
978-1-4244-1674-5/08 /$25.00 ©2008 IEEE                            CIS 2008 
 

Adaptive Control of an Aerial Robot 

using Lyapunov Design 
P. Zarafshan  S. Ali A. Moosavian  M. Bahrami 

 
Advanced Robotics & Automated Systems (ARAS) Laboratory 

Department of Mechanical Engineering, K. N. Toosi Univ. of Technology 
Tehran, Iran, P.O. Box 19395-1999, Fax: (+98) 21 8867-4748 

Corresponding Author Email: moosavian@kntu.ac.ir  
 

 
Abstract—In this article, based on feedback linearization 

using Lyapunov design method, an adaptive controller is 
proposed for an Aerial Robot or unmanned aerial vehicle (UAV). 
After introducing a nonlinear dynamics model of the system in 
case of longitudinal equations, comparing controllers are 
designed to manage the system performance during various 
maneuvers. Also, stability analysis for the designed adaptation 
law is studied and discussed. To evaluate the performance of 
designed controllers for a given system, a comprehensive 
simulation program is developed. One of the most important 
results of this study is that tracking errors for the two state 
variables exponentially converge to zero, even in the presence of 
parameters uncertainty. Therefore, it is shown that the proposed 
adaptive controller is able to perform perfect path tracking 
maneuvers. 
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Nomenclature 
eδ  Elevator angle 
Tδ  Thrust input 

iγ  Positive constant 

iλ  Positive constant 
θ  Pitch angel 
Γ  Adaptive gain matrix 
Ψ  Filter matrix 
g  Gravity acceleration 

pk  Control law constant 
p  Pitch rate 
q  Roll rate  
r  Yaw rate 
u  Velocity in x  direction of body 

0u  Velocity along x  direction of body coord. 
v  Velocity in y  direction of body 
w  Velocity in z  direction of body 
m  Main Body mass 
P  Parameter 
x  State variable 
X  Force in x  direction 

Y  Force in y  direction 
Z  Force in z  direction 
x u∂ ∂  Stability derivatives 

I. 1. INTRODUCTION 
To increase the mobility of on-orbit robotic systems, Space 

Free-Flying Robots (SFFR) in which one or more manipulators 
are mounted on a thruster-equipped base, have been proposed. 
It is expected that robotic systems play an important role in 
future space applications, including servicing, construction, and 
maintenance of space structures on orbit. Therefore, dynamics 
and motion control of SFFR have been studied extensively, [1-
4]. Flying capability opens new opportunities in terrestrial 
applications as well, to perform field services and tasks like 
search and rescue, observation and mapping, [5-7]. An Aerial 
Robot or unmanned aerial vehicle (UAV) may be defined as an 
aerial vehicle (mostly without on-board manipulators) that uses 
aerodynamic forces to support its flight in a desired manner, so 
that a modern UAV is a fully autonomous flying system. 
Recent technological advancements in airframe materials, 
guidance systems, propulsion and payloads promise more 
complex goals to be achievable and yet remain cost-effective. 
Controlling the motion of a UAV is a challenging task, the 
interaction of the air flows generated by propeller contribute to 
complex aerodynamic forces affecting the vehicle’s motion. 
The system’s dynamics is not only coupled and nonlinear, but 
also difficult to be characterized due to the complexity of the 
system’s aerodynamic properties, [8]. 

An adaptive controller differs from an ordinary controller in 
that there is a mechanism for online adjustment of the 
controller parameters based on measured variables. There are 
two main approaches for constructing adaptive controllers. One 
is the so-called model reference adaptive control method, and 
the other is the so-called self-tuning method. Various nonlinear 
control methods, fuzzy, and adaptive have been applied to 
UAVs in case of specific longitudinal and lateral maneuvers, 
[9-12]. Pota has conducted a through research and discussion 
on speed control problem, [13], while Wise has studied a 
trajectory problem, [14]. Also adaptive control with a single 
hidden layer adaptive element has been successfully used on a 
number of aircraft, [15-17]. 



