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Abstract—This paper presents a method for the kinematic 
analysis and error modeling of a newly developed hybrid 
redundant robot IWR (Intersector Welding Robot), which 
possesses ten degrees of freedom (DOF) where 6-DOF in parallel 
and additional 4-DOF in serial. In this article, the problem of 
kinematic modeling and error modeling of the proposed IWR 
robot are discussed. Based on the vector arithmetic method, the 
kinematic model and the sensitivity model of the end-effector 
subject to the structure parameters is derived and analyzed. The 
relations between the pose (position and orientation) accuracy 
and manufacturing tolerances, actuation errors, and connection 
errors are formulated. Simulation is performed to examine the 
validity and effectiveness of the evolutionary algorithm for the 
application.  
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I. INTRODUCTION 
Accuracy is an utmost important consideration factor when 

design a robot, whatever it is a serial robot or parallel robot. It 
is believed that parallel robot have some favorable advantages, 
such as higher speeds and accelerations, compact structure, and 
improved accuracy because the joint errors are not accumulated 
like in its counterpart. On the other hand, serial robots have 
some advantages like larger workspace, higher dexterity and 
good maneuverability but exhibit low stiffness and poor 
positioning accuracy because of their serial structures. To take 
advantage both of their merits, in this paper, a redundant hybrid 
robot which possesses both serial and parallel links will be 
introduced, the serial part of the machine is used to provide big 
work volume, while parallel links bring high loading 
capabilities and stiffness to the whole structure [1], thus a 
promising compromise of best sides of parallel kinematics and 
serial robots might be achieved. In the paper, based on the 
differentiation algorithm method, the error model of the 
proposed robot will be formulated. 

In the past decades, there are a number of publications 
concerning the serial robots and parallel robots respectively. 
For the Hexapod, Wang and Masory [2] investigated how 
manufacturing and assembly errors affect the accuracy of a 
Hexapod by modeling the legs as serial kinematic chains using 
the D-H convention. Ropponen and Arai [3] presented an error 
model based on differentiation of the kinematics. For the serial 
robot, Veitschegger and Chi-haur Wu [4] developed a linear 
error model to determine the Cartesian position and orientation 

accuracy of a robot manipulator with respect to the statistical 
distributions of the kinematics parameters. However, very few 
publications dealing with hybrid robot have been found, J.-W 
Zhao and K.-C Fan [6] illustrated a serial-parallel type machine 
tool and evaluated its accuracy based on the linkage kinematic 
analysis and the differential vector method. 

The paper is organized into four main sections. The first 
section serves as introduction. The second section reviews the 
kinematic analysis and error modeling of the proposed robot.  
Simulation results are presented in the third section, and 
conclusions are drawn in the fourth section.  

II. KINEMATIC ANALYSIS AND ERROR MODELING 
The kinematics of the proposed hybrid robot as shown in 

Fig.1 can be divided into two parts, the serial part and the 
parallel one, i.e., the carriage and Hexapod. To simplify its 
analysis, the two parts will be first carried out respectively, and 
then combined them together to obtain the final solutions.  

 
Figure 1.  3D model of IWR 

A. error modeling of the carriage 
Based on the convention of Denavit-Hartenberg coordinate 

system, the principle of the 4-DOF carriage mechanism is 
established in Fig.2, which provides four degrees of freedom at 
the end-effector, including two translational movements and 
two rotational movements. 

 



 

         

 

 

Figure 2.  Coordinate system of carriage 

Using the coordinate systems established in Fig. 2, the 
corresponding link parameters are given in Table1. Substituting 
the D-H link parameters into (1), we can obtain the D-H 
homogeneous transformation matrices 0

1A , 1

2A , 2

3A and 3

4A .  

TABLE I.  D-H PARAMETERS OF CARRIAGE 

Joint i iα  ia  id  iθ  

1 / 2π  1a  1d  0 

2 / 2π  0 2d  / 2π  

3 / 2π  3a  3d  3θ  

4 / 2π−  4a  0 4θ  
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where c iθ  denotes cos iθ , and isθ  denotes sin iθ .  
The resulting homogeneous transformation matrix can be 

obtained by multiplying the matrices of 0

1A , 1

2A , 2

3A and 3

4A . 

