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Abstract—Common used parameters selection method for 
support vector machines (SVM) is cross-validation, which is 
complicated calculation and takes a very long time. In this paper, 
a novel regularization parameter and kernel parameter tuning 
approach of SVM is presented based on quantum particle swarm 
optimization algorithm (QPSO). QPSO is a particle swarm 
optimization (PSO) with quantum individual that has better 
global search capacity. The parameters of least squares support 
vector machines (LS-SVM) can be adjusted using QPSO. 
Classification and function estimation are studied using LS-SVM 
with wavelet kernel and Gaussian kernel. The simulation results 
show that the proposed approach can effectively tune the 
parameters of LS-SVM, and improved LS-SVM with wavelet 
kernel can provide better precision. 
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I.  INTRODUCTION  
As a machine learning method, support vector machines 

(SVM) originally introduced by Vapnik [1] within the area of 
the statistical theory and structural risk minimization has 
emerged as one powerful tool for data analysis. It has been 
widely used for many applications, such as regression and 
pattern recognition [3], [4]. 

It is well known that SVM generalization performance 
depends on a good setting of regularization parameter and the 
kernel parameter. To minimize the generalization error, these 
parameters should be properly selected. There are roughly 
several methods for SVM to select parameter: cross-validation, 
Vapnik-Chervonenkis (VC) bound and the Bayesian evidence 
framework method [5], [6], [7]. Cross-validation is the most 
commonly used approach due to its high accuracy, but it is 
complex calculation and consumes more computation time. 

Particle swarm optimization algorithm (PSO) [8] [9], put 
forward by Kennery and Eberhart, is a swarm intelligent 
optimization method. PSO begins with a random population 
and searches for optima by updating the population. The 
quantum particle swarm optimization algorithm (QPSO) was 
presented in [10] [11] as an algorithm with good performance-
complexity trade-off. Based on the quantum bit, the best 
chromosome's guidance is used to draw close to the optimum 
step by step, QPSO can find solution quickly in global space. 

In this paper, QPSO is applied to tune parameters of least 
squares support vector machines (LS-SVM) [12], which are 
used in pattern recognition and function estimator. Simulations 
conducted on benchmark data set and standard approximated 
functions demonstrate the effectiveness and efficiency of the 
proposed method. The better performances and easier of 
implementing parameters selection with simple calculation is 
compared with cross-validation method to tune LS-SVM with 
wavelet kernel and Gaussian kernel. 

The rest of this paper is organized as follows: In Section II, 
we review LS-SVM. The proposed approach is given in 
Section III. Experimental results are shown in Section IV and 
some conclusions will be given in Section V. 

II. LEAST SQUARES SUPPORT VECTOR MACHINES 

Let { }),(,),,(),,( 2211 ll yxyxyxD =  be a training set 

with input data d
k Rx ∈  and corresponding output data 

Ryk ∈ . Learning from the training data can be viewed as a 
multivariate function f  approximation that represents the 
relation between the input data and output data [1], [2]. In the 
general case, the input data are mapped into a feature space by 
nonlinear function )Φ(x , the SVM function )(xf  can be 
expressed as: 

bxΦxf += )()( Tω                             (1) 

where Tω is a m -dimensional vector, and b is a scalar. 

A. LS-SVM for function estimation [10] 
In LS-SVM for function estimation, one defines the 

following optimization problem: 
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where [ ]T
21 ,,, leee=e , 11×∈ Rek  denotes the error 

vector, γ  is regularization parameter. 



         

Using the optimization theory can solve this problem. One 
can define the Lagrangian for this problem as follows 
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where ),,1( lkk =α are Lagrange multipliers. 

The conditions for optimality lead to a set of linear 
equations: 









=





















+ − yαIΩ1
10 0

1

T b
γ

                   (5) 

where [ ]T
21 ,,, lyyy=y , [ ]T

11,,1,1 l×=1 ,
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.,,1, lnm =  According to Mercer’s condition, there exists 

kernel function =),( nm xxK ( ) ( )nm xx ΦΦ T . 

The resulting LS-SVM model for function estimation 
becomes: 
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where kα , b  are the solution to the linear system (5). 

