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Abstract—This paper presents a ball-joint-like three-degree-
of-freedom (3-DOF) permanent magnet (PM) spherical actuator
which features a ball-shaped rotor with multiple PM poles and
a spherical iron stator with air-core coils. The magnetic field of
the PM-pole rotor of this PM spherical actuator is formulated
analytically. Simulation result of the magnetic field variation is
then presented. In addition, the effect of the stator iron on the
magnetic field is evaluated, which is very useful for design of PM
spherical actuators.

Index Terms—spherical actuator, magnetic field, iron stator

I. INTRODUCTION

Compared with conventional three-degree-of-freedom (3-
DOF) spherical motion mechanism by using several single-
axis actuators connected in parallel or in series, a spherical
actuator that can generate multi-DOF rotational motion in one
joint has the advantages of compact structure, fast response
and singularity free in workspace. Williams and Laithwaite
[1] [2] have designed the first 2-DOF spherical induction
motor. The magnetic field generated by the stator windings
induces a current on the rotor surface, and causes the rotor
to incline. Davey et al. [3] derived the torque model of this
induction motor by integrating the Maxwell stress moment
over the spherical rotor surface and proposed its use as a
robot wrist [4]. The mechanical complexity and the inherent
poor servo characteristics of the spherical induction motor led
Lee et al. [5] to develop a 3-DOF spherical stepper based
on the principle of variable-reluctance. The torque output of
a variable-reluctance spherical motor (VRSM) depends on the
current inputs as well as the magnetic reluctance at the air-gaps
between the rotor and the stator poles [6]. In the past decade,
several variations of spherical motors with a structure similar
to [5] have been studied. Wang et al. [7]–[10] have developed
spherical actuators achieving 2/3-DOF motions. The rotor is
a completely magnetized ball. Coils are uniformly mounted
on the stator. Chirikjian et al. [11] have made a spherical
stepper with a permanent magnet (PM) pole rotor and a stator
with an array of coils. Difference in the symmetric layout of
the rotor poles and the stator poles allows stepping motion in
three orientations. Kahlen et al. [12] developed a spherical
motor consisting of a rotor sphere with 112 PM poles and an
outer stator with 96 stator windings. More recently, Lee et al.
[13] [14] have developed a spherical wheel motor that offers
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Fig. 1. Prototype of spherical actuator

a means to control the orientation of its rotating shaft in an
open-loop fashion.

In our previous study [15] [16], a research prototype of
PM spherical actuator has been developed as shown in Fig.
1. The key feature of this spherical actuator is its flexible
structure, i.e., the relationship between the torque output and
structure parameters can be described so that optimum values
of parameters can be selected to achieve high torque output
[17]. Furthermore, more PM and coil poles are allowed to
incorporate, and thus to increase the working range as well as
motion resolution of the actuator. In this prototype, the stator is
made from aluminum for preliminary study. As ferromagnetic
materials such as soft iron may reduce the magnetic energy
loss and increase the actuator torque, the objective of this paper
is to derive mathematic model of the three-dimensional (3D)
magnetic field of PM spherical actuators with a laminated-
soft-iron stator, and to analyze the effect of stator iron on the
magnetic field distribution.

II. WORKING PRINCIPLE

The working principle of the proposed spherical actuator is
illustrated in Fig. 2. Rare earth PM poles (NdFeB) mounted
along the rotor equator can produce high flux density. The air-
core coils are assembled on the stator which can simplify the
torque model of the spherical actuator in a linear fashion. By
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activating pairs of coils in two longitudinal directions, the rotor
can tilt in two orthogonal directions as shown in Fig. 2(a) and
2(b). Energizing all circumferential coils, the rotor can spin
about its own axis (Fig. 2(c)). Therefore, by varying the input
currents of coils, any desirable 3-DOF spherical motion within
the workspace can be achieved.
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Fig. 2. 3-DOF motion of spherical actuator

III. FORMULATION OF MAGNETIC FIELD

The torque output of PM spherical actuator is generated
by the interaction between the magnetic field of PM rotor and
the current in coils. Therefore, analysis of PM rotor’s magnetic
field is a precondition of torque modeling of spherical actuator
which in turn is significant for actuator control. The challenge
of magnetic field formulation for spherical actuators is that the
magnetic flux density has three components, and each of those
components varies in the 3D space. In this research, Laplace’s
equation is employed to solve the magnetic scalar potential of
the PM rotor, and thus to obtain the formulation of magnetic
field distribution surrounding the rotor.

