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Abstract—This paper mainly focuses on the swashplate angle 

dissimilar redundancy measurement of the variable displacement 
pump in the electrohydraulic compound integrated actuator 
(EHCA). Dissimilar redundancy means that the practical system 
can acquire more than one measurement values to describe a 
certain signal through hardware or software manners. Aiming to 
the need of software sensing, the signal needed to be rebuilt is 
computed from the system model. So it proposes the exact 
linearization model of EHCA to handle the nonlinear problem of 
load flow in this paper. Comparing to the linearization model 
which nearing the working point and the general nonlinear 
model, the exact linearization method which based on nonlinear 
transformation in EHCA modeling, is not only truly reflects 
system characters with simple linear control theory, but also 
provides a reliable model for computing swashplate angle by 
using other signals measurement value from sensors. This 
method provides a valuable reference model in the practical 
dissimilar redundancy applications. 

Keywords—electrohydraulic, actuator, exact linearization 
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I.  INTRODUCTION 
Aircraft itself has the demand of high security, and this goal 

is based on the high reliability of its components. Many 
research show that above 60 percent of system faults are 
occurred in the relative parts of controllers. And most of the 
controller faults are sensors and actuations failures, especially 
the sensor malfunctions are more common. It is a very 
important problem that how to rapidly detect the operating 
states of sensing system and exactly rebuild the failure signals 
to keep aircraft in the normal operation. Comparing to the way 
of backuping several similar channels, dissimilar redundancy 
based detection is a more effective method, because the latter 
can acquire more than one measure values of a certain signal 
through several different hardware or software manners. 
Hardware sensing is directly obtaining signal value from the 
corresponding sensor. Usually, it is convenient to measure 
signals directly by sensor, but considering the potential faults 
of sensing system, two or three different measurement channels 
are needed to backup as reference values for monitoring 
whether the sensing signal is in normal. Once the hardware 

signal fails, the other backup software signals also can rebuild 
and replace the fault measures and maintain the whole system 
operating normally. The following will take the swashplate 
angle measure of variable displacement pump for example, and 
process a dissimilar redundancy monitoring on account of its 
weakness in the operation and its great importance on the 
electrohydraulic compound integrated actuator (EHCA). 

II. EXACT LINEARIZATION MODEL OF EHCA 
Here we will adopt three channels for swashplate angle 

measure of variable displacement pump. One is directly 
reading value from the angle sensor; the other two are 
respectively computing the angle by detecting the control 
cylinder displacement of pump and by EHCA health model. 
So the EHCA system model should be built first. Due to the 
load flow nonlinear problem caused by the product of pump 
displacement and motor rotary speed, we will use exact 
linearization method to handle it.  

A. System Sructure of EHCA 
First, the EHCA system construction will be introduced. 

Figure 1. Schematic diagram of EHCA 

Fig.1 in [4] is the schematic diagram of EHCA. The 
common volume system only has one control chamber, because 
it can not make the pressures sum of two chambers be a 
constant. The total pressure control valve in [4] takes the sum 
of pressures in both cylinder chambers as a controlled object, 
and finally implements the two chambers of pump controlled 
system both are controlled, through maintaining the pressures 
sum always be the double of slippage pump outlet pressure.     This work is supported by the Aeronautic Science Foundation, China, Grant 

No. 04E51018. 



 

This can make EHCA have same dynamic response with valve 
controlled actuator. The high pressure slippage pump mainly 
provides a reference pressure which is used to compensate the 
flow losses due to volume efficiency. 

B. Exact Linearization Model 
Three parts will be analyzed in the following. 

1) Dual-winding Brushless DC Motor(BLDCM): The 
BLDCM with double sets of windings not only can enhance 
the motor reliability, but also could reduce the elctromagnetic 
torque ripple, increase efficiency and enlarge the rotary speed 
regulating range. The double sets windings circuits equations 
can be written as: 

( ) ( )s1 s1 0 s1 0 s2 1d d 15 1 13 1 5.6i t u R K i R K i e Lα α= − + + + −          (1) 

