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Abstract— Mobile robotic systems, which include a mobile 

platform with one or more manipulators, are of great interest in 
most applications, e. g. planet explorations, rescuing operations, 
nursing, book keeping, storing and many others. To manipulate 
an object with two or more cooperating manipulators, the 
Multiple Impedance control (MIC) as a Model-Based algorithm 
enforces a desired impedance law on each manipulator, the 
manipulated object, and the moving base itself. However, to 
apply model-based control laws, it is needed to extract explicit 
system dynamic model, which of course for such systems may 
lead to very complicated nonlinear equations of motions. To this 
end, non-holonomic constraint of a wheeled system is derived, 
and the obtained dynamics model is reformatted to become a 
more concise one using Natural Orthogonal Complement 
Method. Next, the MIC law is applied to manipulate an object by 
two 6-dof cooperating manipulators mounted on a wheeled 
platform while the moving base is driven with two differentially 
driver wheels. Obtained results reveal a good tracking 
performance of the system, i.e. a coordinated smooth motion of 
the object, manipulators and the moving base, even in the 
presence of impacts due to contact with an obstacle, and system 
flexibility. 
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I. INTRODUCTION 
Due to limitations of fixed-base robots, mobile robotic 

systems have attracted a lot of attentions. Unlike fixed-base 
robots, mobile manipulators can do tasks that may be out of 
reach of their manipulators by exploiting the mobility of the 
base platforms. Therefore, the interaction between the base and 
the manipulators results in more complicated dynamics 
equations, which in turn requires a more sophisticated control. 
Free-flying robots can move freely in space without any 
constraint, [1], while free-floating robots and wheeled robotic 
systems are usually subjected to non-holonomic constraints, [2-
4]. 

To apply model-based control laws, it is needed to extract 
explicit system dynamic model. Attempts for attaining the 
dynamical equations of motion for mobile manipulators have 
presented successful results. A systematic method for the 
kinematics and dynamics modeling of a two degree-of-freedom 

(DOF) Automated Guided Vehicle (AGV) has been presented 
by Saha and Angeles, [5-6]. They have employed the notion of 
Natural Orthogonal Complement to eliminate the Lagrange 
multipliers. The idea of direct path method, [7], has been 
utilized for deriving the dynamics of differentially-driven 
mobile manipulators equipped with multiple arms. Various 
dynamics modeling approaches, and control algorithms have 
been used for motion control of a mobile platform, [8-10], 
while manipulating objects by multiple arms mounted on a 
moving base has left almost untouched. 

The Multiple Impedance Control (MIC) is an algorithm that 
has been developed for several cooperating robotic systems 
manipulating a common object, [11]. The MIC law imposes a 
reference impedance to all elements of a mobile system, 
including its base, the manipulator end-points, and the 
manipulated object itself. This algorithm is used for space free-
flyers and is shown to give good manipulation results even in 
the presence of contact phase, and external disturbances, [12]. 

The main focus of this paper is on object manipulation by 
multiple 6-DOF manipulators of a wheeled mobile system 
while the moving base is driven with two differentially driver 
wheels. To this end, using Lagrange method the equations of 
motions are derived. Next, the system non-holonomic 
constraint will be derived, and using Natural Orthogonal 
Complement (NOC) Method an independent set of equations of 
motion is derived for the system. Finally, the MIC law is 
applied to manipulate an object with two cooperating 
manipulators tracking a given path. The obtained results reveal 
a coordinated motion of the object, manipulators and the base 
vehicle. 

II. SYSTEM DYNAMICS 

A. Basic Definitions and Calculations: 
A wheeled robotic system is considered on a flat surface as 

depicted in Fig. 1. Direct path method (DPM), [7], is used to 
express the base and the links center of mass position and 
orientation, and linear and angular velocities of the base and 
each link. To derive equations of motion, using Lagrange 
approach, it can be written: 



         

 
Figure.1:The considered mobile robotic system manipulating an object 
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where T is the total system kinetic energy, U is the total system 
potential energy, N is the system degrees-of-freedom (DOF), 

iq , iq� , and iQ  are the i-th element of the vector of 
generalized coordinates, generalized speeds, and generalized 
forces, respectively, as defined below: 

{ }1 2, , ,
TT T T

bq R q qφ=                                     (2) 

where bR  and φ  are position vector and the yaw angle of the 
base, and 1q  and 2q  are the first and second manipulator 
vectors of joint angles respectively , as below: 

( , )T
b G GR x y=                                                     (3a) 

( ) ( )1 1
1 1 6( ,..., )Tq θ θ=                                                 (3b) 

( ) ( )2 2
2 1 6( ,..., )Tq θ θ=                                                 (3c) 

The terms of the total system kinetic energy (T) are explicitly 
detailed in [4] for a general unconstrained mobile robotic 
system. 