A. Assumptions

Assumptions that are useful for the formulation of magnetic
field are listed as follows.

• The magnetic permeability of air space is the same as
that of free space.

• The magnetic permeability of stator iron is much greater
than that of air space.

• PMs are assumed to be ideal with field relationship
described by the linear second quadrant of a PM demag-
netization curve.

B. Characterization of Rotor Space

In formulating the magnetic field of the rotor, we use
a generic spherical rotor model as shown in Figure 3 for
discussion. The PM poles are evenly spaced (with alternate
polarities) around the rotor equator, each of which has the
shape of a dihedral cone defined in terms of four parameters:
longitudinal angle α, latitudinal angle β, outer and inner radii,
Rr and Rb. With such an arrangement on PM pole, the study
of rotor magnetic field can be divided into three parts.

1) Air Space outside the Rotor (Region 1): The air gap is a
linear homogeneous media with the absence of magnetization,
which can be characterized by a constitutive relation

B1 = μ0H1, (1)

where the subscript “1” denotes Region 1; B and H are the
magnetic flux density and field intensity; and μ0 is permeabil-
ity of free space with a value of 4π × 10−7H/m.

2) Within the Dihedral PM Rotor Poles (Region 2): In this
study, PMs are assumed to be ideal with field relationship
described by the linear second quadrant of a PM demagneti-
zation curve. Therefore, the magnetic property of PM can be
characterized by

B2 = μ0μmH2 + μ0M0, (2)

where μm is the dimensionless relative recoil permeabil-
ity of PM (typical value ranging between 1.05 and 1.20);
M0 = Brem/μ0 is the residual magnetization vector in A/m;
and Brem is defined as the remanence in Tesla. In spherical
coordinates, the residual magnetization vector of the pth PM
can be expressed as

M0 =

�
�
M0,r

M0,θ

M0,φ

�
� = (−1)p−1|M0|

�
�
cos(φ− αp) sin θ
cos(φ− αp) cos θ
− sin(φ− αp)

�
� , (3)

where αp = α/2+2π(p−1)/P , p = 1, 2, ..., P . P is the total
number of PM poles. In this study, let P = 8. Note that these
equations are only valid within the range of

0 < φ− 2π(p− 1)

P
< α,

π

2
− β

2
< θ <

π

2
+

β

2
.

For the non-magnetized space in between poles on the rotor,
the residual magnetization is equal to zero.

3) Rotor Core Made of Ferromagnetic Material (Region 3):
The magnetic property of ferromagnetic material such as soft
iron can be characterized as

B3 = μ0μrH3, (4)

where μr is relative permeability of the ferromagnetic core.
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C. Governing Equations

For an irrotational magnetic field,

∇×H = 0, ∇ · B = 0, (5)

where H is curl free and can be expressed in terms of a scalar
potential function Φ based on Helmholtz’s theorem:

H = −∇Φ. (6)

In spherical coordinates,

H = Hrer + Hθeθ + Hφeφ

=

�
−∂Φ

∂r
, − 1

r

∂Φ

∂θ
, − 1

r sin θ

∂Φ

∂φ

�T

, (7)

where er, eθ and eφ are respective unit vectors, Hr, Hθ and
Hφ are components of magnetic field intensity.

For Regions 1 and 3, the scalar potentials are governed by
the Laplace’s equations:

∇2Φ1 = 0, ∇2Φ3 = 0. (8)

The scalar potential Φ2 within Region 2 is expressed as

∇2Φ2 = ∇ ·M0/μm, (9)

which is in the form of Poisson’s equation. With a symmetric
arrangement of rotor poles, the divergence of the residual
magnetization vector is equal to zero. Thus, the Poisson’s
equation can be reduced to Laplace’s equation, ∇2Φ2 = 0.

