

978-1-4244-1676-9/08 /$25.00 ©2008 IEEE RAM 2008

A Level of Detail Selection Method for Multi-Type
Objects Based on The Span of Level Changed

Zhuo Yu
State Key Lab. of Virtual Reality

Technology and Systems
School of Computer Science and
Engineering, Beihang University

P.R. China, 100083
 thursday@vrlab.buaa.edu.cn

Xiaohui Liang
State Key Lab. of Virtual Reality

Technology and Systems
School of Computer Science and
Engineering, Beihang University

P.R. China, 100083
lxh@vrlab.buaa.edu.cn

Zhiyu Chen
State Key Lab. of Virtual Reality

Technology and Systems
School of Computer Science and
Engineering, Beihang University

P.R. China, 100083
chenzy@vrlab.buaa.edu.cn

Abstract—Level of Detail (LOD) selection method is a key
component in complex scene rendering and is widely used in
time-critical systems. Many studies focus their efforts on
developing the LOD selection method to deal with the problem
which the scene contains small objects or objects with a single
type. This paper gives a LOD selection method handling the
situation that the scene contains multi-type objects while the data
amount of these objects change dramatically. The preprocessing
step of our work is using the extreme simplification way to
simplify the objects with large number of primitives and using
the Quadric Error Metrics to simplify the small ones. Then we
calculate the span of level changed to each type of object
separately. In runtime, we organize all the objects into a max
heap by using the importance factor for rendering. We get the
top element of the heap and change its level until the total data of
objects satisfy the condition of time-critical method. Compared to
existing solutions, our method is more suitable to the situation
when the scene contains different type of objects.

Keywords—LOD selection, multi-type objects, time-critical,
span of level changed

I. INTRODUCTION
With the development of the data acquisition technique, the

types of objects in the virtual environment are increasing fast.
The data amount of the complex scene with these different
kinds of objects is larger than before. People often use the LOD
(level of detail) method to simplify the models in order to
decrease the total size of data. However, the rendering speed is
changing dramatically while the total primitives of objects alter
in the view frustum as the objects are located randomly. So a
way which supports the rendering of the whole scene at
constant speed is more imperative than before in some
applications such as computer games, the emergency training,
and military simulation.

Time-critical method is a good way to solve this problem.
The core of this idea is to guarantee the rendering speed [1].
The first step of this method is to create the LOD models of
each type of object, and then pick the right LOD model by
using the limitation of rendering speed and some other factors
such as the view position, projection area and the relative
distance. Some researchers proposed lots of modifications to
time-critical method [2, 3]. Most of them handled the problem
which the scene contains many objects of a single type and the

number of primitive is small.
Complex scene often contains more than one type of objects

and the primitives of each type are different dramatically.
Therefore, instead of considering all the objects with a single
type, our method focus on the problem with the scene contains
multi-type objects. In the former situation, users can select the
LOD model by distance or projection area. In latter situation,
the distance or projection area is not the most importance
factor because the more primitives the object contains the
more importance effects the object has when rendering. So we
should distinguish the degree of primitive changes between
different levels among multi-type objects first, and then give a
method which can select the right LOD model for more
important ones in a short time.

In order to solve the problem introduced above, we offer a
LOD selection method based on the span of level changed
(SLC) using time-critical method. The aim of our method is to
give more attention to large object which has more importance
factor to rendering than small ones. We build the LOD models
of each type of object first. And then we calculate the SLC of
each object and create the max heap by using importance
factor which composed of SLC and other factors before
selecting. We get the top element of max heap and change its
level each time until the total primitives satisfy the condition
for stable rendering when the total primitives beyond the
limitation of time-critical method.

The main contributions of the algorithm presented in this
paper are stated as follow:

• It gives a way to distinguish the importance factor for
each type of object when the change of levels happens
among different type of objects in rendering.

• It provides a quick way to solve the LOD selection
between multi type objects based on our definition,
especially the number of some objects’ primitives are
far bigger than others.

II. PREVIOUS WORK
Funkhouser and Séquin demonstrated the method which

used a predictive selection scheme mainly based on the
complexity of the current frame [4]. They formulate their way
as an optimization task which is equivalent to a constrained
version of the Multiple Choice Knapsack Problem (MCKP).

