
978-1-4244-1676-9/08 /$25.00 ©2008 IEEE RAM 2008

Toward developing a Decentralized Railway
Signalling System Using Petri Nets

Xinhong Hei1,2 , Sei Takahashi1, Nakamura Hideo1
1: College of Science and Technology

Nihon University
Funabashi, Chiba, Japan

heixinhongjp@yahoo.co.jp
2: State Key Laboratory of Rail Traffic Control and Safety (Beijing Jiaotong University), China

Beijing, China

Abstract— Railway interlocking systems ensure the safe
operation of trains in stations by controlling sets of devices and
equipment. Component-based decentralized railway interlocking
system (CBDRIS) is a recently presented railway signalling in
which component-based technology is applied. For such a safety-
critical real-time system, fail-safe and fault-tolerance have to be
ensured. In this paper, a Petri net-based development strategy of
CBDRIS is proposed. The development strategy separates the
development process into dynamical process (Standardizing
hardware as well as control flow of interlocking device
components) and static process (Converting current interlocking
table of a specific station to a unified format for CBDRIS). In
addition, hardware and soft-ware fault-tolerance measures
adopted in CBDRIS are described respectively.

Keywords—Decentralized, Railway signalling system,
Component-based, Petri nets, Fault-tolerance.

I. INTRODUCTION
Railway interlocking technology has been developed over

the long history of railways, and has been vital in ensuring the
safe operation of trains. However, computers have been used
into such safety-critical systems only relative recently [1]. Such
computerized interlocking systems have demonstrated high
level of safety and reliability.

One drawback of existing interlocking systems, however, is
that they require the development of different soft-ware for
different stations, which tends to introduce unreliable factors.
One possible solution to overcome this problem is to apply
component-based technology to railway interlocking systems
[2]. Component-based technology has seen remarkable
progress and has already been adopted in many fields, such as
mechanics, control and software engineering [3][4].
Component-based decentralized railway interlocking system
(CBDRIS) was such a railway signal-ling system in which
component-based technology is adopted to standardize
signaling devices both in hardware and software. In CBDRIS,
the specification data are related with specific stations, while
the software and hardware are standardized, i.e. the control
flow and design of devices need not to be developed from start
when constructing a new station. The advantages of CBDRIS
include higher safety, higher reliability, and lower development

costs.

In this paper, we describe a development strategy of
CBDRIS. We separate the development process into dynamic
process and static process. The dynamic process mainly tries to
establish standardized control flows for each kind of
interlocking device components, and the static process deals
with the interlocking logic relations between interlocking
device components for a specific station. We mainly deal with
the dynamic process, i.e. designing and modeling the
specifications of device components in CBDRIS in this paper.

In order to ensure CBDRIS safety and reliability, fault-
tolerance technologies have to be adopted both in hard-ware
design and software design. In hardware, we mainly use the
Triple Modular Redundancy (TMR) [5] and redundancy
policies. In software, an effective time constraint is used to
detect the device or communication failures.

II. COMPONENT-BASED DECENTRALIZED RAILWAY
INTERLOCKING SYSTEM (CBDRIS)

A. Railway interlocking system
Railway signalling system is used to control train safety. In

railway signalling, interlocking systems protect train safety by
controlling sets of devices and equipments in a station.
Typically, these devices include signals, points and track units.
Signals indicate whether the train can run or not by displaying
green or red. Points are devices for controlling turnouts which
determine the direction in which trains move. Track units
detect whether or not there is a train on the track. If there is,

Figure 1. A simple station

*: The project is supported by the State Key Laboratory of Rail Traffic
Control and Safety (Beijing Jiaotong University), China.

then other trains are prohibited from entering this section of
track until the first train leaves.

A simple station is shown in Fig.1. There are four routes,
two home signals (SH1 and SH2), two start signals (SS1 and
SS2), two points (P1 and P2), and two platforms in the station.
The table below is part of the interlocking table for this station.
Each row of the table defines the conditions for signals
changing to green. For instance, home signal SH1 indicates the
route X-1, which shows whether a train can move into platform
(1). Signal SH1 can change to green only when point P1 and P2
are in normal position (“N”) and when there is no train on track
units TX1 and T1. Start signal SS1 indicates whether a train
can depart from the platform (1) through route 1-Y.