D. General Solution to Laplace’s Equations

The Laplace’s equation can be written in spherical coordi-
nates as:

1

r2
[
∂

∂r
(r2Φi)+

1

sin θ

∂

∂θ
(sin θ

∂Φi

∂θ
)+

1

sin2 θ

∂Φi

∂φ
]=0, (10)

where i (= 1, 2 and 3) denotes the region of concern. Based
on the separation of variables, the general solution to the
Laplace’s equations characterizing all three regions has the
following form [18]

Φi =
∞�

n=0

n�
m=−n

(κm
n,ir

n + ξm
n,ir

−(n+1))Y m
n (θ, φ), (11)

where κm
n,i and ξm

n,i are constants to be determined by the
boundary conditions. The angular part of the solutions to
the Laplace’s equation, Y m

n , is a complex valued spherical
harmonic function defined by

Y m
n (θ, φ) = Sm

n Pm
n (cos θ)eimφ,

where Sm
n =

�
2n + 1

4π

(n−m)!

(n + m)!
; Pm

n (cos θ) is associated

Legendre functions; n, m are integers with the condition −n ≤
m ≤ n.
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Fig. 4. Poles on the equatorial plane of the rotor in spherical coordinates

E. Spherical Harmonic Expansion of M0r

To utilize the continuity on the boundary conditions between
two medians, the radial component of residual magnetization
vector needs to be expanded in spherical harmonics. Let M0 be
the magnitude of the residual magnetization vector M0. With
reference to Fig. 4 that illustrates the poles placement on the
equatorial plane of the rotor, the constituents M0r, M0θ and
M0φ of M0 in the directions er, eθ and eφ are computed as

M0r = (−1)p−1M0 cos[φ− α0 − 2π

P
(p− 1)] sin θ, (12)

M0θ = (−1)p−1M0 cos[φ− α0 − 2π

P
(p− 1)] cos θ, (13)

M0φ = (−1)p M0 sin[φ− α0 − 2π

P
(p− 1)], (14)

where p = 1, 2, ..., P . P is the total number of PM poles. In
this study, P = 8, and α0 is the PM pole angle at the center
line in φ-direction. Note that these equations are only valid
within the range of

π

4
(p− 1) + α0 − α

2
< φ <

π

4
(p− 1) + α0 +

α

2
, (15)

π

2
− β

2
< θ <

π

2
+

β

2
, (16)

in the PM pole (Region 2). For the rest non-magnetized regions
in the rotor, the residual magnetization is equal to zero.

When applying boundary conditions to solve the unknowns
in the general solution of scaler potential, only the radial
component of residual magnetization vector M0r will be used
to express the flux density continuity between regions. Compo-
nents M0θ and M0φ do not exist in any boundary condition.
The radial component can be expressed as an expansion of
spherical harmonic functions Y m

n (θ, φ) as [19]:

Ms
0r(θ, φ) =

∞�
n=0

n�
m=−n

CnmY m
n (θ, φ), (17)

where Cnm are coefficients determined from

Cnm =

� π

0

� 2π

0
M0r(θ, φ)Y m∗

n (θ, φ) sin θdθdφ, (18)

and Y m∗
n (θ, φ) denotes the complex conjugate of Y m

n (θ, φ).
Substituting Eqn. (12) into Eqn. (18) gives the coefficients

Cnm = M0

� 2π

0
f(φ)e−imφdφ

� π

0
Sm

n [Pm
n (cos θ)] sin2 θdθ, (19)



where

f(φ) = (−1)p−1 cos[φ− α0 − π

4
(p− 1)], p = 1, 2, ..., 8. (20)

