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Abstract— Railway interlocking systems ensure the safe 
operation of trains in stations by controlling sets of devices and 
equipment. Component-based decentralized railway interlocking 
system (CBDRIS) is a recently presented railway signalling in 
which component-based technology is applied. For such a safety-
critical real-time system, fail-safe and fault-tolerance have to be 
ensured. In this paper, a Petri net-based development strategy of 
CBDRIS is proposed. The development strategy separates the 
development process into dynamical process (Standardizing 
hardware as well as control flow of interlocking device 
components) and static process (Converting current interlocking 
table of a specific station to a unified format for CBDRIS). In 
addition, hardware and soft-ware fault-tolerance measures 
adopted in CBDRIS are described respectively. 
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I. INTRODUCTION 
Railway interlocking technology has been developed over 

the long history of railways, and has been vital in ensuring the 
safe operation of trains. However, computers have been used 
into such safety-critical systems only relative recently [1]. Such 
computerized interlocking systems have demonstrated high 
level of safety and reliability. 

One drawback of existing interlocking systems, however, is 
that they require the development of different soft-ware for 
different stations, which tends to introduce unreliable factors. 
One possible solution to overcome this problem is to apply 
component-based technology to railway interlocking systems 
[2]. Component-based technology has seen remarkable 
progress and has already been adopted in many fields, such as 
mechanics, control and software engineering [3][4]. 
Component-based decentralized railway interlocking system 
(CBDRIS) was such a railway signal-ling system in which 
component-based technology is adopted to standardize 
signaling devices both in hardware and software. In CBDRIS, 
the specification data are related with specific stations, while 
the software and hardware are standardized, i.e. the control 
flow and design of devices need not to be developed from start 
when constructing a new station. The advantages of CBDRIS 
include higher safety, higher reliability, and lower development 

costs. 

In this paper, we describe a development strategy of 
CBDRIS. We separate the development process into dynamic 
process and static process. The dynamic process mainly tries to 
establish standardized control flows for each kind of 
interlocking device components, and the static process deals 
with the interlocking logic relations between interlocking 
device components for a specific station. We mainly deal with 
the dynamic process, i.e. designing and modeling the 
specifications of device components in CBDRIS in this paper. 

In order to ensure CBDRIS safety and reliability, fault-
tolerance technologies have to be adopted both in hard-ware 
design and software design. In hardware, we mainly use the 
Triple Modular Redundancy (TMR) [5] and redundancy 
policies. In software, an effective time constraint is used to 
detect the device or communication failures. 

II. COMPONENT-BASED DECENTRALIZED RAILWAY 
INTERLOCKING SYSTEM (CBDRIS) 

A. Railway interlocking system 
Railway signalling system is used to control train safety. In 

railway signalling, interlocking systems protect train safety by 
controlling sets of devices and equipments in a station. 
Typically, these devices include signals, points and track units. 
Signals indicate whether the train can run or not by displaying 
green or red. Points are devices for controlling turnouts which 
determine the direction in which trains move. Track units 
detect whether or not there is a train on the track. If there is, 

 

 
Figure 1.  A simple station 
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then other trains are prohibited from entering this section of 
track until the first train leaves. 

A simple station is shown in Fig.1. There are four routes, 
two home signals (SH1 and SH2), two start signals (SS1 and 
SS2), two points (P1 and P2), and two platforms in the station. 
The table below is part of the interlocking table for this station. 
Each row of the table defines the conditions for signals 
changing to green. For instance, home signal SH1 indicates the 
route X-1, which shows whether a train can move into platform 
(1). Signal SH1 can change to green only when point P1 and P2 
are in normal position (“N”) and when there is no train on track 
units TX1 and T1. Start signal SS1 indicates whether a train 
can depart from the platform (1) through route 1-Y.  