B. LS-SVM for classification [10] 

Considering kkk ebxΦy −=+ 1))(( Tω , }{ 1,1 −+∈ky  
for classification, similar to function estimation, the solutions 
lead to a set of linear equations: 
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where [ ]T
21 ,,, lyyy=y , [ ]T

11,,1,1 l×=1 ,

[ ]T
21 ,,, lααα=α  and ( ) ( )nmnmmn xxyy ΦΦΩ T= . 

The resulting LS-SVM model for classification is: 
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where kα , b  are the solution to the linear system (7). 

III. QUANTUM PARTICLES SWARM OPTIMIZATION TUNING 
Parameters selection for SVM is very complex and quite 

hard to solve by conventional optimization techniques. Here 
quantum particles swarm optimization algorithm (QPSO) is 
adopted to tune the parameters of LS-SVM model. The QPSO 
was presented in [10] [11] as an algorithm with good 
performance-complexity trade-off. Based on the quantum bit, 
the quantum bit has the advantage that it can represent a linear 
superposition of states in search space probabilistically, and the 
best chromosome's guidance is used to draw close to the 

optimum step by step, QPSO can find solution quickly in 
global space. 

In the quantum theory, the minimum unit that carries 
information is a qubit, which can be in any superposition of 
state 0 and 1. We define such a quantum particle vector 

t
n

t qqtQ ,,)( 1=  at generation t , where n  is the size of the 

population, and t
jq  is the j  particle with quantum energy 

which is defined as: 
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where ( ) ( )miiq t
j ,,11 =≤≤ , which represent  a bit of 

quantum particle, m  is the particle's length. ( )iqt
j  gives the 

appearing probabilities of the state “0”. Then the QPSO 
algorithm can be described as: 

begin 
0←t   

initialize ( )tQ  
observe ( )tQ  to get ( )tP  
evaluate ( )tP  
store the best solution among ( )tP  
while (not termination-condition) do 
begin 

1+← tt  
observe ( )1−tQ  to get ( )tP  
evaluate ( )tP  
update ( )tQ  
store the best solution among ( )tP  

end 
end 

where ( )tP  are are particle vector, ( ) [ ]t
n

t pptP ,,1= , t
jp  

is the j th particle. 

In the “initialize ( )tQ ”, all ( )iqt
j ( )mi ,,1=  of 

quantum chromosome ( )njqt
j ,,1=  are initialized as 

21 , which means that all the possible linear superposition 
of states appear in the same probability. Particle vector ( )tP  is 
formed by observing ( )tQ  in the next step, the procedure can 
be described as: 
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where )(ipt
j  represents the i th bit of t

jp ),,1( nj = . Then 
“evaluate ( )tP ” step is performed with evaluation function, 
and the best solution among initial ( )tP  is stored. 



         

In “while ( )  do” cycles, Particle vector ( )tP  is formed 
by observing ( )1−tQ  and “evaluate ( )tP ” step is 
implemented with above-mentioned method. A “update ( )tQ ” 
step is added, like the PSO the QPSO algorithm has memory in 
order to store the best position values already found for each 
particle )( t

jbestp  and the best global position )( t
gbestp . From 

these positions, the best global and individual quantum energy 
values are calculated in order to generate changes in the 
particle positions. 

)1( t
gbest

t
gbest

t
gbest ppq −×+×= βα               (11) 

)1( t
jbest

t
jbest

t
jbest ppq −×+×= βα               (12) 

where 1=+ βα , 1,0 << βα  are called the control 
parameters which represent the control degree of ( )tQ . The 
smaller of α , the bigger of the appear probability of the 
desired item 
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where 1321 =++ ccc , 1,,0 321 << ccc  represent the degree 
of the belief on oneself, local maximum and global maximum, 
respectively. 

After “update ( )tQ ” step in the cycles, the best particle 
solution among ( )tP  is selected, if it is better than the stored 
best particle solution, then it will be stored. When the cycles 
are completed, the stored best particle solution is the expected 
particle solution with quantum particles swarm optimization. 