They give a way to solve this problem, but the result of their
method is about half as good as the optimum one.

Gebbtti extended the method of Funkhouser and Séquin [4],
and proposed the time-critical method to render the objects by
using the LOD selection way in the scene [1]. The basic idea is
to limit the total number of primitives in each frame. They
assumed if the total number of primitives in each frame was the
same, the render speed should be constant. The advantage of
their method is considering the relationship of rendering quality
and the rendering speed. The shortcoming is obviously as the
process of calculating is quite complicated.

Some researchers have done lots of works under this
method. Zach proposed a selection method which supported
discrete and continuous LOD [5]. They project the objects on
the screen and use the projection area as the key factor to select
the LOD models. They regard that the bigger the projection
area is the more importance factor the object has. This method
is limited to handle the situation like the object is rotating. Zach
implemented a solution to select the level based on the event-
driven condition [6].

Zhang proposed a way to render complex scene with many
type of objects, they combined several optimization techniques
into their method [7]. They use the user pre-defined factor to
each object when selecting. They can also handle the LOD
selection of small dynamic objects.

Hern´andez applied a system to render the scene which
contains different types of trees [2]. They allocate a value to
each visible object by using the projection area of this object
and estimate the rendering time in each time. If the object is not
important to visibility, they decrease the time of current object
and take the remainder time to other visible objects.

Gumbau offered a selection method which deal with the
situation that the objects in a virtual environment are of a single
type and the amount of objects is large [3]. They also use GPU
to accelerate the speed of their algorithm.

III. DEFINITION AND OVERVIEW
We will introduce some definitions in the first part in order

to present our method easily. The second part of this section
introduces the overview of our method.

A. Definition
1) 1Level

Level of a LOD model is the value which can present the
degree after simplifying the original one. There are lots of ways
to define the level of an object. One way is to use the ratio of
mesh number after simplifying the original mesh number to
define the level. In this paper, we use the way proposed by
Cohen to define the level [8]. To each level of detail model, let

objectM be the mesh number of current model, and l be the level
of current model. So we use the following formula to calculate
the level of each object [8]:

2 objectl = log (M)

The level defined here is a float value which multi-type
models can contrast with different LOD models. In order to use
this value more conveniently, we convert the result to the
integer by using (1).

() 0.5

()
floor(l) l ceil l

l =
ceil l

 (− ≥)
 

 (1)

2) Span of Level Changed (SLC)
From the above definition, we can see that the more

primitives the object has the more level the object is. But it is
not enough to compare the changing of levels correctly by
using the value of levels alone. So we use SLC (span of level
changed) to present the degree of changing. Let SLC be the
value of the LOD model changed from level i to level j, and we
use (2) to present the definition.

(,)* || ||i j i jSLC max l l l l= − (2)

The symbol of || || is the absolute value. There are two
components in (2): the max of two levels and the subtraction of
level changed. From (2) we can see that the SLC is only related
to the amount of primitives and it can present the degree of
level changed. For example, the mesh number of current LOD
model is 5000, and the mesh number of next level is 2000, the
value of SLC = 12*1=12.

B. Overview of Our Method
The method proposed in this paper is divided into two

parts: the preprocessing part and the runtime part.

The preprocessing is the step to process the models. Most
methods we introduced in section 2 use one way to simplify the
model. In our method, we use two ways to simplify the models
in order to give more attention to the difference between the
different type models. We use QEM method to handle small
models and use extreme simplification ways for big ones. We
introduce our method in details in section 4.

The main step of runtime is introduced as follow: we get
the objects in the view first and organize them into the visible
set. Then we calculate the importance factor of each object in
the visible set. We create the max heap by using the importance
factor as key value. We change the level of top element in the
heap and recalculate until the total amount of data is smaller
than border when the sum of data beyond the boarder which
supported for constant rendering.