( ) ( )s2 s2 0 s2 0 s1 2d d 15 1 13 1 5.6i t u R K i R K i e Lα α= − + + + −          (2) 
Where, s1i and s2i  are separately the phase current of two sets 
windings, s1u  and s2u  are respectively the control voltages, 1e  
and 2e  are the electromotive force of two sets windings, 0R  is  
initial phase resistance, L is phase reluctance, K is the 
temperature rising, α is the variance ratio of 0R . Considering 
the phase resistance varying as working temperature, the heat 
equation is described as: 

( )( ) ( )2 2
0 s1 s2 ir m 0 T m1 1 d dR K i i k k k K H K tα ω ω+ + + = + +      (3) 

The left side of (3) is the copper and iron loss, its right side 
shows the heat generated by losses. 0k  is thermal conduction 
coefficient, Tk  is the variant of  0k  as motor speed varying. 
Due to the same structure of two sets windings, we can 
suppose that 1 2 e2 2e e e k kω ω= = = = , k  and ek  are the 
electromotive force factor of phase and total set windings 
respectively, e  is the phase electromotive force, mω  is motor 
speed, irk  is factor about iron loss, H  is the enthalpy. The 
output torque of BLDCM is: 

( ) ( )em 1 s1 2 s2 m e s1 s2T e i e i k i iω= + = +                    (4) 
2) Stroking Mechanism of Pump: Due to the stroking 

mechanism of variable pump consists of electrohtdraulic servo 
valve and control cylinder, the first-order differential equation 
models of  these two parts are: 

             ( )p p r v pd dt k x Tγ γ= − +                           (5)

( )v v v p vd dx t x k u T= − +                            (6) 

Where, pγ  is swashplate angle, rk and  vk  are the regulating 
gains of swashplate angle and spool displacement of servo 
valve separately, pT  and vT  are time constants of pump and 
servo valve respectively, vx  is displacement of servo valve 
spool, pu  is the control voltage of servo of stroking mechanism. 

3) Hydraulic actuating cylinder: The output displacement 
equation of EHCA actuating cylinder is written as: 

( )c p p m L L cd dx t k C p Aγ ω= −                     (7) 
Where, cx  is actuating cylinder displacement, Lp  is the load 
pressure, LC  is leakage coefficient of cylinder, cA  is piston 
area of cylinder, pk  is regulating gain of pump displacement. 
When load pressure keeping constant, the acceleration of 

cylinder is only related to swashplate angle and motor speed 
and it can be shown in (8): 

( )( ) ( )
2

p pc m
e s1 s2 m m p p L p r v2

c p

d
d

kx
k i i B k p k x

A J Tt
γ ωω γ γ
 

= + − − + − + 
  

   (8) 

For Lp  is shown as (9):  
2

c c
L c c c L c L2

d d
dd

x x
p A m B k x F

tt
= + + +                    (9) 

Where, Lk is load elastic coefficient, cm  is equivalent mass of 
load, cB  is damping coefficient, LF  is load force. If taking (8) 
into (9), and let 2

c c L c 0 c p c/ , /( ),N A B C A N m k A J= + =  so (9) 
can be further described as: 

( )c p e c p r
p s1 s2 m v L c L

c c p
L 2

0 p

c p c p m c p
m p

c c c p
2

0 p

m k k m k k
i i x k x F

A J A T
p

N N

B k m k B m k
A A J A T

N N

γ ω

γ

ω γ

γ

+ + + +
=

+

 
− −  

 +
+

     (10) 

Setting six state variables: 1 s1 s2x i i= + , 2 mx ω= , 3x K= , 
4 px γ= , 5 vx x= , 6 cx x= , so the EHCA model equations can 

be expressed as (11).  
( )

( ) ( )
( )

1 s 0 3 1 e 2
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p ce m
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(11) 
 
Let the system output are:  

( )
( )
( )

1 1 2 m

2 2 4 p

3 3 6 c

y h x
y h x
y h x x

ω
γ

= = =
 = = =
 = = =

x
x
x

                        (12) 

The following will verify whether (12) satisfies the 
conditions that can be exact linearized. Ignoring the details, the 
relationship degrees of 1y , 2y and 3y  respectively are 



 

1 2r = , 2 2r = and 3 2r = . Thus, the system relationship degree 
is 1 2 3 6r r r r= + + = . Defining ( )1A x as: 

( )
( ) ( )
( ) ( )
( ) ( )