In order to speed up quantum particles swarm optimization, 
we adopt two-step scheme to apply QPSO on the parameters 
selection. Because the range of possible parameters is wide, 
reducing the search range can improve efficiency of 
optimization, so the first step is applied to rough adjust the 
parameters, and the second step to tune the parameters within 
the selected range which is confirmed by the first step’s 
obtained parameters, that is shown as: 

( )00*1
rrrr vuv −−= ηλ                        (14) 

( )00*1
rrrr vuu −+= ηλ                        (15) 

where ( )2,10 =rvr  are original minimum of regularization 
parameter γ  range and kernel parameter σ  range, and 

( )2,10 =rur  are original maximum of parameters range. 
( )2,1* =rrλ  represent the first step optimized value of γ  and 

σ , 1
rv  and 1

ru  are the second step minimum and maximum of 
parameters range, respectively. The coefficient [ ]5.0,0∈η  is 
used to adjust the second step parameters search range 
according to the optimized result of the first step. For 
preventing the new range to get across original range, we make 
the following rules: if 01

rr vv < , then 01
rr vv = , and if 01

rr uu > , 
then 01

rr uu = . 

To apply QPSO on the parameters tuning, we utilize the 
value range of the regularization parameter and the kernel 
parameter to decide the bit number of a particle solution t

jp , 
then the corresponding bit number of a quantum chromosome 

t
jq  can be confirmed. For Gaussian kernel of LS-SVM model, 

the initial value range of the regularization parameter γ  and 
the kernel parameter σ  are [ ]1000,1.0  and [ ]100,1.0 , 
respectively. 

The evaluation function, which defines the selection criteria, 
affects the performance of the model parameters selection. 
Here, QPSO shows its flexibility to implement various criteria 
according to applications. One choice of the evaluation is to use 
the overall classification rate on a test set. The evaluation 
function of classification is defined as: 

ss AccuracyEvaluation =                 (16) 

where sAccuracy  is the classifier’s s th generation testing 
accuracy. 

Another choice of the evaluation is to use the function 
approximation precision on a test set. The evaluation function 
of function estimation is defined as: 
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where ky  and kf  denote the desired output and the 
approximation output for the test set’s k  th input data, 
respectively, z  is the input data number of the test set, and 

tEvaluation  is t th generation evaluation to present function 
approximation accuracy . According to LS-SVM model, the 
evaluation function is chosen to optimize the parameters by 
using QPSO. 

In general quantum particle swarm optimization, the size of 
population is 20. 20 generations optimization is implemented in 
the first step, the program is terminated when the quantum 
particles swarm optimization has been completed. In second 
step, the program is terminated when the best evaluation has 
not changed more than a very small value, i.e. 410−  for 
classification and function approximation over the last 
generation. When quantum particle swarm optimization is 
accomplished, the optimized best particle solution is converted 
to real value, the best value of regularization parameter γ  and 
kernel parameter σ  can be obtained. 

IV. EXPERIMENTS 
In this section, we evaluate the proposed SVM parameters 

tuning method with three numerical experiments, the 
classification of two-class benchmark problem, approximation 
of a single-variable function and two-variable function. 

For comparison, the cross-validation (CV) and QPSO 
method are performed to tune the parameters of LS-SVM 
model with wavelet kernel and Gaussian kernel, respectively. 
The kernel function of wavelet kernel and Gaussian kernel are 
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denotes the i th component of the k th training samples, a  is 
wavelet dilation coefficient [13]. 

A. Classification on benchmark problem 
For classification, we use the UCI binary classification 

benchmark repository [14]: the Johns Hopkins university 
ionosphere (ion) and the sonar (snr) with input dimension n  
equal to 33 and 60, and total number of patterns 351 and 208, 
respectively. Each component of the input data is normalized to 
zero mean and unit standard deviation. We extract randomly 
2/3 of the data as train set, and the rest as test set. The 
parameters of LS-SVM classifiers with wavelet kernel and 
Gaussian kernel are ),( aγ  and ),( σγ , which are adjusted by 
the cross-validation (CV) and QPSO optimization, respectively. 
The parameters of PSO are 2.021 == cc , 6.03 =c , 1.0=α  
and 9.0=β . The tuned parameters and results of 
classification are shown in Table I. 