It is found that Cnm �= 0 if and only if m = ±4,±12,±20, ....
Thus, fundamental terms of the spherical harmonic functions
can be taken at n = 4 and m = ±4. For simplicity, only these
terms are used for the derivation of magnetic field. Denote

a± bi≡
� 2π

0
f(φ)e−imφdφ (m = 4 and m = −4), (21)

c/
√

π≡
� π

0
Sm

n sin2 θ[Pm
n (cos θ)]dθ, (22)

where a, b and c are real numbers. As M0r is available within
the range defined by Eqns. (15) and (16), integrals in Eqns.
(21) and (22) are also constrained by the same range. Out of
this range, the integrals are equal to zero. It can be verified
that the results of Eqn. (22) for m = 4 and m = −4 are the
same. Consequently, the coefficients C4,4 and C4,−4 can be
obtained based on Eqn. (19) as

C4,4 = M0
1√
π

(a + bi)c, C4,−4 = M0
1√
π

(a− bi)c, (23)

where C4,−4 is the complex conjugate of C4,4. Therefore, the
radial component M0r of residual magnetization vector can be
expressed in terms of spherical harmonics as

Ms
0r(θ, φ) = C4,−4Y

−4
4 (θ, φ) + C4,4Y

4
4 (θ, φ), (24)

where Y −4
4 = 3/16

�
35/2π sin4 θe−4iφ and Y 4

4 =

3/16
�

35/2π sin4 θe4iφ.

F. Boundary Conditions

The particular solutions that characterize the magnetic scalar
potentials of three regions require the specification of the
source term and the six unknowns, κm

n,i and ξm
n,i where i = 1,

2 and 3. These unknowns can be solved from the following
boundary conditions (BC):

1) Boundary Condition A (B1,θ|r=Rs = 0 and B1,φ|r=Rs =
0): When magnetic flux goes from air space to ferromagnetic
material with very high permeability, the direction of the
magnetic flux is always normal to the interface between these
two materials [20]. As soft iron is employed for the stator,
the magnetic flux generated by the PM rotor is normal to the
stator inner surface in Region 1. In other words, the tangential
components of the magnetic flux B1,θ|r=Rs

and B1,φ|r=Rs

are equal to zero at the stator inner surface, where Rs is the
inner stator radius. It can be obtained that

ξm
n,1 = −κm

n,1R
2n+1
s . (25)

2) Boundary Condition B (B1,r|r=Rr
= B2,r|r=Rr

):
According to the conservation law of magnetic flux [21],
on the interface of two neighboring medium with different
permeability, the normal components of the flux density in
both medium are equal to each other. Therefore, for Region
1 (air) and Region 2 (PM), there is boundary condition of
B1,r|r=Rr

= B2,r|r=Rr
, where Rr is the radius of the rotor

that defines the spherical boundary between these two regions.
Projecting all terms of Eqn. (2) into the r-direction gives

B2,r = μ0μmH2,r + μ0M0,r. (26)

From Eqns. (7), (17) and (26), it can be obtained that

− (nκm
n,1R

2n+1
r − (n + 1)ξm

n,1)

=−μm[nκm
n,2R

2n+1
r − (n + 1)ξm

n,2] + CnmRn+2
r . (27)

3) Boundary Condition C (H1,φ|r=Rr
= H2,φ|r=Rr

and
H1,θ|r=Rr

= H2,θ|r=Rr
): According to Ampere’s circuital

law [21], the tangential components of magnetic intensity on
both sides are equal on the interface of two medium with
different permeability. For the spherical actuator, there are
two components Hθ and Hφ of the magnetic field intensity
which are tangent to the rotor surface between Region 1 (air)
and Region 2 (PM). Therefore, H1,φ|r=Rr

= H2,φ|r=Rr
and

H1,θ|r=Rr
= H2,θ|r=Rr

, where r = Rr defines the boundary
surface between Region 1 (air) and 2 (PM). From Eqns. (7),
(11) and BC-C, the following result can be obtained

κm
n,1R

2n+1
r + ξm

n,1 = κm
n,2R

2n+1
r + ξm

n,2. (28)

4) Finite Boundary Condition D (B3,r|r=0 �= ∞,
B3,θ|r=0 �= ∞ and B3,φ|r=0 �=∞): This boundary condition
comes from the fact that it is impossible to achieve an infinite
value of flux density. According to Eqns. (7) and (11), the
boundary condition, B3,r|r=0 �= ∞, can giveξm

n,3 = 0. It can
be verified that B3,θ|r=0 �= ∞ and B3,φ|r=0 �= ∞ yield the
same result.

