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Abstract— Intersection signal timing is one of the key 
techniques in intelligent transportation system (ITS). Both the 
average delay and stop frequency are important indices for 
evaluating the level of service (LOS) for signalized intersections. 
Traditional signal timing models either optimize only one of them 
or deal with them as a single objective using weighted average 
methods. In this paper, a Multi-Objective Particle Swarm 
Optimization (MOPSO) method is proposed to optimize the both 
evaluation indices synchronously. A well-distributed set of Pareto 
optimal solutions is obtained, and the most satisfied solution is 
selected by the multi-objective decision-maker module. The 
experimental results indicate this optimal method is steady and 
effective. 
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objective, Particle Swarm Optimization 

 

I. INTRODUCTION 
With the urban population and cars increasing, traffic 

congestion has become more and more serious. Intersection is 
an important component of the urban transportation networks; 
meanwhile, it is also the major occurring place of traffic 
congestion. Traffic signal control can provide for the orderly 
movement of traffic flow, and reduce the frequency and 
severity of traffic jams at the intersection. The main approach 
of signal control is to implement the timing model for a 
signalized intersection. Signal timing model can generate the 
optimal signal timing plan by calculating appropriate cycle 
length and green split of each phase, which is crucial for signal 
control and improves the signalized intersection’s level of 
service (LOS) effectively. Therefore, lots of scholars devoted 
themselves to designing a reasonable timing model. Reference 
[1] gave a formula of the optimal cycle length for minimizing 
vehicle average delay, and the green-light time was determined 
according to the traffic flow ratio. But stop frequency per 
vehicle was not considered in this model. In [2], on the basis 
of Webster’s model, the stopping compensation coefficient 
was added to modify the formula for calculating the optimal 
cycle length, but it was difficult to be acquired this coefficient 
precisely. Reference [3] transformed the average delay, 

average stops and traffic capacity into a single objective by 
calculating their weighted sum, and adopted Tabu search 
algorithm to find approximate solution. However, the ratio for 
the weighted coefficient of average delay and average stop 
frequency was constant in her model, which meant the two 
parameters had a linear correlation. That was inconsistent with 
the actual conditions. 

Average control delay and average stop frequency are 
important evaluation indices of traffic signal plan. They are 
useful for the determination of the cycle length and the green 
splits. Reference [4] analyzed the correlation coefficient 
between the two indices and other traffic parameters, and 
suggested the relationship between these two indices was 
neither linear nor absolutely monotone, but a grey correlation. 
It means when one of the two indices is increased, the other 
might be increased or decreased. Therefore, it is suitable to 
establish two objectives optimal model so as to optimize both 
of them simultaneously. Particle Swarm Optimization (PSO) is 
a fast optimization algorithm based on swarm intelligence. Its 
inherent characteristics, such as implicit parallelism, can 
improve the efficiency of multi-objective optimal problem. In 
this study, a multi-objective optimization algorithm based on 
PSO is proposed to optimize average delay and average stop 
frequency simultaneously. This algorithm calculates the Pareto 
solution aggregate of the cycle length and green-light time of 
each phase, the most satisfied solution is provided by the 
decision-maker module. The experimental results demonstrate 
this algorithm effective. 

 

II. BASIC THEORY 

A. Model of Objective Functions 
In signal timing models, average control delay functions 

are essential for evaluating the traffic conditions of a 
signalized intersection. These functions directly relate with the 
LOS of the whole intersection. The basic definition of average 
control delay is the travel time loss caused by traffic friction 
resistance and signal control [5]. It is also related to other 



 

         

traffic parameters such as cycle length, green splits, and 
saturation. In the case of an unsaturated traffic situation, the 
delay formula is expressed as (1):   
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Where di (sec/pcu) is average control delay per vehicle on the 
particular lane group of the i-th phase; (pcu means the 
passenger car unit.) C (sec) is the cycle length; qi (pcu/sec) is 
the flow rate on the particular lane group of the i-th phase; iλ is 
the proportion of effective green respect to cycle length of the 
i-th phase; (i.e. gi /C and gi (sec) is effective green time of the i-
th phase.) and Xi is the degree of saturation of the i-th phase of 
the intersection [6]. 