1 1 2 1

1 1 2 2 2

1 3 2 3

L L h L L h
L L h L L h
L L h L L h

 
 =  
  

g f g f

g f g f

g f g f

x x
A x x x

x x
                      (13) 

In account of 1rank 2=A , ( )1A x  has a left inverse ( )-1
1LA x . So 

model (11)-(12) satisfy the conditions of exact linearization. 
Choosing the nonlinear transform as: ( )1 1 2z h x= =x , 

( )2 1z L h= f x , ( )3 2 4z h x= =x , ( )4 2z L h= f x , ( )5 3 6z h x= =x , 

( )6 3z L h= f x . So the EHCA model (11) can be transferred 
into controllable canonical form (14).  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2
2

2 1 1 1 s 2 1 p 1

3 4
2

4 2 1 2 s 2 2 p 2

5 6
2

6 3 1 3 s 2 3 p 3

z z
z L h L L h u L L h u v
z z
z L h L L h u L L h u v
z z
z L h L L h u L L h u v

=
 = + + =
 =
 = + + =
 =


= + + =

f g f g f

f g f g f

f g f g f

x x x

x x x

x x x

�
�
�
�
�
�

     (14) 

Due to the varying uncertainty of outer load force LF , and 
it is difficult to measure accurately, we regard LF as the outer 
disturbance. Thus the exact linearization model of EHCA can 
be divided into three controllable linear subsystems (15)-(17). 

1S  is about the BLDCM rotary speed mω , 2S  is about the 
swashplate angle of pump pγ , and 3S  is about the actuating 
cylinder displacement cx . So this is very easy for designers to 
respectively construct the effective and pertinence controllers 
for three measures. 

1 1
1 1

2 21

1 1

0 1 0 0
: 0 0 1 1

z z
v

z zS
y z

ξ
         

= + +         
         
 =

�
�                      (15) 

3 3
2

4 42

2 3

0 1 0
: 0 0 1

z z
v

z zS
y z

       
= +       

       
 =

�
�                                  (16) 

5 5
3 1

6 63

3 5

0 1 0 0
: 0 0 1 1

z z
v

z zS
y z

ξ
         

= + +         
         
 =

�
�                      (17) 

By the linear method, we can design the H∞  control signals 
1v , 2v  and 3v , then the original control voltages su  and pu  can 

be induced through (18). 

( )
2

1 1
s 1 2

1L 2 2
p 2

3 3

( )
( )
( )

v L h
u

v L h
u

v L h

−

 −
   = −   
   − 

f

f

f

x
A x x

x
                    (18) 

III. EHCA CONTROL BASED ON H∞  NORM 

Here we mainly consider four design tasks of EHCA model 
in the following: (1) Tracking problem. The first design goal of 

system is to make the output follow the given value and 
maintain all the state bounded. In the EHCA, the actuating 
cylinder output displacement cx belongs to it. (2) H∞  output 
feedback problem. The EHCA output (12) should make the 
whole closed loop system to be steady and minimize the 
influence of disturbance on the state variables in the meaning 
of H∞  norm. (3) H∞  filter problem. It is demanded to evaluate 
the state variables values in the disturbance and noise situation. 
(4) Faults detection problem. System should check out the 
failures when some sensor is inactivation and rapidly use the 
software rebuilding signals to keep system normally. 

A. Swashplate Angle Software Rebuilding Model 
Here we have two software ways to reconstruct the 

swashplate angle pγ .  

1) Computing pγ by Control Cylinder Displacement 

psx of Pump Stroking Mechanism: Due to the relationship of 

psx and pγ is  
ps px rγ=                                    (19) 

Where, r  is the distance between axis of control cylinder 
piston and rotary axis of swashplate. So we can compute pγ  
easily by detecting the psx through displacement sensor. 

2) Computing pγ By System Flow LQ , Load Pressure 
Difference Lp  and Motor Speed mω : Through the load flow 
equation of pump, we can obtain pγ  from: 

L pL L
p

p m

Q C p
K

γ
ω

+
=                                 (20) 

Where, pLC  is the total leakage coefficient of pump. 

