simulation of independent episodes and learning from
episode output can provide a powerful predictive tool
providing a suitable mechanism for dynamic system
control.

For some real world systems establishing communication
for coordinated actions could be partially effective or even
impossible and then the behavior of the decision maker is based
upon observations of environment during the process. In such
situations it would be more effective to evaluate the available
resources in various situations before system implementation.

However, in order to investigate more general features of
decentralized decision making in multiagent system, appropri-
ate interaction problem considerations must be made. Game
theory as the study of problems of conflict and cooperation
among independent decision makers is assumed to be suitable
for this purpose. The next unclear issue is an agent learning
which concerns not just only it own history of actions and
rewards, but uses observed histories of opponent actions to
predict future states, and responds optimally to them. Thus,
assumption methods providing approximate prediction of sys-
tem dynamics should be studied in future work.
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