The first term of (1) represents the delay when the traffic is 
assumed to be arriving uniformly. The second term of the 
equation denotes the experienced delay due to vehicles 
arriving randomly. The third term of the equation is an 
empirical correction term to give a closer fit for all values of 
traffic flow. Normally, the last term is quite small compared to 
the whole delay and is frequently neglected for actual 
calculation [6]. 

The average control delay in the whole cycle length 
should equal to the value of weighted average of each phase 
and be expressed as (2):  
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Where n  is the number of phase in one cycle [7]. 
The average stop frequency per vehicle is also an 

important parameter for judging the LOS of a signalized 
intersection. It represents the number of stops when one 
vehicle passes through the signalized intersection. The average 
stop frequency per vehicle of the i-th phase is expressed as (3): 
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Where ih  means average stop frequency per vehicle of the i-th 

phase; and iy is the flow ratio of the particular lane group of 
the i-th phase. It represents the ratio of actual flow rate to 
saturation flow rate [7].  

Similar to the average delay, the average stop frequency 
in the whole cycle length should equal the value of weighted 
average of each phase and be expressed as (4): 
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Where n  is also the number of phase in one cycle [7]. 
As a result, the optimal timing model taken into 

consideration both average control delay and average stop 
frequency is described as follows： 

( ) ( ){ }min , , ,i iy d C h Cλ λ  =                   （5） 

B. Multi-Objective Optimization Problem  
If there are two and more objectives to be optimized 

simultaneously, there is no longer a single optimal solution but 
a whole set of possible solutions of equivalent quality [8]. 
Generally, the definition of minimum multi-objective problem 
with n  decision variables x and m  objectives y is expressed 
as follows: 

( ) ( ) ( ) ( ){ }1 2min , , , my f x f x f x f x  = = ⋅⋅⋅    （6） 

Where ( )1 2, , , nx x x x= ⋅⋅ ⋅ ; 

( )1 2y , , , ny y y = ⋅ ⋅⋅ ; 

( ){ }| 0, 1, 2, ,jx S x g x j p∈ = ≤ = ⋅⋅⋅ ; 

And where x is called decision vector; y is called objective 

vector; S is the feasible solution region, and jg  represents 
the j-th constraint of this problem [8]. 

1) DEFINITION 1: 
A decision vector u S∈ is referred to dominate a decision 

vector v S∈  only if: 

{ }1 , ... , i n∀ ∈   ( ) ( )i if u f v≤   

             And { }1 , ... , j n∃ ∈   ( ) ( )i if u f v<   
Usually, u dominates v  can be written as u v [8]. 

Based on this definition, Pareto optimal solutions can be 
defined as follows: 

2) DEFINITION 2:  
 Let u S∈ be an arbitrary decision vector. 

(a) The decision vector u is referred to be non-dominated 
regarding a set 'S S⊆ only if there is no vector in 

'S which dominates u ; 
(b) The decision vector u is called Pareto optimal solution 

only if u is non-dominated regarding the whole feasible 
solution space S . 

The key to solving multi-objective problem is to find the 
Pareto optimal solutions from the feasible solution region, and 
decision makers can choose the most satisfied solution or a set 
of optimal solutions from them [8]. 

C. Particle Swarm Optimization  
The Particle Swarm Optimization (PSO) is a parallel 
stochastic search algorithm first proposed by Kennedy and 
Eberhart. It is a population-based algorithm and its procedure 
is simpler than Genetic Algorithm’s. This algorithm simulates 
social behavior such as flying bird flock in searching of food. 
The behavior of each particle is affected by the behaviors of 
neighborhoods and the whole swarm [9]. 