B. Component-based Decentralized Railway Interlocking
System (CBDRIS)

The system architecture and process routine of CBDRIS are
shown in Fig.2. An interlocking device in past signalling
systems is designed as an interlocking device component. All
devices components in CBDRIS are autonomous and
intelligent, and they communicate with each other directly
without centralized interlocking computer. Each kind of
interlocking device components has the same functions and
same control logic. So they can be standardized both in
hardware and software. These standardized components
combine logic relations and data of a specific station to execute
defined controls. The logic relations and data are extracted
from interlocking graph and interlocking table of the station.
For instance, signal components include execution flows which
are designed before-hand, such as receiving route request
messages, preparing destination devices of communication,
sending messages to related devices, receiving the response
messages and analyzing them, executing route setting and
canceling route request, etc.

When interlocking components are initialized, the extracted
centralized data are downloaded to the device components,
where upon the device components start to operate and interact
with each other to complete the route interlocking.

The internal structure of interlocking components is shown
in Fig 3. An interlocking device component typically consists
of four modules: communication module, computing module,
monitor module and control module. Centralized data as well
as status of device components are stored in the local memory.
The communication module allows the device component to
communicate with other device components or other systems,
such as automatic train stop (ATS) system [6]. The computing

module performs logic computing and judgment and decides
whether the logic status is correct, what status the device
component should be in, and so on. The control module is in
charge of device control output. The monitor module monitors
the status of the device component by periodically polling the
related devices and issuing an alarm when the status is
abnormal. All these modules can access local memory via an
internal system bus.

III. DEVELOPMENT STRATEGY OF THE CBDRIS
The development of CBDRIS can be performed from two

aspects: dynamical development process and static
development process.

The dynamic development process deals with standardized
hardware and software for the interlocking device components.
Control flows of the interlocking device components are based
on their function specification. The static development process
deals with centralized data such as logic relations between
interlocking device components in a specific station.

The development strategy of the CBDRIS is shown in Fig.
4. Structure of standardized device components consists of
hardware part and software part. The hardware specifications
include device board design, CPU, digital circuit, input/output,
etc. The software specifications include the four modules
design of typical interlocking device components. Each module
in Fig. 3 is similar with a class or object which consists of
attributes and methods. The device control flows are expressed
by methods; while centralized data related to a specific station
are expressed by attributes.

Figure 2. Architecture of CBDRIS

Figure 3. Internal structure of interlocking component

Figure 4. Development strategy of the CBDRIS

When the device components are initialized, the centralized
data will be loaded into the components, and then the
components operate based on these data.

Once the device components have been verified safe
enough, they can be ordered and produced when a new station
is constructed. What engineers just need to do is analyzing the
logic relations and allocating some basic attributes such as
device ID to each device component.

Each module in Fig. 3 is modeled with G-nets which are
Petri-nets extended with object concept [7]. Thus the whole
system will become a G-net system. By using analysis tools of
Petri-nets, verification and analysis of software part can be
performed.

G-net is a Petri-net based on multi-level executable
specification model which incorporates the concepts of module
and system structure. A G-nets system comprises of a number
of G-nets, each of which represents an independent module.
These modules communicate with each other through well-
defined interfaces, that is, the methods of G-nets. A G-net is
composed of two parts: a special place called Generic Switch
Place (GSP) and an Internal Structure (IS). The GSP provides
the abstraction of the module, and serves as the only interface
between the G-net and other modules. The IS, a modified Petri-
net, represents the detailed internal design and realization of the
module. The methods and attributes for a G-net can be
identified. In the internal structure, places represent primitives,
while transitions, together with arcs, represent connections or
relations among the primitives. A set of special places called
Goal Place (double circle) represents the final state of the
execution, and the results (if any) to be returned.

Fig 5 is the G-net model of communication module of
signal component. The G-net name is “S_Com”. There are 3
methods are defined: rm (receive message), sm (send message)
and rr (route request). The communication modules of point
and track unit component have not the route request method.
Parameters in method sm and rm are id and data. Id represents
network id of destination devices; and data represents
communication data, which maybe comprises logic status
information. Parameter of method rr is rid, which indicates the
id of requested route.