B.  Component-based Decentralized Railway Interlocking 
System (CBDRIS) 

The system architecture and process routine of CBDRIS are 
shown in Fig.2. An interlocking device in past signalling 
systems is designed as an interlocking device component. All 
devices components in CBDRIS are autonomous and 
intelligent, and they communicate with each other directly 
without centralized interlocking computer. Each kind of 
interlocking device components has the same functions and 
same control logic. So they can be standardized both in 
hardware and software. These standardized components 
combine logic relations and data of a specific station to execute 
defined controls. The logic relations and data are extracted 
from interlocking graph and interlocking table of the station. 
For instance, signal components include execution flows which 
are designed before-hand, such as receiving route request 
messages, preparing destination devices of communication, 
sending messages to related devices, receiving the response 
messages and analyzing them, executing route setting and 
canceling route request, etc. 

When interlocking components are initialized, the extracted 
centralized data are downloaded to the device components, 
where upon the device components start to operate and interact 
with each other to complete the route interlocking. 

The internal structure of interlocking components is shown 
in Fig 3. An interlocking device component typically consists 
of four modules: communication module, computing module, 
monitor module and control module. Centralized data as well 
as status of device components are stored in the local memory. 
The communication module allows the device component to 
communicate with other device components or other systems, 
such as automatic train stop (ATS) system [6]. The computing 

module performs logic computing and judgment and decides 
whether the logic status is correct, what status the device 
component should be in, and so on. The control module is in 
charge of device control output. The monitor module monitors 
the status of the device component by periodically polling the 
related devices and issuing an alarm when the status is 
abnormal. All these modules can access local memory via an 
internal system bus. 

III. DEVELOPMENT STRATEGY OF THE CBDRIS 
The development of CBDRIS can be performed from two 

aspects: dynamical development process and static 
development process. 

The dynamic development process deals with standardized 
hardware and software for the interlocking device components. 
Control flows of the interlocking device components are based 
on their function specification. The static development process 
deals with centralized data such as logic relations between 
interlocking device components in a specific station. 

The development strategy of the CBDRIS is shown in Fig. 
4. Structure of standardized device components consists of 
hardware part and software part. The hardware specifications 
include device board design, CPU, digital circuit, input/output, 
etc. The software specifications include the four modules 
design of typical interlocking device components. Each module 
in Fig. 3 is similar with a class or object which consists of 
attributes and methods. The device control flows are expressed 
by methods; while centralized data related to a specific station 
are expressed by attributes. 

 

 
Figure 2.  Architecture of CBDRIS 

 

 
Figure 3.  Internal structure  of interlocking component 

 

 
Figure 4.  Development strategy of the CBDRIS 



         

When the device components are initialized, the centralized 
data will be loaded into the components, and then the 
components operate based on these data. 

Once the device components have been verified safe 
enough, they can be ordered and produced when a new station 
is constructed. What engineers just need to do is analyzing the 
logic relations and allocating some basic attributes such as 
device ID to each device component.  

Each module in Fig. 3 is modeled with G-nets which are 
Petri-nets extended with object concept [7]. Thus the whole 
system will become a G-net system. By using analysis tools of 
Petri-nets, verification and analysis of software part can be 
performed.  

G-net is a Petri-net based on multi-level executable 
specification model which incorporates the concepts of module 
and system structure. A G-nets system comprises of a number 
of G-nets, each of which represents an independent module. 
These modules communicate with each other through well-
defined interfaces, that is, the methods of G-nets. A G-net is 
composed of two parts: a special place called Generic Switch 
Place (GSP) and an Internal Structure (IS). The GSP provides 
the abstraction of the module, and serves as the only interface 
between the G-net and other modules. The IS, a modified Petri-
net, represents the detailed internal design and realization of the 
module. The methods and attributes for a G-net can be 
identified. In the internal structure, places represent primitives, 
while transitions, together with arcs, represent connections or 
relations among the primitives. A set of special places called 
Goal Place (double circle) represents the final state of the 
execution, and the results (if any) to be returned. 