B. H∞  Control Index of EHCA System 

Considering the generalized dynamic model of linear time-
invariance system including actuator and sensor faults 
information can be written as the following form: 

1 1 2 1 1

1 11 2 12

2 21 2 22 2 2

ξ
ξ
ξ

= + + +
 = + +
 = + + +

z Az B B v R f
q C z D D v
y C z D D v R f

�
                   (21) 

Where, 1n×∈z R ; 1
1

r×∈ξ R ; 1
2

k×∈ξ R ; 1m×∈q R ; 1p×∈v R ; 
1q×∈y R ; 1

1
n×∈f R ; 1

2
q×∈f R . Constant matrix A , 1B , 2B , 

1C , 2C , 11D , 12D , 21D , 22D , 1R , 2R have the relative 
dimensions. 1R and 2R are respectively the failure direction 
vectors of actuators and sensors,  1f  and 2f  are separately the 
failure types matrix of  actuators and sensors. Just consider the 
sensor faults, so 1 0=R  and 1 0=f . 1ξ  and 2ξ  are the process 
noise and measure noise. z , q  and y  are respectively the 
vectors of state, controllable output and measure output. 

With generally, we just consider the situation of one sensor 
fault.  If iy  is the practical output of thi sensor, 0iy  is the 
output without failure, 1,2, ,i q= … , then the possible fault 
output of sensor with constant deviation can be written as 

0i iy y τ= + , τ is a constant.  So we can specify the vector of 

2R and 2f as [ ]2 0 1 0=R , [ ]T
2 0 0τ=f . 



 

3v
1( )K s

2 ( )K s

0 ( )G scgx cgx

For system (21), designing the below assumptions:  
(1) 11 22= =D D 0; (2) [ ] [ ]T

12 1 12 =D C D 0 I ; (3) [ ]T T
21 1 21 =  D 0 IB D ;  

(4) ( )1 1, ,A B C  is controllable and observable; (5) ( )2 2, ,A B C  is 
stable and detectable.  The details can be found in [2].  

Firstly, the output feedback H∞  control problem is to find 
a output feedback controller ( )sK  in the premises of 
satisfying hypothesis (1)-(5) above and a given positive 
value 0χ > , to maintain the closed loop system states steady 
and meet the performance object: 

1 sup ( )J j
ω

σ ω χ
∞

 = = < qξ qξG G                  (22) 

qξG  is the transfer function matrix from outer disturbance ξ  to 
controllable output q . Thereinto, ( )( )sσ qξG  describes the 
maximum eigenvalue of ( )sqξG . 

Secondly, to construct the dissimilar redundancy measure 
of pγ , it must use other measurable variables values to estimate 

pγ . So we should use H∞  filter to evaluate the clean values of 
variables in noises. H∞ filter demands on the estimation 
unbiasedness,  and it designs the controller to satisfy the index 
(22) in the system with limited power disturbance ξ : 

 2 sup ( )J j
ω

σ ω δ
∞

 = = < rξ rξG G              (23) 

Thus, if the H∞ norm of closed loop transfer function matrix 
( )srξG which from disturbance ξ  to estimate error ˆ= −r q q is 

less than a given positive value 0δ > , the power of r  will be 
1 δ of noise in order to maintain the observer system matrix 
steady.  

Thirdly, in account of the faults detection usually are 
implement through identifying the range of estimation error r , 
the system observer should meet a basic condition that the 
influence of failure on the r  must larger than the influence of 
disturbance on the r , namely the following index: 

[ ]3 inf ( )J j
ω

σ ω η
∞

= = ≥rf rfG G , η δ>                 (24) 

Thereinto, ( )( )sσ rfG  is the minimum eigenvalue of ( )srfG . 

C. H∞ Controller Design 
EHCA is mainly a tracking problem of actuating cylinder 

displacement cx should always follow the specified input cgx , 
it means that 3v is a tracking controller in 3S . Fig.2 shows the 
diagram. 1( )K s and 2 ( )K s  are controllers, 0 ( )G s  is controlled 
object, cgx is the specified input signal belongs to a set of limit 
power. The task is to design 1( )K s and 2 ( )K s to keep cx  
following cgx , and let the cg c 2

x x−  is minimum. Meantime, 
to limit control signal 3v  scale, we can rewrite the index as:  

Figure 2.  Schematic diagram of  3S  subsystem. 