Message_Send and If_is_ack are primitives. They can be
executed without calling other methods. The return value of

primitive If_is_ack is used to judge whether the received
message is acknowledgment from other devices, i.e. whether it
is an acknowledgment message. If it is, then call rs (route
setting) method of module S_Comp, which changes signal to
permission status when all acknowledgments from route-
related devices are received. Otherwise, the received message
must be an order that indicates what status this signal
component should be. In this case, method lp (logic process) of
module S_Comp is called.

Fig. 6 is the G-net model of computing module. There are 4
methods in module S_Comp. When signal receives route
request via method rr of module S_Som, method rp changes its
status to route setting, and computes the status information of
other route-related devices, then sends the result to these
devices by isp(S_com,sm), which call sm method of module
S_Com. Method lp executes logic processing. There 2
circumstances are considered when a message is received. One
is that the logic status coming from network is the same to
current logic status, in this case, transition t6 is fired; the other
one is different. In this case, it is necessary to change logic
status and lock it, then devices acknowledge messages to the
signal that starts route setting by invoking method ack of
module S_Comp. Method rs starts when acknowledgment is
received from other devices. When all responses are received
and are ok (primitive Checking_all_Ack checks the
acknowledgment message), the signal component change itself

ISM=initial place for sending
IRM=initial place for receiving
IRR=initial place for route request
GPSM, GPRM, GPRR=goal place
t1: request send data
t2: complete
t3: receive message
t4: it is acknowledge from other
devices
t5: it is not acknowledge
t6: route setting complete
t7: logic process complete
t8: receive route request
t9: route process complete

GSP(S_Com)

sm: send message={[id:identifier,data:communication data](ISM)}
rm: receive message={[id:identifier,data:communication data](IRM)}
rr: route request={[rid:route id](IRR)}

IRR

GPRR

t8

t9

ISM

GPSM

t1

t2

Message
_Send

IRM

GPRM

t4

t3

t6

t5

t7

Is_response
to self？

isp(s_comp,rs) isp(s_comp,lp)

isp(s_comp,rp)

T. F.

Figure 5. G-net representing communication module of signal

component

IRP=initial place for route process
ILP=initial place for logic process
IACK=initial place for send ack.
IRS=initial place for route setting
GPRP, GPLP, GPACK, GPRS=goal
place
t1: start route request process
t2: status become route setting
t3: to send information to other devices
t4: sending information complete
t5: request logic process
t6: same to existent status
t7: different with existent status
t8: status change complete
t9: sending ack complete
t10: start send acknowledge to some
signal
t11: send Ack.
t12: sending Ack. complete
t13: request route setting when received
ack. from other devices
t14: change status when all Ack. are ok
t15: status become pemission

GSP(S_Comp)GSP(S_Comp)
lp: logic process={[data: received data](ILP)}
ack: acknowledge={[id: id of device, mark: locked or not](IACK)}
rp: route process={[rid: route id](IRP)}
rs: route setting={[id: id of device, mark: locked or not](IRS)}

lp: logic process={[data: received data](ILP)}
ack: acknowledge={[id: id of device, mark: locked or not](IACK)}
rp: route process={[rid: route id](IRP)}
rs: route setting={[id: id of device, mark: locked or not](IRS)}

IRS

GPRS

t13

t14

Checking_
all_Ack

t15

ILP

GPLP

t5

t6 t7

t8

Logic_
Compare

t9

IACK

GPACK

t11

t10

Computing
_Ack

t12

IRP

GPRP

t1

t2

Route_
Computing

t4

t3

Isp(S_act,change)

Isp(S_com,sｍ)

IRP

GPRP

t1

t2

Route_
Computing

t4

t3

Isp(S_act,change)

Isp(S_com,sｍ)

Isp(S_act,change)

isp(S_act,change)

isp(S_comp,ack)
isp(S_com,sｍ)

isp(S_act,change)

Figure 6. G-net representing computing module of signal component

 Class DeviceSignal
{private:

Int SignalId;
Char SignalName[10];
Int SignalType; //home:0; start: 1;
Int route;
Class relatedevice RelateDevice[];

Public:
DeviceSignal(); //Initialize
//Communication module
Int SendMessage();
Int RecieveMessage();
Int RouteRequest(); //ReadRouteMessage()

//then call RouteComputing
//Control module
Int ChangeStatus(); //Call SendMessage()
//Computing module
Int LogicProcess();
Int RouteComputing();
Int Routesetting();
Int Ack();
//Monitor module
Int poll();

}
Figure 7. Sample class structure of signal component in C++

to permission (display green).The computing modules of point
and track unit components are different from that of signal
components. They have not method rp (route process) and rs
(route setting).