5) Boundary Condition E (B2,r|r=Rb
= B3,r|r=Rb

): This
boundary condition is similar to BC-B. Following the same
development, BC-E gives the following result

μrnκm
n,3R

2n+1
b =μm[nκm

n,2R
2n+1
b −(n+1)ξm

n,2]−CnmRn+2
b (29)

6) Boundary Condition F (H2,φ|r=Rb
= H3,φ|r=Rb

and
H2,θ|r=Rb

= H3,θ|r=Rb
): Following the same procedure of

BC-C, H2,φ|r=Rb
= H3,φ|r=Rb

can lead to

κm
n,3R

2n+1
b = κm

n,2R
2n+1
b + ξm

n,2. (30)

H2,θ|r=Rb
= H3,θ|r=Rb

also yields the same result.

G. Solution of Magnetic Flux Density

1) Solution of Unknowns in Scalar Potential: So far, the
values or relationships of coefficients ξm

n,1, ξm
n,2, ξm

n,3, κm
n,1,

κm
n,2 and κm

n,3 have been derived from boundary conditions.
Specifically, BC-D produces the result of ξm

n,3 = 0, and BC-
A, BC-B, BC-C, BC-E and BC-F lead to Eqns. (25), (27),
(28), (29) and (30) respectively. According to Lorentz force
law, only the magnetic field in Region 1 (air) generates
actuator torque. Therefore, solutions of ξm

n,1 and κm
n,1 are

important for solving magnetic field distribution (κm
nI = 0).

By taking advantage of Eqns. (25), (27), (28), (29) and (30),
the following results can be achieved

κm
n,1 = On,5Cnm. (31)

ξm
n,1 = On,6Cnm. (32)



where

On,6 =−(On,3/On,4R
2n+1
r −On,2/On,1)/(R

2n+1
r −R2n+1

s )R2n+1
s ,

On,5 =(On,3/On,4R
2n+1
r −On,2/On,1)/(R2n+1

r −R2n+1
s ),

On,4 =[(μr − μm)nR2n+1
b ],

On,3 =[μrn + μm(n + 1)]On,2/On,1 −Rn+2
b

On,2 =Rn+2
r (R2n+1

r −R2n+1
s )(μr−μm)nR2n+1

b −Rn+2
b R2n+1

r

{nR2n+1
r (1− μm) + (n + 1 + μmn)R2n+1

s },
On,1 ={[n+μm(n + 1)]R2n+1

r +[(n + 1)−μm(n + 1)]R2n+1
s }

(μr − μm)nR2n+1
b −R2n+1

r {nR2n+1
r (1− μm) +

(n + 1 + μmn)R2n+1
s }[μrn + μm(n + 1)].

2) Scalar Potential and Magnetic Flux Density: Substitut-
ing κm

nI and ξm
nI into Eqn. (10) and discarding the high-order

harmonic terms give

Φ1 = [κ−4
4,1r

4+ξ−4
4,1r−5][Y −4

4 (θ, φ)]+[κ4
4,1r

4+ξ4
4,1r

−5][Y 4
4 (θ, φ)]

= [O4,5r
4 + O4,6r

−5]{C4,−4[Y
−4
4 (θ, φ)]+C4,4[Y

4
4 (θ, φ)]}. (33)

Because C4,4 = M0
1√
π
(a+bi)c and C4,−4 = M0

1√
π
(a−bi)c,

it can be obtained that

Φ1=
3

8

�
35

2π

cM0√
π

[O4,5r
4+O4,6r

−5]sin4θ(a cos4φ−b sin4φ). (34)

Therefore, three components of the magnetic flux density are
calculated as (To simplify the equation, let α0 = 0.)