 

0 0 1 2 3
4 1 2 3 4

4 4 1 3 4 4

3 4 3 3 4 2 3 3 4 3 4

3 4 3 3 4 1 3 3 4 3 4

0 c s
c c s s s c

s c
0 0 0 1

s a d a
s d a s a
c c c s d a c a c

θ θ θ
θ θ θ θ θ θ θ θ
θ θ θ θ θ θ θ θ

=
+ + 

 − − − − − =
 − − + +
 
 

A A A A A

 (2) 

Based on (2), the forward kinematics can be written as 
follows 

 1 3 4 4sxp a d a θ= + +  (3) 

 2 3 3 4 3 4s cyp d a s aθ θ θ= − − −
 

(4) 

 1 3 3 4 3 4czp d a c a cθ θ θ= + +  (5) 

The inverse kinematic model can be obtained as 

 

1 1 3
4

4

sin xp a d
a

θ − −
=

− 
 
   

(6) 

 1 3 3 4 3 4czd p a c a cθ θ θ= − −  (7) 

 2 3 3 4 3 4s cyd p a s aθ θ θ= − − −
 

(8) 

For the accuracy of the carriage, it depends on the accuracy 
of the four-link parameters of each joint [4]. If there are errors 
in the dimensional relationships between two consecutive joint 

1i −  and i , there will be a differential change 1i
id − A  between 

the two joint coordinates. Therefore, the correct relationship 
between the two successive joint coordinates will be written as  

 
1 1 1i i ic

i i id− − −= +A A A  (9) 

where 1i

i
− A  is the homogeneous matrix which have the 

nominal link parameters that can express the relationship 
between the joint coordinates 1i − and i , and 1i

id − A  is the 

differential change due to errors in the link parameters. It can 
be approximated as a linear function of four kinematics errors 
by Taylor’s series: 
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where iθ∆ , id∆ , ia∆ , and iα∆ are small errors in the kinematic 

parameters and the partial derivatives are evaluated with the 
nominal geometrical link parameters. From (1), taking the 
partial derivative with respect to iθ , id , ia , and iα  
respectively， we can obtain 
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 can be solved in the same way. 

Let 1 1 1i i i

i i id δ− − −= ∗A A A , and  
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where , , ,
i i i id aθ αD D D D can be solved as follows: 
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Expanding (11) into matrix form we can obtain 
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The above expression gives the differential translation and 
rotation vectors for any type of joint as functions of the four D-
H kinematic errors.  

Similarly, for the proposed four degree-of-freedom carriage, 
the correct position and orientation of the task point p4 with 
respect to the base frame due to the 4×4 kinematic errors can 
be expressed as 

  0 0 0 1 1
4

4 4 4
1

( )i ic
i i
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Expanding (14), and ignoring second and higher-order 
differential errors, then the relation between the differential 
change in carriage and the change in link parameters can be 
derived as 
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where 1δ A is the first order error matrix transformation in the 
fixed base frame. Following Paul [7], such a differential 
operator has the following form 

0

0

0

0 0 0 0

z y x

z x y

y x z

d

d

d
T

δθ δθ δ
δθ δθ δ

δ
δθ δθ δ

−

−
=

−

 
 
 
 
 
 

          (16) 

If let 6 1
0

T

x y z x y zd d dδ δ δ δ δθ δθ δθ ×= ∈ ℜ  X  
denote the positional and the orientation errors of the carriage, 
then from (15) and (16), it can also be rewritten as: 
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where [ ]T
i i i i i i idx dy dz x y zδ δ δ δθ δθ δθ∆ =x  

and [ ]T
i i i i id aθ α∆ = ∆ ∆ ∆ ∆y , iG  is the identification 

Jacobian matrix. 

B. Kinematic analysis and error modeling of Hexapod 
Fig. 3 shows a schematic diagram of  hexapod parallel 

mechanism, for the purpose of analysis, two Cartesian 
coordinate systems, frames O4(X4, Y4, Z4) and O5(X5, Y5, Z5)  
are attached to the base plate and the end-effector, respectively. 
Six variable limbs are connected with the base plate by 
Universal joints and the task platform by Spherical joints. 

 
Figure 3.  Norminal model of the Hexapod parallel mechanism 

For the designed kinematics parameters, the following 
vector-loop equation represents the kinematics of the thi limb 
of the manipulator 

 4 4 5 4

5 5i i i iA B = + −P R b a    (ι=1,2,3,4,5,6 )             (18) 

where 4

5P   denotes the position vector of the task frame  {5} 
with respect to the base frame {4}, and 4

5R  is the Z-Y-X Euler 
transformation matrix expressing the orientation of the frame 
{5} relative to the frame {4},  
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and the 4
ia  , 5

ib  represent the position vectors of U-joints 

iA and S-joints iB  in the coordinate frames {4} and {5} 
respectively. 

Let il be the unit vector in the direction of i iA B , and il  
represents the magnitude of the leg vector i iA B . 

 Differentiating both sides of (18) will yield 

4 4 5 4 5 4
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Let 4 5

5 iR b = is , and multiply both sides of (20) with the unit 
direction vector T

il  , since 1T
i i =l l , 0T

i iδ =l l  we can obtain: 
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Equation (21) can be rewritten as 

 1 1 2 1δ δ δ= +L J X J P  (22) 

where  
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and  
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Since 6 6
1

×ℜ∈J  is a square matrix, and no singular points 
exist inside the workspace [3], 1J is invertible. Therefore, (22) 
can be written as: 

 1 2 1
1 1

1 1δ δ δ− −= −X J L J J P  (27) 

The first term on the right side represents the errors induced 
by actuators and the second one is the position errors from the 
passive joints iA and iB .  