The system gravitational potential energy contains terms 
including both the base gravitational potential energy and those 
of links, as obtained below: 
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where g is the gravity acceleration vector, ( )m
im and ( )m

icr  are  
mass and the position vector of the center of mass (CM) for the 
i-th link of the m-th manipulator with respect to the base CM, 
respectively. 

B. Extracting Dynamics Equations: 
Exploiting Lagrange equations, Eq. (1), the system 

dynamics equation is extracted as: 

( ) ( ) ( ) QqGq,qCqqH =++ ���                                       (5) 

The mass matrix (H), non-linear velocity vector (C) and gravity 
vector (G), are obtained in the following form: 
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Vector C could be written as: 

21 CCC += q�                                                 (7a) 
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and: 
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where bω and bI  are the base angular velocity and inertia 
matrix and ( )m

kω  and ( )m
kI  angular velocity and inertia matrix 

for each link respectively and M is the total mass of the robotic 
system. Finally, vector G is obtained as follows: 
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It should be noted that extracting the explicit dynamics model 
of Eq. (5), all its terms, including mass matrix (H), non-linear 
velocity vector (C) and gravity vector (G), can be symbolically 
obtained via Maple. 



         

III. NON-HOLONOMIC CONSTRAINT 
Fig. 2 illustrates a wheeled mobile robot base that moves by 

its two rear independent wheels .The motion of the wheels is 
restricted to be slipless, therefore the wheels will move along x-
axis of base-attached coordinates. So, one can write: 
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=φ                                                                    (9) 

where point O is in the middle of the rear axle, and φ  
describes the base orientation (yaw angle) as shown in Fig. 2. 
The velocity of the base CM, i.e. point G, can be written as: 

G O GV V k l iφ ′= + ×
G GG G �                                                     (10) 

Substituting Eq. (9) into (10) yields a non-holonomic 
constraint as: 

( ) ( ) 0=+− φφφ ��� lcosysinx GG                                       (11) 

where Gx�  and Gy�  are base linear velocity along x and y axes 
respectively. Considering Eq. (11) the DOF of the base at the 
speed level is reduced to two, as discussed in [10]. One can 
choose the angular velocities of the right and left wheels, i.e. 

rω  and lω , as new general speeds of the base. Then, it can be 
written: 

( )q S q ν=�                                                           (12a) 

where ( )qS  is a Jacobian matrix which relates the new general 
speeds to the prior ones. For the base we have: 
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where 
32Jac  is a non-square Jacobian matrix which relates the 

new general speeds of the base to the prior ones as follows: 
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Next , the constraint Eq. (11) can be expressed as: 

( ) 0=q.qA �                                                                  (14) 

where ( )qA  is  
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Considering (14), and defining corresponding Lagrangian 
multiplier as λ , [13], Eq. (5) can be written as: 

( ) ( ) ( ) ( ) Q.qAqGq,qCqqH T =+++ λ���                        (16) 

 
Figure .2: A wheeled base with no-slippage constraint 

Then, using Natural Orthogonal Complement Method, [5], 
the equations of motion can be derived as a set of 
unconstrained equations which is detailed next. 

The relationship between constrained general forces and 
unconstrained ones can be written as  

( ) ( )1 1 1N NQ E q τ× − ×=                                                (17a) 

in which ( )E q is an ( )1Ν Ν× −  matrix, and  

1 1
1 2 ...............