We also established the G-nets models of control module
and monitor module of signal component as well as these
modules of other interlocking device components including
point components and track unit components [8].

Fig 7 shows a sample class structure of signal components
by C++. There are some attributes and methods are defined.
The methods are divided into 4 modules shown in Fig 3. All
signal components have the same attributes and methods as Fig.
7. When the device components initialize, the class will be
instantiated to device component objects.

IV. SAFETY TECHNOLOGIES OF CBDRIS

A. Safety technologies in Hardware

Redundancy management is believed a useful measure to
fault-tolerance of safety-critical systems. Triple Modular
Redundancy (TMR) has been used in computerized
interlocking system SMILE in order to satisfy fail-safe [1]. In
CBDRIS, hardware fault-tolerance also adopts TMR. Fig. 8
shows the fault-tolerance configuration of hardware in
CBDRIS.

The “two-out-of-three” voting circuit is used in CBDRIS.
All critical hardware units have three separate copies. Even one
fails, the other two still can make comparison and out put the
correct result.

Further, device component level redundancies also are
adopted in CBDRIS. A device component can be divided into
control part and mechanical part. Two of same kind device
components which are near geographically can be connected
together to realize fault-tolerance. For instance, signal

component SH1 and SH2 in Fig.1 can be connected as shown
in Fig. 9. If control part of SH1 fails, the control part of SH2
can control the mechanical part of the failed device component.

Of course, the two device components need to
communicate and backup operation status of the other one.
This method is based on the assumption that control part is apt
to fail than mechanical part.

B. Safety technologies in software
In software, control flow standardization, software

validation, development process standardization as well as
fault-tolerance are main concerns. With standardization of
software control flow, the reliability of CBDRIS can be
improved significantly. Software validation deals with the
correctness of software. International standardization IEC
62278 [9], IEC 62279 [10] describe guideline of safety
management technologies for railway applications.

Besides, because the time is a very important factor in real-
time distributed control systems, we add a time restraint to
communication or action of device components. This can be
realized by using DSPNs (Deterministic Stochastic Petri-Nets)
in which two kinds of transitions: deterministic transitions and
timed transitions [11]. A deterministic transition fires in a
deterministic time once it is enabled. A timed transition fires
after a delay time which is assumed to be exponentially
distributed. The max waiting time can be set with a
deterministic transition. If an interlocking device component
does not receive response messages in a deterministic time, it
can be believed the data package lost and some measures have
to be carried out.

Fig. 10 illustrates the DSPN model for signal component
SH1 requesting route in Fig.1. Deterministic transitions are
expressed with black box, and timed transitions are expressed
with white box.

Place p1 means that signal component SH1 is requested.
Then SH1 send messages to other route-related device
components (here point P1, P2, track unit TX1 and T1) by
timed transition t2. After signal SH1 receive response messages
from these device components (timed transition t3 fires), signal
SH1 displays green to permit train enter the platform. SH1
displays red which means there is a train in the platform after
train enters the platform. SH1 displays yellow which warns
following trains to reduce their speed when the former train
leaves the platform and enter next track unit. Finally transition
t6 fires when the train leaves the next track unit.

 Here, deterministic transition t1 is designed to provide fault-
tolerance by adding a time limit. In case that some device

Figure 8. Fault-tolerance configuration of hardware in CBDRIS

Figure 9. Device component level redundancy

λ1

λ2

SH1 is
requested

SH1
display
yellow

t3

t2

t4

p1

p2

p3

p4

p5

p6

t1

t6

t5SH1
display
green

SH1
display redλ1

λ2

SH1 is
requested

SH1
display
yellow

t3

t2

t4

p1

p2

p3

p4

p5

p6

t1

t6

t5SH1
display
green

SH1
display red

Figure 10. A DSPN model with fault-tolerance

component fails or communication fails, signal SH1 can not
receive response messages. The failure must be detected and
dealt with immediately. Timed transition t2 and t3 are
exponentially distributed with mean waiting time 1/λ2 and 1/
λ1 respectively.