2 2
cg c 3 22

x x v− + . If we design T
cg c 33 x x v−=   q , then the 

system 3S  should minimize 3 3 2 32sup , 1v H v ∈ ≤ q . Fig.2 

shows that [ ] T
c cg3 2 1( ) ( ) x xv K s K s= −    , and we can take 

cg cx x−  as the new state variables in subsystem 3S . Thus the 
tracking problem also can be regarded as H∞  control problem. 
So we can write the three subsystems of EHCA in form of (21). 

Let 0 1
0 0
 

=  
 

A , 1

0 0
1 0
 =  
 

B , 2

0
1
 =  
 

B , [ ]2 1 0=C , 12

0
1
 =  
 

D , 

[ ]21 0 1=D . 1S and 2S have 1

1 0
0 0
 =  
 

C , and 1

1 0
0 0
− =  
 

C  

in the 3S . And through verification, 1S , 2S  and 3S  are all 
satisfied the five assumptions. 

[ ] [ ]

1 1 1
1

2 2 2

1 1
1 1 1

1 2

1 1
1

2 2

0 1 0 0 0
0 0 1 0 1

1 0 0
:

0 0 1

1 0 0 1

z z
v

z z

z z
S v

v z

z
y

z

ξ
ξ

ξ
ξ

           = + +           
          

        = = +       
      

     = +       

q

�
�

           (25) 
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ξ
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ξ
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           = + +           
          

        = = +       
      

     = + +       

q

�
�

            (26) 

[ ] [ ]

5 td 5 1
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 −          
= + +           
         

 − −       = = +       
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 −    = +      

q

�
�

    (27) 

1) Output Feedback H∞ Controller: Accordding to the 
reletive theorem in [2], to obtain the H∞  controller satisfied 
(22), the matrix P and P� should exist and respectively satisfy: 

( )T 2 T T T
1 1 2 2 1 1 0χ −+ + − + =A P PA P B B B B P C C          (28) 

( )T 2 T T T
1 1 2 2 1 1 0χ −+ + − + =AP PA P C C C C P B B� � � �          (29) 

Known after computing, 1 or 2χ =  is not agree demand, but 
3χ =  meets the condition and 2

max ( ) 6.5572 3 9λ = < =PP� .  
Now we can specify the matrix P and P�  as: 

1.4565 1.0607
1.0607 1.5448
 

=  
 

P , 1.5448 1.0607
1.0607 1.4565
 

=  
 

P�           (30) 



 

So we get 1 3J
∞

= <qξG . For 1S  and 2S , the state space 
description of feedback controller is 
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[ ] [ ]
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z z
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v z
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ξ
ξ

   −       
= + +         −         


  = − −    

       
= +      
      

   
= +   

   

�
�







     (31) 

Where, 1̂z  and 2ẑ  are the unbiased estimations of 1z  and 2z . 
For 3S , the state space description of feedback controller is: 

[ ]

[ ] [ ]
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  −−       
= + +        −        

− 
= − −  

 
− −      

= +      
      

− 
= + 

 

�

�

1
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(32)

ξ
ξ











  
  
  
       Now we have already computed 1v , 2v  and 3v , so the 

su and pu  can be obtained by (18). 
2) H∞  Filter design:  

Let ˆ= −e z z , we will get the dynamic equation of state 
variables error as: 

( ) ( )1 1 1
1 worst 2 2

1

ˆ
(33)

ˆ

− − − = − + − − −


= − =

2 1 2 1e A Z LC e B Z LD ξ B ξ Z LR f

r q q C e

�

Then taking the Laplace transform of (33), we have 

[ ] T

1 2 3 worst 2

T

worst 2

ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ( ) ( ) ( ) ( )

z z z

z

s s s s s s s

s s s s

 =  

 =  

r G G G ξ ξ f

G ξ ξ f
  (34) 

1 1 1
2 1 21 1 2

1

( )z s
− − − − − −

=  
 

A Z LC B Z LD B Z LR
G

C 0 0 0
       (35) 

So the state space implement of transfer function matrix which 
is from disturbance ξ  to error r can be described as: 

1 1
2 1 21 1

1

( )s
− − − −

=  
 

rξ

A Z LC B Z LD B
G

C 0 0
           (36) 

And we can prove that 1
2

−−A Z LC  is steady. The object index 
of H∞ filter is (23), the task here is to fix the proper ofδ . 