T

l rτ τ τ τ τ =  
                          (17b) 

To obtain ( )E q , based on principle of virtual work, one can 
write  

. .T TQ dq dτ ν=                                                    (17c) 

Substituting dq  from Eq. (12a), it is obtained: 

.TS Qτ =                                                                  (17d) 

Finally, substituting Q  from Eq. (17a), we will have  

( ) ( )111 −×−= NN
T E.S                                                     (18) 

Now, substituting (17a) into (16), and multiplying by TS , we 
will have  

( ) ( )( ) ( )1 2 0TT TS H q q C q C G q E S A qτ λ+ + + − + =�� �       (19a) 

Noting the fact that ( )qA  is in the null space of ( )qS , the 
second part will vanish, and (19a) reduces to : 

( ) ( )1 2
T T T TS H q q S C q S C S G q τ+ + + =�� �                  (19b) 

Now, based on Eq. (12) we have: 
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Finally, substituting q� and q��  in (19b), the equations of motion 
for the constrained system will reduce into an independent set 
in the following form: 

1 2H C C Gν ν τ+ + + =� � �� �� �                                       (21a) 

in which  

S.H.SH~ T=                                                         (21b) 
( )SHSC.SC~ T �+= 11                                              (21c) 

22 C.SC~ T=                                                           (21d) 
G.SG~ T=                                                              (21e) 

These matrices are symbolically calculated in Maple and the 
concise dynamics model is obtained. 

IV. KINEMATICS CONSIDERATIONS 
The jacobian matrix for the considered robotic system in 

case of no constraint will be in the following form  

qJacX task �� =                                                             (22) 

where taskX�  is the vector of task space speeds that can be in 
the following form 

( ) ( )1 2T T T
task G G e eX x y x xφ =   

�� � � � �                      (23) 

where i
ex  describes the i-th end effector linear position in the 

inertial frame, and its orientation using Euler angles. Therefore, 
the jacobian matrix can be written as: 
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As described before, if we use ν instead of q� , it is obtained 

ν�� acJ~X task =                                                               (25) 
where  
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Finally, the time derivative of jacobian matrix is obtained as 
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V. THE MIC LAW 
The MIC law enforces an impedance relationship at the 

object level, as well as the manipulators-base level, and yields 
proper results even in the presence of object flexibility, and 
impacts due to contact with the environment. This strategy 
allows coordinated motion and force control of wheeled mobile 
robots to perform a desirable manipulation task. To apply the 
MIC law, a desired impedance relationship at the object level is 
written as: 

0=+++ cpddes FekekeM ���                               (28)  
where , ,des d pM k k  are the desired mass , damping and 
stiffness matrices, and cF  is the contact force (in contact 
phase) , and dese x x= −  is the object tracking error. On the 
other hand, as described in [11], the object equation of motion 
can be obtained as: 

w c o eM x F F F G F+ = + +��                                      (29) 

where w oM , F , F , G , and eF  are mass matrix, vector of 
nonlinear velocity terms, external forces/torques, grasp matrix 
and finally forces/torques exerted by the manipulators end 
effectors, respectively. As mentioned before, the MIC law 
enforces the same impedance on various parts of the system. 
Therefore, we can write the same impedance law for the system 
as: 

0=+++ cpddes Fe~k~e~k~e~M~ ���                               (30) 
where dese x x= −� � �  is the tracking error in the system 
controlled variables. 

According to the MIC law the applying forces/torques 
could be divided in two parts as follows: 

app f mτ τ τ= +                                                            (31) 

where mτ  is the required actuator forces/torques for the motion 
of the system, and fτ is the required forces to be applied on the 
object by end effectors. 

The controlling forces/torques mτ could be calculated based 
on a feedback linearization approach as follows, [11]: 

( )1 ˆˆ
m des des d p fc cHM M x k e k e U F Cτ −= + + + +� ���� � �� ��           (32a) 

where  
1−= acJ~H~acJ~Ĥ                                                          (32b) 

ν�dotJ~ĤC~acJ~Ĉ −= −1                                                 (32c) 

[ ]TT
fc .......JacU~ 333332 11 ××=                                    (32d) 

To obtain fτ , based on the object dynamics as described in 
Eq. (29), the required controlling force reqeGF  could be 
written: 

( ) ocpddesdesdesreqe FFFekekxMMMGF −−+++= −
ω���1   (33) 

The required desired force obtained in (33) could be used to 
determine fτ  for both manipulators, [11]: 
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It can be shown that by application of the MIC law, all 
participating manipulators, the moving base and the 
manipulated object behave with the same desired impedance 
behavior, [14]. 