Fig 5 is the G-net model of communication module of 
signal component. The G-net name is “S_Com”. There are 3 
methods are defined: rm (receive message), sm (send message) 
and rr (route request). The communication modules of point 
and track unit component have not the route request method. 
Parameters in method sm and rm are id and data. Id represents 
network id of destination devices; and data represents 
communication data, which maybe comprises logic status 
information. Parameter of method rr is rid, which indicates the 
id of requested route. 

Message_Send and If_is_ack are primitives. They can be 
executed without calling other methods. The return value of 

primitive If_is_ack is used to judge whether the received 
message is acknowledgment from other devices, i.e. whether it 
is an acknowledgment message. If it is, then call rs (route 
setting) method of module S_Comp, which changes signal to 
permission status when all acknowledgments from route-
related devices are received. Otherwise, the received message 
must be an order that indicates what status this signal 
component should be. In this case, method lp (logic process) of 
module S_Comp is called. 

Fig. 6 is the G-net model of computing module. There are 4 
methods in module S_Comp. When signal receives route 
request via method rr of module S_Som, method rp changes its 
status to route setting, and computes the status information of 
other route-related devices, then sends the result to these 
devices by isp(S_com,sm), which call sm method of module 
S_Com. Method lp executes logic processing. There 2 
circumstances are considered when a message is received. One 
is that the logic status coming from network is the same to 
current logic status, in this case, transition t6 is fired; the other 
one is different. In this case, it is necessary to change logic 
status and lock it, then devices acknowledge messages to the 
signal that starts route setting by invoking method ack of 
module S_Comp. Method rs starts when acknowledgment is 
received from other devices. When all responses are received 
and are ok (primitive Checking_all_Ack checks the 
acknowledgment message), the signal component change itself 
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Figure 5.  G-net representing communication module of signal 

component 
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Figure 6.  G-net representing computing module of signal component 

 Class DeviceSignal
{private:

Int SignalId;
Char SignalName[10];
Int SignalType;    //home:0; start: 1;
Int route;
Class relatedevice RelateDevice[ ];

Public:
DeviceSignal(); //Initialize
//Communication module
Int SendMessage();
Int RecieveMessage();
Int RouteRequest(); //ReadRouteMessage()

//then call RouteComputing
//Control module
Int ChangeStatus(); //Call SendMessage()
//Computing module
Int LogicProcess();
Int RouteComputing();
Int Routesetting();
Int Ack();
//Monitor module
Int poll();

}  
Figure 7.  Sample class structure of signal component in C++ 



         

to permission (display green).The computing modules of point 
and track unit components are different from that of signal 
components. They have not method rp (route process) and rs 
(route setting). 

We also established the G-nets models of control module 
and monitor module of signal component as well as these 
modules of other interlocking device components including 
point components and track unit components [8]. 

Fig 7 shows a sample class structure of signal components 
by C++. There are some attributes and methods are defined. 
The methods are divided into 4 modules shown in Fig 3. All 
signal components have the same attributes and methods as Fig. 
7. When the device components initialize, the class will be 
instantiated to device component objects. 

IV. SAFETY TECHNOLOGIES OF CBDRIS 

A. Safety technologies in Hardware 

Redundancy management is believed a useful measure to 
fault-tolerance of safety-critical systems. Triple Modular 
Redundancy (TMR) has been used in computerized 
interlocking system SMILE in order to satisfy fail-safe [1]. In 
CBDRIS, hardware fault-tolerance also adopts TMR. Fig. 8 
shows the fault-tolerance configuration of hardware in 
CBDRIS. 

The “two-out-of-three” voting circuit is used in CBDRIS. 
All critical hardware units have three separate copies. Even one 
fails, the other two still can make comparison and out put the 
correct result.  

Further, device component level redundancies also are 
adopted in CBDRIS. A device component can be divided into 
control part and mechanical part. Two of same kind device 
components which are near geographically can be connected 
together to realize fault-tolerance. For instance, signal 

component SH1 and SH2 in Fig.1 can be connected as shown 
in Fig. 9. If control part of SH1 fails, the control part of SH2 
can control the mechanical part of the failed device component. 