This algorithm is initialized with a swarm of random 
solution at the feasible solution region. The individual called 
particle flows through the solution space by following the 
current best one. At each iteration, the position of each particle 
is updated by a new velocity calculated through (7) and (8) 
which is based on its precious velocity, the position of the best 
solution so far has been achieved by the particle itself (pbest), 



 

         

and the position at which the best solution so far has been 
achieved by the global swarm (gbest): 

( ) ( ) ( ) ( )( ) ( ) ( )( )1 21 *V t w V t cu pBest t p t cv gBest t p t+ = + − + − （7） 

( ) ( ) ( )1 1p t p t V t+ = + +                            （8） 
Where w is a weight determining the proportion of the 
particle’s previous preserved; c1 and c2 are two positive 
acceleration constants, u and v are two uniform random 
sequences produced from U (0, 1) [9]. 

Fitness values obtained from the objective functions drive 
the particles to “fly” through the solution space and are 
attracted to both their personal best solution and the best 
position found by the global swarm. Finally, they converge to 
the optimal solution [9]. 

 

III. TIMING MODEL BASED ON MOPSO 

A. MOPSO Algorithm Process 
Multi-objective particle swarm optimization (MOPSO) 

uses PSO algorithm to optimize each objective in the feasible 
solution region. This optimization approach is effective to 
solve multi-objective optimization problem and easy to be 
implemented. Strength Pareto Evolutionary Algorithm (SPEA) 
is a classical method among all major multi-objective EAs 
which is based on the Pareto-optimality and dominance [8]. 
This study proposes the MOPSO algorithm based on SPEA to 
optimize average delay and average stop frequency 
simultaneously. The detailed procedure is described as 
follows: 
Step 1:  Initialize the particle swarm P . In this model, each 
particle represents a signal timing plan in the same traffic 
condition. The dimension of the particle equals to the number 
of phases on this plan, and its position represents the vector of 
the green-light time of each phase. The initialized position of 
each particle is generated randomly in the feasible solution 
region and the initialized speed is set to zero. The initialization 
of pbest and gbest of each particle is set to itself. The value 
range of the position ( )min max,X X and the maximum speed 

maxV  should be initialized to avoid the individuals flowing out 
of the solution space. An empty external set of non-dominated 
individuals 'P is also created. 
 Step 2: Update the position and speed of each particle by 
using (7) and (8).  
 Step 3: Calculate the objective function values of each 
particle. In this model, average delay and average stops are 
calculated with (2) and (4). 
 Step 4: Update the pbest of each particle. For each individual 
in the swarm, the pbest is replaced by the current position if 
the current position dominates the pbest of this particle. 
Otherwise, the pbest is not updated. 
Step 5: Find all non-dominated members of P at this iteration, 
and copy them to 'P . 
Step 6: Remove solutions within 'P  which are dominated by 
any other member of 'P . 

Step 7: If the number of stored non-dominated solutions 
exceeds a given maximum N , reduce the population size of 

'P  to N by means of clustering procedure. This iterative 
procedure clusters particles which have the minimum distance 
in 'P . 
Step 8: For each particle, select a solution randomly from 

'P and compare to the gbest of this particle. If the solution 
dominates gbest, then replaces it; else do not update the gbest 
of this particle. In order to accelerate the convergence speed of 
this algorithm, the value of gbest should not vary frequently. 
That makes the particle search on a steady approach. A 
variation coefficient of the particle’s gbest is also introduced 
to avoid the algorithm dropping into local optimum [10]. 
Step 9: If maximum number of generations is reached, then 
stop; else go to Step 2. 