VI. SIMULATION RESULTS AND DISCUSSIONS 
The simulated system consists of two 6-DOF manipulators 

mounted on a wheeled mobile platform as shown in Fig. 1, 
while the moving base is driven with two differentially driver 
wheels. All geometric and mass properties of the mobile base, 
and each of the two identical manipulators are given in 
Tables (1)-(2). The first manipulator is equipped with a remote 
center compliance (RCC) which is initially free of tension or 
compression, and its stiffness and damping properties are 
chosen as, [15]: 

241042 s/kg.ke ×= and s/kg.be
21055 ×=  

and the object parameters are 
( ) ( ) ( )004503 21 ,,.rr,kgm eeobj −=−==  

where ( )i
er  is the position i-th end effector with respect to the 

object center of mass. The obstacle is at m.xw 654= , and it is 
taken as a spring with m/Nekw 51= . The MIC algorithm is 
used to successfully move an object in a mixed circular-straight 
path as depicted in Fig. 3a. Therefore, to examine the 
capabilities of the MIC law the object will deliberately face a 
contact on its path (along straight part), where a smooth stop at 
the obstacle will be desired. 

Fig. 3b shows the object real path in comparison with 
desired path, and it is revealed that they have very good 
correspondence. As it is seen, an accordant motion of both end-
effectors results in smooth motion of the object on a 5-meter-
radius circular path which continues through a straight part at 
the end of its maneuver. The existence of flexibility in the 
system due to RCC does not have any undesired effect on the 
object control which reveals the high capabilities of the MIC 
law in the presence of flexibility in the system. Fig. 4 shows the 
change of robot base yaw angle φ  which varies with constant 
slope on the circular part of its path (until it reaches the straight 
part of its path), then the base orientation undergoes no change 
. 

TABLE (1): PROPERTIES OF THE BASE 

mass 
I 

( )2m.kg  Gl  b ( )mrw  
m.N

right/left
itlimτ  

50 20 1.25 1.5 0.25 200 

TABLE (2): PROPERTIES OF EACH MANIPULATOR LINKS 

i-th body length 
(m) 

( )

kg
m m

i

 

( )

2.

m
iI

kg m
 ( ) m.Nm

iτ  

1 1 3 0.25 75 
2 0.5 3 0.2 75 
3 0.5 3 0.2 75 
4 0.2 1 0.1 75 
5 0.2 1 0.1 75 
6 0.1 1 0.1 75 

Fig. 5 shows variation of the contact force, which occurs at 
the time about sect 19= . As it is seen its amount is zero 
during no contact phase, but during contact phase gradually 
increases. Based on the MIC law this amounts finally 
converges to a constant value that is governed by the defined 
system parameters. Fig. 6 and Fig. 7 show the torques variation 
of the left and right wheels, and the 1st end effector torques. As 
it is seen, the wheels react correspondingly, also at the time 
about sec.t 76=  sudden changes appear, which corresponds to 
the time of switching from the circular part to the straight part 
of the path. 

Fig. 8 shows the position error of the object, and the first 
and second end effector. As it is seen these figures show two 
points of disruption; which correspond to the time of switching 
from the circular part to the straight part of the path, and the 
impact due to contact with the obstacle, respectively. After the 
contact, the object tracking error will undergo a steady error 
which implies that the MIC law will not allow the object to 
experience excessive force. In other words, the cause of the 
error lies in the fact that the MIC law concentrates on the object 
dynamical behavior by applying defined impedances both at 
the object level and the robotic system level, rather than 
explicit force/position tracking control. So as it is seen the 
object will come into smooth stop at the obstacle, which shows 
the success of applying the desired impedance. 

       
Figure 3. (a) The object and end-effectors real paths; (b) Comparison between 

the object CM real and desired paths 

 
Figure 4. Variation of the base yaw angle with time 

 
Figure 5. The contact Force 



         

 
Figure 6. Variation of the left & right wheel torques 

 
Figure 7. Variation of the 1st end effector torques 

 

    
Figure 8. The object (top), 1st (left) and 2nd (right) end effector position 

tracking errors 
 

VII. CONCLUSIONS 
In this paper, using Lagrange method the equations of 

motions were derived based on direct path method (DPM). 
Next, the system non-holonomic constraint was derived, and 
using Natural Orthogonal Complement Method the 
independent set of equations of motion for the system was 
derived. Finally, the MIC law was applied to manipulate an 
object by two 6 DOF cooperating manipulators, one of them 
equipped with a remote center compliance (RCC), mounted on 
a wheeled platform while the moving base is driven with two 
differentially driver wheels. The obtained results reveal a 
coordinated smooth motion of the object, manipulators and the 
moving base, even in the presence of system flexibility, and 
impacts due to contact with an obstacle. 
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