B1,r =
3

8

�
35

2π

acμ0M0√
π

[5O4,6r
−6−4O4,5r

3] sin4θ cos4φ (35)

B1,θ =−3

2

�
35

2π

acμ0M0√
π

[O4,5r
3+O4,6r

−6]sin3θcosθcos4φ(36)

B1,φ =
3

2

�
35

2π

acμ0M0√
π

[O4,5r
3 + O4,6r

−6] sin3 θ sin 4φ (37)

IV. SIMULATION AND ANALYSIS

A. Simulation Result

Let Brem = 1T, Rb = 15mm, Rr = 45mm and Rs =
80mm. The distribution of three magnetic field components
with respect to θ and φ is presented in Fig. 5 (r = 46mm).
Figure 5(b), 5(d) and 5(f) are used to facilitate the understand-
ing of flux distribution. From Fig. 5(a) and Fig. 5(b), it can
be seen that B1,r is always normal to the rotor surface. It
reaches the maximum value at the center point of PM poles
(Point P2). At points far away from the rotor equator, such
as P1 and P3, the flux density becomes smaller, but with
same positive/negative signs. The flux density at the center
of neighboring PM pole (P4) also has the maximum value,
but with opposite sign. In Fig. 5(d), however, B1,θ should
be equal to zero along the rotor equator (P2, P4), because
the PM poles are symmetrically arranged with respect to the
rotor equator. At points on both side of the rotor equator (P1,
P3), the flux density magnitude increases, but with opposite
value. This analysis coincides the variation of B1,θ in Fig. 5(c).
Similarly, in Fig. 5(f), flux density component B1,φ along the
center line of PM pole such as P1 and P2 is equal to zero,

because the flux density in φ direction is symmetric about the
center line. B1,φ increases at points away from the center line
(P3, P4), and is relatively larger at point P4.

B. Effect of Iron Stator on Magnetic Field

Denoting components 5O4,6r
−6 − 4O4,5r

3, O4,5r
3 +

O4,6r
−6 and O4,5r

3 + O4,6r
−6 in Eqns. (35) - (37), as Os,1,

Os,2 and Os,3 respectively gives

B1,r =
3

8

�
35

2π

acμ0M0√
π

Os,1 sin4θ cos4φ (38)

B1,θ =−3

2

�
35

2π

acμ0M0√
π

Os,2sin
3θcosθcos4φ (39)

B1,φ =
3

2

�
35

2π

acμ0M0√
π

Os,3 sin3 θ sin 4φ (40)

The relationship between magnetic flux density components
and stator radius can be revealed through the relationships
between Os,1, Os,2, Os,3 and stator radius Rs as presented in
Fig. 6. From these figures, some conclusions can be obtained.
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Fig. 5. Simulation of magnetic flux density distribution (r = 46mm)



• Os,2 and Os,3 are equal to zero when stator radius is
approximately the same as the rotor radius. In other
words, the tangential components of flux density B1,θ

and B1,φ are nearly equal to zero when stator radius
approaches the rotor radius.

• Os,1 is larger with smaller size of stator radius, which
indicates that most fluxes in φ and θ directions are
“dragged” to r direction due to high permeability of the
stator iron. As a result, the flux lines are normal to the
stator inner surface when its radius is small.

• The largest value Os,1 (when Rs = 46mm) is about
twice of the smallest one (when Rs is very large). When
the stator size is very large, it can be regarded that the
stator is made of nonferromagnetic material. Therefore,
the magnetic flux density in r direction can be increased
about twice by using a iron stator.

• Because the torque output of the spherical actuator is
produced by the radial component of magnetic flux
density, a stator made of laminated soft iron can help
to increase the actuator torque output.
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Fig. 6. Relationship between flux density and stator radius (r = 46mm)

V. CONCLUSION

This paper studied the magnetic field of a 3-DOF PM
spherical actuator with a iron stator. The mathematic model of
the magnetic field was derived. The magnetic field distribution
was simulated, and the effect of the iron stator on the magnetic
field distribution was analyzed. It is found that the employment
of laminated iron for the stator fabrication can increase the
magnetic field by up to 60%, which may increase the actuator
torque output greatly.
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