With the DSPN model, system analysis of structural
property and dynamic property is possible [12], including
liveness, fairness, deadlock etc. Further, steady state solutions
of the DSPN model can be computed with a time and space
efficient algorithm [13]. Based on the solution, system
performance evaluation is possible, such as mean delay
associated with transitions, mean time for tokens staying in
some places.

V. CONCLUSION
A development framework for component-based

decentralized railway interlocking system is presented. The
framework divides the development of CBDRIS into dynamic
process and static process. G-nets are used to model and verify
control flow of device components. In order to ensure the
system reliability and safety, several measures are adopted in
CBDRIS. Hardware redundancies both in CPU level and
device level are the main concerns. In software, considering
that the time is important in such a decentralized real-time
system, an effective time constraint is used to detect device or
communication failures and a DSPN model is presented. The
presented approach standardizes the attributes and methods of
component class, using Petri-net-based modeling method (G-
nets) to design and evaluate CBDRIS, shortening the
development process and curtailing the numbers of error
brought by human.

Now, a simulation tool for a simple station is being
implemented with C++. The tool adopts standardized methods
and attributes to realize the interlocking component. The tool
can be considered as a prototype to standardizing interlocking
component.

In future research, converting the interlocking graph and
interlocking table to a unified data format suiting to each kind
of device components will be conducted. The conversion
equivalence of interlocking data should be verified with formal
methods.

REFERENCES
[1] K. Akita, T. Watanabe., H. Nakamura., I. Okumura.: “Computerized

Interlocking System for Railway Signaling Control; SMILE”. IEEE
Trans., May 1985: Ind., 1A-21.

[2] X. Hei., S. Takahashi., H. Nakamura., M. Fukuda, K. Iwata & K. Sato.:
“Improving Reliability of Railway Interlocking System with
Component-based Technology”. Journal of Reliability Engineering
Association of Japan, Vol.28, December 2006: pp.557-568.

[3] S.M. Yacoub, B. Cukic, H.H Ammar.: “A Component-based Approach
to Reliability Analysis of Distributed Systems”, In Proc. Of the 18th
IEEE Symposium on Reliable Distributed Systems, 1999: pp.158-167.

[4] D. Hamlet, D. Mason, D. Woit : “Theory of software reliability based on
components”. In the 23th International Conference on Software
Engineering (ICSE’01), 2001, pp.361-370.

[5] R. E. Lyons, W. Vanderkulk.: “The Use of Triple-Modular Redundancy
to Improve Computer Reliability”, IBM Journal of Research and
Development, Vol. 6, No. 2. April 1962: pp. 200-209.

[6] Railway Electrical Engineering Association of Japan, “Signalling: ATS
・ATC”, Japan: 2001: pp.2-pp.100.

[7] A. Perkusich and J. Figueiredo: “G-Nets: A Petri Net Based Approach
for Logical and Timing Analysis of Complex Software Systems”. The
Journal of Systems and Software, Vol.39, No.1, October 1997: pp.33-59.

[8] X. Hei, H. Mochizuki, S. Takahashi. & H. Nakamura: “Modeling
distributed railway interlocking system with object-oriented petri-net”.
In 10th International Conference on Computer System Design and
Operation in the Railway and Other Transit System, Prague, Czech
Republic, 2006, pp.309-318.

[9] IEC 62278, Railway applications –Specification and demonstration of
reliability, availability, maintainability and safety (RAMS). 2002.

[10] IEC 62279, Railway applications – Communications, signalling and
processing systems –Software for railway control and protection
systems. 2002.

[11] M. Marsan and G. Chiola.: “On Petri Nets with Deterministic and
Exponentially Distributed Firing Times”, Lecture Notes in Computer
Science, vol.266, 1987. pp. 132-145.

[12] T. Murata: “Petri Nets: Properties, Analysis and Applications”,
Proceedings of IEEE, Vol. 77, No. 4, 1989. pp. 541-580.

[13] G. Ciardo and C. Lindemann. Analysis of deterministic and stochastic
petri nets, in Proc. of the Fifth Int. Workshop on Petri Nets and
Performance Models (PNPM93), Toulouse, France, Oct. 1993.