In this article, based on the feedback linearization approach, 
a non-linear adaptive controller is proposed for an aerial robot. 
First, nonlinear dynamics model of longitudinal motion is 
extracted, which will be used to develop the controller. 
Stability condition for the designed adaptation law is 
investigated using Lyapunov method to guarantee the stability 
of controller. To evaluate performance of the designed 
controller for a real UAV system, a comprehensive simulation 
program has been prepared. Exploiting this simulation routine, 
the system is simulated under the proposed controller, and state 
variables errors and trajectory tracking problem will be 
discussed. 

II. DYNAMICS EQUATIONS 
Considering the airplane as a rigid body, its equations of 

motion are supposed to be ODEs with constant coefficients. 
Coefficients in ODE are representations of aerodynamic 
stability derivatives of mass and inertia properties of the plane. 
These equations could be stated as first order ODEs. For 
instance, using equation of motion for a rigid body and 
considering Euler angles and gravity and lifting forces, 
dynamics equation along longitudinal axis of plane can be 
written as: 

(1) )( rvqwummgSX −+=− �θ  

Each variable in this equation is substituted with its initial 
value added with a perturbed value as: 
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So, we obtain: 
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The force X∆  indicates a change in thrust and 
aerodynamic forces along x  direction, which can be presented 
as a Taylor series in terms of perturbed variables. Assuming 

X∆ as a function of , , ,e Tu w δ δ  parameters then X∆ can be 
written as: 
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where , , ,e TX u X w X Xδ δ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  are known as 
stability derivatives and their values are defined in reference 
flight condition. The variables eδ  and Tδ  define the elevator 
angle and fuel gate attitude. Equation (1) for the initial flight 
condition is written as: 

(5) 
11 1 1 1 1 1( )X mgS m u q w rvθ− = + −�  

Aَssuming symmetric flight conditions yields: 

(6) 1 1 1 1, , , 0v w q r ≈  

By subtracting equation (3) from previous equation and 
substituting X∆  while reformatting the result, the nonlinear 
equation of rigid body motion along x  direction is obtained as: 
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where /wX X w m= ∂ ∂  and /uX X u m= ∂ ∂ . For the two 
remained equations of longitudinal motion a similar approach 
is performed and the following equations will be obtained: 
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These nonlinear equations are used to design the controller. 
Thus, according to two inputs of the system, feedback 
linearization controller will be designed: 
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III. NONLINEAR CONTROLLER DESIGN 
Various approaches have been proposed for nonlinear 

controller design, which include feedback linearization, robust 
control, adaptive control and gain scheduling, and each of these 
are most suitable for a specific kind of control problem. 
Feedback linearization has attracted a great deal of research 
interests in recent years. The idea of simplifying the form of a 
system’s dynamics by choosing a different state representation 
is not entirely unfamiliar. In mechanics, for instance, it is well 
known that the form and complexity of a system model 
depends considerably on the choice of reference frames or 
coordinate systems. Feedback linearization techniques can be 
viewed as way of transforming original system models into 
equivalent models of a simpler form. Thus, they can also be 
used in the development of robust or adaptive nonlinear 
controllers. 

A. Canonical form of feedback linearization 
In this form of controller, feedback linearization yields 

cancellation of nonlinearities in so that the closed-loop 
dynamics matches a linear form. The idea of feedback 
linearization, i.e. canceling the nonlinearities and imposing a 
desired linear dynamics, can be simply applied to a class of 
nonlinear systems described by the so-called companion or 
controllability canonical form, [18]. In this research, we focus 
on displacement state variables ( x� ) among velocity variables 



(V ) and we deal with the control problem based on obtained 
equations of motion. So: 