C. Kinematic analysis and error modeling of the hybrid 
manipulator 
The schematic diagram of the redundant hybrid manipulator 

is shown in Fig. 4, which is a combination of carriage and 
Hexapod manipulator mentioned above. The base plate frame 
{4} of Hexapod is coincided with the end task frame of the 
carriage. The global base frame {0} is located at the left rail. 

 
Figure 4.  Schematic diagram  of IWR  

According to the geometry, a vector-loop equation can be 
derived as 
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where 0
5P is the position vector of the task frame {5} (or end-

effector) with respect to the fixed base frame {0}, and 0

4R is 
the rotation matrix of the frame {4} with respect to frame {0}. 

Differentiating both sides of (28) and multiplying unit 
direction vector T

il yields 
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where 0 5

5 ibi = R br    ,   0 4

4 iai = R ar  
Equation (29) can be rewritten as  

3 4 0 5 6 1δ δ δδ= + +J X J X J J PL         (30) 

where    
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Since 6 6
3

×ℜ∈J  is a square matrix, and no singular points 
exist inside the workspace, 3J is invertible. Therefore, (30) can 
be rewritten as: 

 4 0 5 6 1
1 1 1

3 3 3δ δ δδ− − −= + +X J J X J J J J PL  (35) 

where 0 0 6 1
5 5

T
δ δ δ ×= ∈ ℜ  X P Ω denote the final output pose 

errors, and the first term on the right is the errors caused by the 
carriage, the second and third one represent the errors induced 
by the Hexapod machenism. 

III. SIMULATIONS RESULTS 
In order to evaluate the final output errors caused by the 

error sources, a simulation example was performed using the 
following nominal parameters.  
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Moreover, to estimate the accuracy of the derived error 
model, we assume a certain kinematics errors occurred in the 
carriage and Hexapod 

10.5 , 0.1mm mmδ δ= =L P  

0.1 ; 0.5i i i ia d mmα θ∆ ∆ ∆ ∆= = = =  
The range of the actuator input values are given in below, 

which will be generated by the random function in Matlab. The 
output position errors and orientation errors of the carriage, 
Hexapod and the whole robot in X, Y and Z direction for the 40 
random generated poses are shown in Figure 5, 6, 7, 8,9,10 
respectively. Figure 11 and Figure 12 illustrate the comparison 
of the absolute position and orientation error of carriage, 
Hexapod and the whole robot. 

1 2 3

4

0 800 ,0 300 ,0 180 ,

0 90 ,0 15 ,0 15 ,0 10 .

d dmm mm θ
θ α β γ

< < < < < <

< < < < < < < <
 

 
Figure 5.  Position error of carriage in X, Y, and Z  

 

Figure 6.  Orientation  error of carriage in X, Y, and Z 

 

Figure 7.  Position  error of Hexapod  in X, Y, and Z 

 

Figure 8.  Orientation  error of Hexapod in X, Y, and Z 



 

         

 

Figure 9.  Position  error of IWR  in X, Y, and Z 

 

Figure 10.  Orientation  error of IWR in X, Y, and Z 

 

Figure 11.  Comparison of the absolute position error of carriage, Hexapod and 
IWR 

 

Figure 12.  Comparison of the absolute orientation error of carriage, Hexapod 
and IWR 

From these Figures it can be seen that the errors along Z 
axis are influenced significantly than that of X, Y axes, and the 

final output errors are not simply the superposition of the 
carriage and Hexapod. Comparing the absolute position and 
orientation errors of the carriage, Hexapod and IWR, we can 
see that the carriage error is the most important error sources to 
the final output errors, which causes about 80% of the whole 
errors. The final position errors are not greater than 10mm, 
which can be reduced to satisfy the accuracy requirement by 
means of some calibration methods in next step. 

IV. CONCLUSIONS 
In this paper, a hybrid redundant robot used for both 

machining and assembling of Vacuum Vessel of ITER is 
introduced. An error model derived for the proposed robot has 
the ability to account for the static sources of errors. Due to the 
redundant freedom of the robot, first we divide it into serial 
part and parallel part, and then formulate the error model 
respectively, finally combine them together to get the final 
error model. The error model has been simulated in Matlab and 
the results show that about 80% amount of errors in the end-
effector is caused by serial link mechanism, i.e. carriage. In 
practice, to obtain desired accuracy of robot, these errors have 
to be reduced by further parameter identification methods. In 
the following work, efforts will be focused on the parameter 
identification using some optimization method to obtain 
desirable output errors.   
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