According the relative theorem of H∞ filtering problem, 
for the system (21) with disturbance and satisfying the five 
assumptions, given a positive number 0δ > , the necessary and 
sufficient condition to make system have a unbiased 

estimation (31) and can make transfer function δ
∞

<rξG  is, 
existing a T 0= >P P  which is the solution of (37): 

( )T 2 T T T
1 1 2 2 1 1 0δ −+ + − + =AP PA P C C C C P B B        (37) 

The feedback gain ( )sK  that can make (31) stable is 
T
2( )s =K PC .  From the output feedback H∞ control, we know 

that ( ) 11 2 T
2χ

−− −= −Z L I PP PC� � ,  and the H∞ filter design also 

shows ( ) 12 5.0887 4.4921
4.4922 4.7978

χ
−−  = − =  

 
P I PP P� � . Taking specified 

P  into (37), we can obtain three values of δ are especially 
0.81, 0.89 and 0.97. Thus choosing a maximum value of the 
three, we have 1δ = , i.e. (31) can satisfy the object 

2 1J
∞

= <rξG . 
3) Robust Failure Detectionr: As above analyzed, in order 

to meet the demand that the influence of failure on the r is 
larger than that of disturbance on the r , i.e.

2 ∞−∞
>rf rξG G , 

for subsystem 2S , its error dynamic equation of state variables 
can be written in (38): 

[ ]

3 3
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= +          − − −              

  
−  

  
 −      = =      −     

�
�

+
+

ξ

ξ

(38) 

So the state space implement of transfer function matrix which 
is from fault 2f  to error r can be described as: 

2

1 1
2 2

1

− − − −=  
 

rf
A Z LC Z LRG

C 0
                (39) 

We can define the Hamiltonia matrix as: 

( ) ( )
( )

1 T2 1 1
2 2 2

T T1
1 1 2

η
− − − −

−

 − − −
 =
 − − −  

A Z LC Z LR Z LR
H

C C A Z LC
         (40) 

To satisfy the index (24), the following method is effective.  
Theorem 1: If the system matrix ( )1

2
−−A Z LC of (33) is 

stable, then the necessary and sufficient condition of 
                        

2 2
sup ( )j

ω
σ ω η

∞
 = < rf rfG G   

is that the eigenvalue of Hamiltonia matrix (40) being not on 
the imaginary axis. 

Let 1η = . If 1η ≠ , then taking ( )1 1
2η− −−Z LR  as 

( )1
2

−−Z LR  and regarding ( )T1 1
2η− −−Z LR  as ( )T1

2
−−Z LR . Due 

to
2 2

T( ) ( )s s∗ = −rf rfG G , so we have 

( )( )
( )
( )

2 2

T1 1 1 1
2 2 2 2

1 TT 1
1 1 2

T1
2

( ) ( )s s

− − − −

−∗ −

−

 − − − −
 
  − = − − −   
 

−  

rf rf

A Z LC Z LR Z LR Z LR

I G G C C A Z LC 0

0 Z LR I

It is proved that system (33) is complete controllable and 
observable on the imaginary axis, namely the equivalence of 



 

matrix ( 1)η =H  in (40) has no pole on imaginary axis means 

reversible matrix 
2 2

1
( ) ( )s s

−∗ − rf rfI G G  has no pole on imaginary 

axis. So theorem 1 means that if existing 
2

1
∞

<rfG , then it 

must has 
2 2
( ) ( ) 0s s∗− >rf rfI G G , ω∀ ∈R . So ω∀ ∈R , if 

2 2

1
( ) ( )s s

−∗ − rf rfI G G  exists, then 
2 2

1
( ) ( )s s

−∗ − rf rfI G G has no pole 
on imaginary axis.   