(12) x V x Ax Bu= → = +� �� �  
where u  is input of the system, B  is input matrix and A  is the 
state matrix which contains nonlinear terms. Now assuming a 
control law as: 
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A multi integral form is obtained: 
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So control input of the system is obtained: 
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Below multi integral form is achieved: 
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which satisfies an exponential convergence criterion: 
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By substituting these variables in nonlinear dynamic 
equations for calculating control input we have: 
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Solving these two equations results in: 
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and by defining the following parameters which are 
combinations of input matrix elements: 
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a simplified model for input control is obtained: 
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where [ ]1 2 3 4
TP P P P P= andK matrix is defined as: 
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B. Adaptive control 
Adaptive control is an approach to dealing with 

uncertain systems or time-varying systems, [19]. 
Although the term adaptive can have broad meanings, 
current adaptive control designs apply mainly to systems 
with known dynamic structure, but unknown constants or 
slowly-varying parameters. Adaptive controllers, whether 
developed for linear systems or for nonlinear systems, are 
inherently nonlinear. 
C. Using Lyapanov design 

The controller design procedure is stated by using 
obtained input control equations using feedback 
linearization method in previous section and four 
unknown parameters , , ,

T T e e
Z X Z Xδ δ δ δ . 

Using four unknown parameters, four new unknown 
parameters are defined as 1 2 3 4

ˆ ˆ ˆ ˆ, , ,P P P P  and as a result control 
input will become: 
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The control law which completes first stage of design 
procedure is similar to feedback linearization method. It is 
assumed that P̂  is indicator of unknown parameter and P�  is 
indicator of estimated parameter error and the relationship 
between these two parameters is defined as: 

(25) ˆ ˆP P P P P P− = ⇒ = +� �  
Lyapanov design method for the control law satisfies two needs 
of selecting an adaptation rule for regulating parameters, and 
analyzing convergence characteristics of the controller. For 
these purposes and considering uncertainty in parameters, 
calculated control input will be substituted in nonlinear 
dynamic equations of the system. Using above definitions, 
dynamic equations are simplified as: 
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where: 
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and using the definition: 
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and after simplifications we achieve: 
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If the right hand side tends to be zero, an exponential 
convergence condition is guaranteed. This situation is exactly 
equal to the situation which estimation error of parameters tend 
to be zero using an adaptive law. So, we can write: 
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By substituting controller input in dynamic equations of the 
system, we go through designing adaptation rule and stability 
guarantee of the system, with uncertain parameters. So: 
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where [ ]1 2 ... rdiagΨ = Ψ Ψ Ψ  is filter matrix, [ ]TX x z=� � �  

is tracking error and Y is filtered output. Assuming that the 
system is stable and by means of stability theorems, it could be 
stated that if the defined system is stable, there exist symmetric 
and positive definite ρ  and Q  matrices which satisfy the 
following equation: 

(32) TA A Qρ ρ+ = −  
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Now, we define a positive definite Lyapanov function 
candidate as: 
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where [ ]1 2 ... , 0r idiag γ γ γ γΓ = ;  is the gain matrix. 
Now, the derivative of Lyapanov function is obtained as: 
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By substituting from dynamic equations and reformating 
and simplifications we achieve: 
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As the first term in right hand side is always negative, if the 
second term become equal to zero, derivative of Lyapanov 
function will be negative definite, i.e. 0V� ≺ , and thus the 
system will be stable. So: 

(37) ˆT TP K B Y= −Γ��  
where according to the definition of estimated parameters we 
have ˆP P= − ���  and then adaptation law obtained from 
Lyapanov method for unknown parameters of the system is: 

 (38) ˆ ˆT TP K B Y= Γ�  

IV. SIMULATION RESULTS AND DISCUSSIONS 
To study the performance of the proposed adaptive 

nonlinear controller for a UAV, a comprehensive simulation 
routine has been conducted. This program after taking the time 
of simulation calculates reference input value rx , ideal assumed 
angle, time and distance for performing defined maneuver, and 
then according to the entered coefficients by the operator, 
illustrates the results. First, this program calculates stability 
derivatives for the given UAV based on geometrical 
characteristics and stability coefficients. It is noticeable that 
designing controller using feedback linearization method and 
followed discussions to complete design and simulation of 
adaptive controller are based on two horizontal and vertical 
velocity state variables. 