B. Design of  Multi-Objective Decision-Maker  
Multi-Objective Decision-maker is a mechanism that 

makes sure the most suitable solution for the practical situation 
be selected from the set of non-dominated solutions. By using 
MOPSO algorithm, a set of Pareto optimal solutions are 
generated. However, single intersection usually uses only one 
signal timing plan. The multi-objective decision-maker helps 
to choose the most suitable timing plan according to the 
environment and dynamic traffic conditions. When the 
saturation degree of the intersection is closed to 1, the 
decision-maker may choose the solution which optimizes the 
average delay. When the intersection closes to residential areas, 
it may select the solution which optimizes the average stop 
frequency to avoid pollution increasing due to vehicles start 
and brake. The multi-objective decision-maker is designed as 
follows: 
Step 1:  Design a fuzzy matrix about the proportion of each 
index considered in the decision. The dimension of this matrix 
is usually set to 3, and its elements can be changed frequently. 
Step 2: According to the actual situation about this intersection, 
determine which is more important between average delay and 
average stop frequency. Then select an element form the fuzzy 
matrix to represent the ratio of weight between control delay 
and stop frequency.  
Step 3: Modify the value of objectives by using the element 
selected at Step 2. Then sort the members within the set of 
non-dominated solutions by the value of the objective which is 
more important.              
Step 4:  Offer the most fitting solution.  Because the set of 
non-dominated solutions has been modified by considering the 
effect of actual situation, and also been sorted by the value of 
the key objective. So the first solution will be the best signal 
timing plan that meets the optimization of the both indices and 
the practical traffic condition about this intersection. 
 

IV. EXPERIMENTS AND DISCUSSION 
In order to verify the property of this traffic timing model 

based on MOPSO, we select two intersections in different areas 
for our experiments. 

1) INTERSECTION 1: 



 

         

 The first intersection called Baihuajin is in Hefei, Anhui 
province, China. It is a crossroad and locates near the people’s 
living region. The flow rate of each approach is usually not 
high, and the number of phase is set to 4. The traffic data from 
13:30 to 14:30 at May 23, 2003 are listed in Table 1: 

TABLE I.  TRAFFIC  DATA ON BAIHUAJIN  

Lane Direction Actual Flow Rate 
(pcu/h) 

Saturation Flow 
(pcu/h) 

East straight 290 1650 
East left-turn 118 1550 
South straight 219 1550 
South left-turn 108 1450 
West straight 275 1650 
West left-turn 78 1550 
North straight 331 1550 
North left-turn 176 1450 

 
2) INTERSECTION 2: 

 The second intersection called Longshan Road locates in 
Anqing, Anhui province, China. This intersection is also a 
crossroad, and its location is on a slope top. The capacity of 
each lane is lower than the first intersection because of the 
narrow width of lanes and the existence of the slope. However, 
the flow rate of each lane is often high because this intersection 
is near the city center. So the number of phase is usually set to 
2. The traffic data from 8:00 to 12:00 are listed in Table 2: 

TABLE II.  TRAFFIC  DATA ON LONGSHAN ROAD  

Lane Direction Actual Flow Rate 
(pcu/h) 

Saturation Flow 
(pcu/h) 

East straight 245 850 
East left-turn 79 850 
South straight 356 900 
South left-turn 117 900 
West straight 265 850 
West left-turn 45 850 
North straight 386 900 
North left-turn 312 900 
 
According to the actual situation, some constraints have to 

be described before the experiments: 
0.5 ≤ Xi ≤ 0.95; 
60 ≤ C ≤ 180; 
10 ≤ gi ≤ 45; 
L = 3 (sec); 

Where L is the lost time of each phase in a cycle length. 
In these two experiments, we compare current traffic 

signal plan, Webster traffic model [1], and timing model based 
on PSO for single objective with MOPSO so as to verify the 
efficiency of our algorithm. Each method has operated for 50 
times. Each method of SPSO and MOPSO iterates 20000 
times and the population size is set to 50. The results are 
shown in Table 3 and Table 4: 

 

TABLE III.  COMPARISON OF ALGORITHM RESULTS ABOUT 
BAIHUAJIN INTERSECTION 

Optimization 
Methods 

          Delay  
(sec/pcu) 

         Stops  
      (num/pcu) 

Current signal plan 53.24 0.8063 
Webster 43.61 0.8448 

SPSO (average delay) 38.83 0.8311 
SPSO (average stops) 115.20 0.7819 
MOPSO (decision 1) 40.27 0.8301 
MOPSO (decision 2) 88.56 0.7827 
MOPSO (decision 3) 56.54 0.7901 