IV. PERPROCESSING STEP
The total primitives of a complex scene which contains

multi-type objects are often beyond memory space, so we
should simplify the model before rendering. The preprocessing
step is to build the LOD model for multi-type of objects.
Luebke gives a good review of these techniques in [9]. In
generally, there are two kinds of ways to simplify the models:
the discrete method and the continuous method.

The method of progressive meshes was proposed for
creating view-dependent continuous level of detail model by
Hoppe [10]. He records every collapse process and creates a
forest to store the corresponding data. In runtime, he uses the
split way to get the detail of model when the view is closer to
the model. The result of his method is good but the
shortcoming is also obviously as the structure is big and the
speed of traversing is slow.

So we use the discrete way to simplify the models in our
method to avoid the time of traversing when the number of
primitives is large. We also offer different methods to create
LOD model by the amount of primitives belongs to each type
of objects. To the object which contains small primitives, we
use the traditional way as Quadric Error Metrics (QEM) to
build the LOD models [11]. To the object which has big dataset
like the happy body, we use the extreme simplification method
to simplify the model aggressively and preserve the feature of
objects better [12].

V. RUNTIME SELECTION

A. Condition of Time-Critical
Traditional time-critical method used the limitation of

rendering time to achieve the target of time-critical and kept the
quality of rendering result in runtime. In our situation, we want
to give the solution of time-critical rendering when lots of
different type objects in the scene especially one type of object
contains huge primitives. The problem is the number of
primitives in the view may beyond the limitation of time-
critical when the view moves. So we should give a way to
decrease the total primitives by using the LOD selection on
different type of objects. In order to attach this target, we use
the following assumption that the aim of our method is only
focus on the rendering speed while not giving more attention to
rendering quality.

Our solution follows the condition of time-critical method
which the speed of each frame is constant. This can also be
presented as the number of primitives for rendering in each
frame is constant. So we can use the definitions denoted in
section 3 to describe this constrain. We present the total
primitives in the system which can be handled for stable speed
rendering as M , use n as the total number of objects in the
scene, and use the il as the current level of each object.
Therefore, the objects in current view condition should satisfy
the (3):

1

i

n
l

i
2 M

=
≤∑ (3)

Two situations will happen when rendering. Firstly, the
objects in current view satisfy the (3), we do nothing but
rendering. Secondly, t the objects in view do not satisfy the (3),
we should change the level of objects in order to decrease the
sum of primitives for constant speed rendering. The changing
of level is determined by the importance factor of each object
which introduced in the following.

B. Important Factor Based SLC

Figure 1. Scene with (a) same type objects (b) multi-type objects

The scene which contains many objects of a single type in
one time is shown in Fig. 1 (a). The importance factor used for
LOD selection in this situation depends on the distance
between objects and view-point or the projection area in the
screen easily because each object has the same number of
primitive.

But to the situation like Fig. 1 (b), there is more than one
type of objects in the scene. When the level is changed, the
number of primitives belongs to an object may be the sum of
other different objects. In this situation, the LOD selection can
not only decide by the distance or projection area because the
objects has different importance factor to system as the amount
of primitives is different. The object containing more
primitives should have more importance factor when rendering
because it spends more traversing time and hardware resources.

Therefore, we give a way to present the importance factor
for multi-type objects. The importance factor is composed of
three elements: the relative distance, the SLC, the relative
projection area of object.

1) Relative Distance
Distance is the basic factor in LOD selection [13]. However,

the distance in this paper is a relative value instead of an
absolute one. Use variable nearestD as the distance from view

to the nearest object, let variable currentD be the distance from

view to current object (in Fig. 2). Use variable currentd as the
value of relative distance in (4).

nearest
current

current

D
d =

D
 (4)

Figure 2. Relative distance

(b) (a)

Once the variable nearestD is decided in one moment, the
value of currentd is determined by currentD .

2) Relative Projection Area
The projection area is a widely used factor for LOD

selection. The shortcoming of this factor is that the size of
projection area is related to the rotation and coordinate of
objects. But in our situation, the multi-type objects have their
own coordinate when modeling. So we just use the relative
projection area to present the degree of its impact on rendering.
Let smallestPA be the smallest projection area of all the objects in
the current view condition, let currentPA be the projection area of
current object. Let currentS be the value of relative projection
area of the current object.

current
current

smallest

PA
S =

PA
 (5)

The meaning of (5) presents the relative importance for
rendering quality while not decided by the area of one objects
only.