Figures 1 to 6 illustrate take off maneuver for the 
considered system, applying the proposed adaptive controller, 
in the presence of uncertainty in parameters. It is observed that 
using this controller tracking errors of two selected state 
variables go to zero with an exponential rate (Figure 4) which 
can be realized by comparing each variable with its reference 
value (Figure 5). Only fourth state variable is not able to reach 
its expected value and shows an offset. Considering the fact 
that designed adaptive controller using Lyapanov method is 
based on feedback linearization, this offset value could be 
explained by nonlinear terms in pitch angle rate and its effects 
on pitch angle. Also, considering a two input UAV system in 
terms of longitudinal equations (Figure 2 and 3) and controller 
design which was used for perfect tracking of first and second 
state variables in case of feedback linearization, this error 
occurs in fourth state variables. 

 

 
Figure 1 : Flight path in take off maneuver for adaptive controller, a) path in 

vertical plane, b) vertical displacement versus time, c) horizontal 
displacement versus time 
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Figure 2: Illustration of elevator input in take off maneuver using adaptive 

controller 

 
It is illustrated clearly in (Figure 6) that the designed 

adaptation law using Lyapanov method had been able to 
estimate unknown parameters according to initial values of 
parameters and gain of adaptation law which are defined by 
operator, such that the UAV would be able to perform a 
satisfactory tracking and guarantee stability of system, in 
addition to guaranteeing convergence of parameters. Variations 
in adaptation rule gains change the convergence speed and 
convergence rate while these parameters are convergent all the 
time. Observing the fact that changes in coefficients of error 
polynomial and adaptation law gains which are defined by 
operator can affect the error convergence rate of state variables, 
it should be noted that although there is an offset for tracking 
forth variable, the UAV has been successful in performing a 
take off maneuver with uncertainty in parameters. 

V. CONCLUSIONS 
In this research, after giving the definition of a nonlinear 

feedback linearization controller, a canonical feedback 
linearization controller for an aerial robot or unmanned aerial 
vehicle (UAV) was designed. According to nonlinear terms 
effects in first and second state variables for longitudinal 
equations, namely vertical and horizontal components, the 
controllers were designed. Then, adaptation law was designed 
to encounter uncertainty in system based on feedback 
linearization controller using Lyapanov design method and 
obtained controller was implemented on a UAV system. 
Comprehensive simulation program, after taking error 
polynomial coefficients and adaptation law gains which are set 
by the operator, was used for studying take off maneuver. 

Applying the proposed adaptive controller, tracking error 
for two state variables with uncertainty in parameters tends to 
reach zero with an exponential rate. It is seen that just the 
fourth state variable can not reach to its expected value and has 
offset. This could be explained by considering nonlinear terms 
in pitch angle rate which affect the pitch angle. Also designed 
adaptation law by means of Lyapanov design method is able to 
estimate the unknown parameters such that performing a 
satisfactory tracking is obtained. In addition to guaranteeing 
convergence of parameters, the proposed controller guarantees 
stability of the system. 
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Figure 3: Illustration of thrust input in take off maneuver for adaptive 

controller 

 

 
Figure 4 : Illustration of exponential convergence of adaptive controller in 

take off maneuver 

 

 
Figure 5 : Illustration of state variables in take off maneuver for adaptive 

controller, a) horizontal component of velocity, b) vertical 
component of velocity, c) pitch angle rate, d) pitch angle 

 

 
Figure 6 : Illustration of parameter estimation values in take off maneuver 

using adaptive controller, a) first unknown parameter, b) second 
unknown parameter, c) third unknown parameter, d) fourth 
unknown parameter 
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