In the other hand, due to (39) is the strictly proper rational 
fraction matrix, there must exist ( )2

( ) 0sσ →rfG , as ω → ∞ . 
Because, if 

2
1

∞
≥rfG , then it must exist a ω  that can make 

( )2
( ) 1sσ =rfG , i.e. an eigenvalue of 

2 2
( ) ( )s s∗

rf rfG G  is one. 
Thus 

2 2
( ) ( )s s∗ − rf rfI G G  is a singularity matrix and 

2 2

1
( ) ( )s s

−∗ − rf rfI G G has poles on the imaginary axis. So the 

equivalence of 
2

1
∞

≥rfG  is
2 2

1
( ) ( )s s

−∗ − rf rfI G G . This provides 
a method about how to compute H∞  norm of strictly proper 
rational fraction matrix. First, choosing a 0η > and 
constructing the H matrix; then identifying whether H does 
not exist eigenvalues on the imaginary axis. If true, then 

2
η

∞
<rfG ; otherwise, 

2
η

∞
≥rfG , it should choose another  

0η >  to compute. 
Then we can induce to how to compute the problem of 

2 2
inf ( )j

ω
σ ω η

−∞
 = ≥ rf rfG G . First, it is no need to specify a 

η  value, instead, to find all the eigenvalues of 
2 2
( ) ( )s s∗

rf rfG G  
on every ω  point, as the process of ω varying from 0 to ∞ .  
So we can obtain the respective varying range of every 
eigenvalue in the whole ω varying domain.  

Now taking measure mechanism of pump swashplate angle 
in EHCA as the research object, try to find the possible 
maximizedη . Here the state space expression of 

2 2
( ) ( )s s∗

rf rfG G  
and its transfer matrix form can be specified as: 

2 2

5.0887 1 0 0 0 5.0887 0
4.4922 0 0 0 0 4.4922 0

1 0 5.0887 4.4922 0 0 0
( ) ( ) 0 0 -1 0 0 0 0

0 0 0 0 0 0 0
0 0 5.0887 4.4922 0 0 0
0 0 0 0 0 0 0

s s∗

− − 
 − − 
 
 =  
 
 
 
  

rf rfG G

 
Then, we can get: 

2 2

2

4 2

0 0 0
20.1799 25.8949( ) ( ) 0 0

16.9105 20.1799
0 0 0

j j ωω ω
ω ω

∗

 
 + =
 + +
 
 

rf rfG G  (41) 

Because the main noises in the electrical sensors system 
involves thermal noise (inner noise) and AC power supply 
noise (outer noise), so these noises are below about 60Hz. 
Here, we specify the wholeω varying domain as [ ]0, 60ω ∈ . 

By using of MATLAB, all the eigenvalues of every frequency 
point can be found. So we can obtain 

2
( )sup 1.2096jωσ =  rfG , 

and 
2
( )inf 0.0072jωσ =  rfG . Thus 0.0072η = . Combining the 

other analysis, finally 3χ = , 1δ = , 0.0072η = , but η δ< .  
Through the above verifying, we know that in the situation 

of no preprocessing on noise and disturbance, η  can be found 
is obviously far less than δ , which may severity influence the 
fault detection result: increasing misjudging or failing to detect 
to the failures. So we must handle the system noises and 
disturbances in advance by using filter to enhanceη  in the 
maximum limitation. So the effective method to increase 
failure detection accuracy is to enlarge η  as possible. 

22 2
min ( ) min sup 1,j L

ω
ω

∞
 = = ∈ rξ qG ξ ξ              (42) 

2 2 2 22 2
max ( ) max inf 1,j L

ω
ω

−∞
 = = ∈ rf rG f f         (43) 

From (42)-(43), increasing the fault function amplitude by 
adding a amplifier or reduce noise through a wavelet filter (for 
thermal noise is coupling with measure in the whole frequency 
domain), can makeδ  smaller and η  bigger. Here design an 
amplifier Π after fault function output. If let 140Π = , then 

150 0.0072=1.08>1ηΠ = × , namely η δΠ > . Thus 
2 ∞−∞

>rf rξG G . 

IV. CONCLUSIONS 
This paper mainly discussed the dissimilar redundancy 

measure problem of variable pump swashplate angle. The 
design process involves four tasks: displacement tracking, 
H∞ output feedback, H∞  filtering with noise and faults 
detection. Proper controller design for covering all the objects 
needs some skills. Through the complete analysis in the paper, 
it provides an effective method for EHCA health detection and 
H∞ control with noises. The future valuable work maybe 
focuses on how to use the wavelet filter replacing H∞  filter in 
this paper to obtain more good results. 
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