3) Importance Factor for Rendering
In runtime, we give (6) to calculate the importance factor

for each object in rendering when level is changed:
SLCf = d *

S
 (6)

Let f present the affection factor. The d presents the relative
distance and the S is the relative projection area of object.
Equation (6) presents the way we calculate the importance
factor when the view moved. So the meaning of the importance
factor is the prediction degree of level changed for the
rendering.

C. Structure and Selection Algorithm
The aim of our method is to select the right level of the

object which has more importance factor and can satisfy (3).

In order to select the right level for objects quickly, we
create a max heap by using the importance factor as the key. If
the objects do not satisfy the (3), we just change the level of top
element and recalculate after updating the heap.

Figure 3. Runtime LOD selection algorithm

If there are m objects in the current view condition, the
complex of the algorithm is 2m* log (m) which presents the
worst situation. The whole algorithm is presented above (Fig.
3).

VI. EXPERINMENT
In our first experiment we use 3 types of objects including

cow, armadillo and happy body whose original number of
primitives is 5804, 345944, and 1087716 [14]. We create five
LOD models for cow: 100%, 50%, 25%, 12%, and 6% using
QEM method. We create eight LOD models: 25%, 12%, 6%,
3%, 1.5%, 0.75%, 0.37%, and 0.18% for armadillo and happy
body using extreme simplification method. The value of SLC
presented in the following.

TABLE I. SPAN OF LEVEL CHANGED WITH HAPPY BODY

We can see from the Tab. 1 that the bigger the original level

of an object is the more SLC value the object has when the
level changed. So the SLC is a good way to present the degree
of level changed which happens to large objects.

We create the virtual environment with 120 objects which
composed of 50 cows, 40 armadillos and 30 happy bodies. We
render the scene into an 800×600 window on a PC with a 2.4
GHz Pentium 4, 2 GB memory, and a NV GeForce 6800 card
with 128 MB video memory. The rendering speed is about 51
frames per second by using back face culling and occlusion
culling.

The Fig. 4 presents the number of primitives the scene
contains and the primitives the system to rendering.

Figure 4. Mesh in view contrast to mesh for rendering

From the Fig. 4, we can see that the number of the
primitives in the view is far bigger than the system rendered in
practice, the method of ours can decrease the amount of
primitive for rendering successfully. Moreover, we can also see
that there is a dramatically drop happens in the Fig. 4 when the
objects in the view is of a single type and contains small
primitives like model cow. So the mesh number for rendering
also changed correspondingly, but we use the mechanism of
sleeping to deal with this situation. The speed of rendering is
not affected by this sudden dropping of primitives.

Figure 5. SLC with three different objects

Fig. 5 presents the SLC of three type objects when they are
all visible in the view at five different moments. The SLC of
these five moments does not contain zero value in order to
present the level changing clearly. But in practice, zero value
appears usually in lots of moments when the level does not
change. From the Fig. 5 we can also find that in order to satisfy
the time-critical rendering, the objects which contain more
mesh changes more dramatically than small objects.

Fig. 6 shows the rendering result while the scene contains 5
happy bodies, 6 armadillos and 5 cows. These 16 objects are
distributed randomly and 2 happy bodies near to the view
point.

Figure 6. Rendering with few objects

In the second experiment, we create the same virtual
environment with 200 armadillos and 200 bunnies [14]. The
primitive number of bunny is 69451. We create five LOD
models for bunny: 50%, 25%, 12%, 6% and 3% using QEM
method. Fig. 7 shows the rendering result. The rendering speed
is about 30 frames per second using back face culling and
occlusion culling.

Figure 7. Rendering with lots of objects

VII. CONCLUSION
This paper provides a fast LOD selection method for multi-

type objects using time critical method. The core component is
to use the span of level changed (SLC) as the main component
to calculate the importance factor for each type of objects when
level changed. In order to give more reliable result, we use the
relative distance of objects and the relative projection area
when estimating the effect of object’s level changing. The
method introduced in this paper can select the appropriate LOD
model for each object in the situation when there are lots of
objects which contain massive meshes in runtime.