Of course, the two device components need to 
communicate and backup operation status of the other one. 
This method is based on the assumption that control part is apt 
to fail than mechanical part. 

B. Safety technologies in software 
In software, control flow standardization, software 

validation, development process standardization as well as 
fault-tolerance are main concerns. With standardization of 
software control flow, the reliability of CBDRIS can be 
improved significantly. Software validation deals with the 
correctness of software. International standardization IEC 
62278 [9], IEC 62279 [10] describe guideline of safety 
management technologies for railway applications.  

Besides, because the time is a very important factor in real-
time distributed control systems, we add a time restraint to 
communication or action of device components. This can be 
realized by using DSPNs (Deterministic Stochastic Petri-Nets) 
in which two kinds of transitions: deterministic transitions and 
timed transitions [11]. A deterministic transition fires in a 
deterministic time once it is enabled. A timed transition fires 
after a delay time which is assumed to be exponentially 
distributed. The max waiting time can be set with a 
deterministic transition. If an interlocking device component 
does not receive response messages in a deterministic time, it 
can be believed the data package lost and some measures have 
to be carried out. 

Fig. 10 illustrates the DSPN model for signal component 
SH1 requesting route in Fig.1. Deterministic transitions are 
expressed with black box, and timed transitions are expressed 
with white box. 

Place p1 means that signal component SH1 is requested. 
Then SH1 send messages to other route-related device 
components (here point P1, P2, track unit TX1 and T1) by 
timed transition t2. After signal SH1 receive response messages 
from these device components (timed transition t3 fires), signal 
SH1 displays green to permit train enter the platform. SH1 
displays red which means there is a train in the platform after 
train enters the platform. SH1 displays yellow which warns 
following trains to reduce their speed when the former train 
leaves the platform and enter next track unit. Finally transition 
t6 fires when the train leaves the next track unit. 

 Here, deterministic transition t1 is designed to provide fault-
tolerance by adding a time limit. In case that some device 

 

 
Figure 8.  Fault-tolerance configuration of hardware in CBDRIS 

 

 
Figure 9.   Device component level redundancy 
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Figure 10.   A DSPN model with fault-tolerance 



         

component fails or communication fails, signal SH1 can not 
receive response messages. The failure must be detected and 
dealt with immediately. Timed transition t2 and t3 are 
exponentially distributed with mean waiting time 1/λ2 and 1/
λ1 respectively. 

With the DSPN model, system analysis of structural 
property and dynamic property is possible [12], including 
liveness, fairness, deadlock etc. Further, steady state solutions 
of the DSPN model can be computed with a time and space 
efficient algorithm [13]. Based on the solution, system 
performance evaluation is possible, such as mean delay 
associated with transitions, mean time for tokens staying in 
some places. 

V. CONCLUSION 
A development framework for component-based 

decentralized railway interlocking system is presented. The 
framework divides the development of CBDRIS into dynamic 
process and static process. G-nets are used to model and verify 
control flow of device components. In order to ensure the 
system reliability and safety, several measures are adopted in 
CBDRIS. Hardware redundancies both in CPU level and 
device level are the main concerns. In software, considering 
that the time is important in such a decentralized real-time 
system, an effective time constraint is used to detect device or 
communication failures and a DSPN model is presented. The 
presented approach standardizes the attributes and methods of 
component class, using Petri-net-based modeling method (G-
nets) to design and evaluate CBDRIS, shortening the 
development process and curtailing the numbers of error 
brought by human. 

Now, a simulation tool for a simple station is being 
implemented with C++. The tool adopts standardized methods 
and attributes to realize the interlocking component. The tool 
can be considered as a prototype to standardizing interlocking 
component. 

In future research, converting the interlocking graph and 
interlocking table to a unified data format suiting to each kind 
of device components will be conducted. The conversion 
equivalence of interlocking data should be verified with formal 
methods. 
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