TABLE IV.  COMPARISON OF ALGORITHM RESULTS ABOUT    
LONGSHAN ROAD INTERSECTION 

Optimization 
Methods 

          Delay  
(sec/pcu) 

         Stops  
      (num/pcu) 

Current signal plan 34.56 0.7503 
Webster 30.40 0.7782 

SPSO (average delay) 28.85 0.7591 
SPSO (average stops) 66.64 0.7249 
MOPSO (decision 1) 29.02 0.7540 
MOPSO (decision 2) 65.75 0.7269 
MOPSO (decision 3) 33.68 0.7381 
 

In Table 3 and Table 4, SPSO (average delay) tries to 
optimize the average control delay while SPSO (average 
stops) tries to optimize the average stop frequency. The three 
experiments of MOPSO use the same optimization algorithm, 
but their decision-makers choose the different ratio of weight 
between average delay and average stop frequency. MOPSO 
(decision 1) thinks optimizing average delay is much more 
important than optimizing average stop frequency, so it 
chooses the biggest ratio of weight between average delay and 
stop frequency. On the contrary, MOPSO (decision 2) selects 
the smallest one. MOPSO (decision 3) considers both of the 
indices and the intersection’s practical environment, and 
obtains the suitable solution by selecting the appropriate 
element of that matrix. The Maximum number of members 
within the non-dominated set equals to 50 for all three 
MOPSO. 

According to the experiments focused on minimizing the 
average delay, it is obvious that SPSO (average delay) and 
MOPSO (decision 1) are better than the current timing plan 
and Webster method, especially when the average delay is 
high. That the average delay from MOPSO (decision 1) is 
close to the one from SPSO (average delay) indicates that the 
Pareto optimal solutions have a reasonable distribution. The 
comparison between SPSO (average stops) and MOPSO 
(decision 2) shows the same conclusion. Although average 
delay from MOPSO (decision 3) is inferior to the result from 
MOPSO (decision 1) and SPSO (average delay), the other 
objective is superior to the one from MOPSO (decision 1) and 
SPSO (average delay).  

In Table 3, the solution obtained from MOPSO (decision 
3) is closer to the one from MOPSO (decision 2) than MOPSO 
(decision 1). However, the solution obtained from MOPSO 
(decision 3) has the opposite situation in Table 4. Because the 



 

         

environment and the traffic conditions of Baihuajin 
intersection are different from Longshan Road intersection.  
Baihuajin intersection is near the living areas and the flow rate 
is not high; in this situation, the decision-maker of MOPSO 
(decision 3) suggests optimizing average stop frequency is 
more important than optimizing average delay. On the 
contrary, Longshan Road intersection locates in the city center 
and capacity of its lanes is low. To avoid traffic congestion 
and decrease the degree of saturation, the decision-maker of 
MOPSO (decision 3) suggests optimizing average control 
delay is more important than optimizing average stops. The 
solution of MOPSO (decision 3) is also selected from the 
Pareto optimal solutions, so the results from this solution will 
be the most fitting timing plan for fixed-cycle signal control. 

 

V. CONCLUSIONS 
     In this paper, a multi-objective optimization algorithm 
based on PSO (MOPSO) is proposed to optimize the average 
delay and average stop frequency simultaneously. The Pareto 
solutions of the cycle length and green light time of each phase 
are obtained as well. Finally, the most satisfied solution is 
provided by the multi-objective decision-maker module. The 
experiment results show that this algorithm not only obtains 
better solution than Webster’s optimal model when 
minimizing average delay, buy also provides other best 
solutions which minimize average stop frequency or optimize 
them both. The decision-maker is also designed to choose the 
suitable solution according to the traffic situation. 

     The further study will focus on improving the convergence 
speed of MOPSO algorithm by adding new operators, and 
researching the interaction between the multi-objective 
optimization algorithm and the multi-objective decision- maker. 
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