TABLE I. TUNED PARAMETERS AND RESULTS OF CLASSIFICATION 

Method Data Kernel γ  a  or σ  Train 
(%) 

Test 
(%) 

Wavelet 3.16 4.25 100.00 96.8 
ion 

Gaussian 4.27 2.33 100.00 96.00 

Wavelet 8.96 16.55 87.12 78.27 
CV 

snr 
Gaussian 7.24 23.33 86.10 77.15 

Wavelet 3.96 0.25 100.00 97.17 
ion 

Gaussian 4.88 4.68 100.00 96.45 

Wavelet 29.25 19.54 87.86 78.69 
QPSO 

snr 
Gaussian 27.76 24.56 86.55 77.68 

 

B. Approximation of single-variable function 
In this experiment, we approximate the following single-

variable function[13] 
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We have uniformly sampled examples of 200 points, 100 
points of which are taken as training examples and others 
testing examples. The parameters of LS-SVM estimator with 
wavelet kernel and Gaussian kernel are adjusted with above 
two tuning parameters methods. The parameters of QPSO are  

1.021 == cc , 8.03 =c , 1.0=α  and 9.0=β . The 
normalized root of mean-square-error (NRMSE) is served as 
one criteria for assessing the extrapolation ability of our 

procedure. Table II lists the tuned parameters and 
approximation errors. The approximation results are plotted in 
Figs. 1 and 2, respectively. 

TABLE II. TUNED PARAMETERS AND RESULTS OF APPROXIMATION 

γ  a  or σ  NRMSE 
Method Kernel 

  ( Train ) ( Test ) 

Wavelet 910.86 0.14 0.0022 0.0034 
CV 

Gaussian 900.68 0.47 0.0203 0.0212 

Wavelet 992.86 0.22 0.0019 0.0027 
QPSO 

Gaussian 865.68 0.36 0.0086 0.0098 

 

 
Figure 1.  Original function (solid line) and resulting approximation by LS-

SVM with Gaussian kernel (dotted line) 

 
Figure 2.  Original function (solid line) and resulting approximation by LS-

SVM with Wavelet kernel (dotted line) 

C. Approximation of two-variable function 
This experiment is to approximate a two-variable 

function[13] 

)5.0sin()(),( 22 xyxyxf −=  

We take uniformly 81 sampled  points as the training 
examples, and 1600 points as the testing examples. The 



         

parameters of QPSO are 1.021 == cc , 8.03 =c , 05.0=α  
and 95.0=β . Table III lists the tuned parameters and 
approximation results of LS-SVM with wavelet kernel and 
Gaussian kernel, respectively. Fig. 3 shows the original 
function ),( yxf , and Figs. 4 and 5 show the approximation 
results. 

TABLE III. TUNED PARAMETERS AND RESULTS OF APPROXIMATION 

γ  a  or σ  NRMSE 
Method Kernel 

  ( Train ) ( Test ) 

Wavelet 268.53 0.88 0.0169 0.0352 
CV 

Gaussian 566.71  0.54 0.0188 0.0432 

Wavelet 962.65 0.56 0.0122 0.0248 
QPSO 

Gaussian 978.26  0.69 0.0144 0.0289 

 

 

 
Figure 3.  Original function 

 

 
Figure 4.  Resulting approximation by LS-SVM with Gaussian kernel 

 
Fig. 5.  Resulting approximation by LS-SVM with Wavelet kernel 

We have compared the classification and function 
approximation results obtained by wavelet kernel and Gaussian 
kernel, whose parameters are tuned with the cross-validation 
and QPSO, respectively. To summarize, the QPSO method is 
better than the cross-validation to adjust the parameters of LS-
SVM models in these three experiments, and the wavelet kernel 
has better performance than Gaussian kernel. 

V.  CONCLUSION 
In this paper, we discuss a practical way to tune the 

regularization parameter and the kernel parameter with 
quantum particle swarm optimization (QPSO), which takes full 
advantage of particle swarm optimization (PSO) and update 
with quantum individual. This work provides a new adjusting 
parameters of SVM approach. Three simulations of LS-SVM 
model with wavelet kernel and Gaussian kernel show that the 
proposed method is effective and efficient, and enhanced LS-
SVM with wavelet kernel shows good generalization ability on 
classification problem and gives better approximation on 
function estimation. The main attraction of the proposed tuning 
method is that it is simple calculation of implementation with 
better performances in comparison with the cross-validate 
method. 
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