Although we can use our method to render the multi-type
objects at a constant speed, the pixel error of rendering result is
changed dramatically. The further work is to give more
attention to the image quality of rendering. The prediction
method in our method is conservatively, we only changed one
level to the top element in the heap. It should be more
exploitatively. We simplify the models in a static way in
preprocessing step, so we should offer dynamic capability for
users who want to change the LOD models in runtime.

Compared to our complex structure, another approach is to
use more hardware friendly and simpler structures to store the
data after simplification, so this can use the ability of hardware
acceleration.

ACKNOWLEDGMENT
This research is supported by National High Technology

Project (863 Project) (No.2006AA01Z333), Program for New
Century Excellent Talents in University (NCET) and Natural
Science Foundation of China (No.60533070).

REFERENCES
[1] Enrico Gobbetti, and Eric Bouvier, “Time-Critical Multiresolution Scene

Rendering”. Proceedings of the conference on Visualization '99, San
Francisco, California, United States 1999, pp. 123–130.

[2] Eduardo Hernandez and Bedrich Benes，“Robin Hood’s Algorithm for
Time-Critical Level of Detail”, Computer Graphics and Applications
(GraphiCon'2005)，Fifteenth International Conference，2005.

[3] J. Gumbau., O. Ripolles., M. Chover ，“LOD Manager: A framework
for Rendering multiresolution models in real-time applications” ，
WSCG 2007. Plzen (Czech Republic), Feb. 2007.

[4] Thomas A. Funkhouser, and Carlo H. Séquin, “Adaptive Display
Algorithm for Interactive Frame Rates During Visualization of Complex
Virtual Environments”, Proceedings of the 20th Annual Conference on
Computer Graphics and Interactive Techniques, 1993, pp. 247–254

[5] Christopher Zach, Stephan Mantler and Konrad Karner, “Time-critical
rendering of discrete and continuous levels of detail”， Proceedings of
the ACM symposium on Virtual reality software and technology , Hong
Kong, China, 2002, pp. 1-8

[6] Christopher Zach, and Konrad Karner, “Fast Event-Driven Refinement of
Dynamic Levels of Detail”，Proceedings of the 19th spring conference on
Computer graphics， Budmerice, Slovakia，ACM Press New York, NY, USA,
2003, pp: 55 - 62，

[7] Mingmin Zhang，Zhigeng Pan and Pheng-Ann Heng ,“Time-critical rendering
algorithm with incorporation of LoD, visibility culling and object impostor” , The
Journal of Visualization and Computer Animation, Volume 14, Number 4,
September 2003, pp 211–223.

[8] Jonathan David Cohen , “Appearance-preserving simplification of
polygonal models”, North Carolina at Chapel Hill,1998.

[9] D. Luebke, M. Reddy, J. Cohen, A. Varshney, B. Watson, and R.
Huebner, “Level of Detail for 3D Graphices”, Morgan Kaufmann, 2002

[10] Hugues Hoppe, “View-Dependent Refinement of Progressive Meshes”,
Proceedings of the 24th annual conference on Computer graphics and
interactive techniques, 1997, pp. 189–198

[11] Michael Garland and Paul S. Heckbert, “Surface Simplification Using
Quadric Error Metrics”, Proceedings of the 24th annual conference on
Computer graphics and interactive techniques, Aug. 1997, pp 209–216.

[12] Pablo Diaz-Gutierrez M, Gopi Renato, and Pajarola, “Hierarchyless
Simplification, Stripification and Compression of Triangulated Two-
Manifolds”, In Computer Graphics Forum (Eurographics), 24(3) 2005,
pp. 457-467

[13] Miliano, V. “Unreality: Application of a 3D Game Engine to Enhance
the Design,Visualization and Presentation of Commercial Real Estate”.
Proceedings of 1999 International Conference on Virtual Systems and
MultiMedia (VSMM ’99),1999, pp. 508–513.

[14] http://www.cs.princeton.edu/gfx/proj/sugcon/models/

