
978-1-4244-1674-5/08 /$25.00 ©2008 IEEE CIS 2008

3D Spatial Models for Geometric Description Of
Spatial Objects

Mochammad Zuliansyah, Suhono Harso Supangkat, Yoga Priyana, Carmadi Machbub

School of Electrical Engineering and Informatics
Bandung Institute of Technology

Bandung, Indonesia
zulgiva@yahoo.co.id, suhono@depkominfo.go.id, yoga@lskk.ee.itb.ac.id, carmadi@lskk.ee.itb.ac.id

Abstract—Whilst thematic analysis and 2D spatial analysis

are well studied, research on 3D spatial analysis is still at an

intensive stage. Spatial relationships are the fundament of a large

group of operations to be performed in Geographic Information

System (GIS), e.g. inclusion, adjacency, equality, direction,

intersection, connectivity, and their appropriate description and

maintenance is inevitable. Similar to 2D variants, 3D GIS should

be capable to perform metric (distance, length, area, volume, etc),

logic (intersection, union, difference), generalisation, buffering,

network (shortest way) and merging operations. Except metric

operations, most of them require knowledge about spatial

relationships. The third dimension increases drastically the

number and complexity of all possible spatial relationships,

compared with 2D GIS. A formalism for the detection of spatial

relationships based on set topology notions has already been

proposed by several authors, however the description of 3D

spatial relationships is not sufficiently studied. The design of a

spatial query language or the extending of existing languages,

updating procedures to ensure topology consistency of database,

etc., these are tasks that need further development. In this paper,

the definition of a new spatial model will be given. It will be

referred to as Geometric Domain Spatial Model. According to the

proposed definition of an object, the geometry of each spatial

object can be associated with four abstractions of geometric

objects, i.e. point, line, surface and body.

Keywords—3D spatial analysis, 3D spatial, Geometric Domain

Spatial Model

I. INTRODUCTION

Research in the GIS community is trying to work out a
conceptual model capable of integrating geometric (position,
shape and size) and thematic characteristics of objects and
mutual spatial relationships. These models can be considered
an explicit description of cells (or objects). The concept of a 2D
GIS introduced by [8,10] as "Formal Data Structure", and
extended to comprise 3D information and texture in several
successor models, follows an integrated approach for
describing geometry, semantic and spatial relationships in one
spatial model. The model has been extensively studied (see [9],
[3]). The investigations into 2D and 3D spatial analysis
promised results that have motivated the utilisation of 3D FDS
as a starting point of this paper. A review of the 3D extensions
and implementations of the model are listed below. A
modification of the initial 2D FDS has led to an extension,
called 3D FDS, allowing operations with body objects. An
experimental 3D Vector GIS (TREVIS) has been used to test

the model (see [2]). Despite the promising results, the study on
suitability of 3D FDS for urban areas is still not sufficient.
Developed software for visualisation is hardware-dependent,
with limited possibilities, and does not offer texturing (only
wire frame).

The next extension, achieved by including a tetrahedron as
a fourth describing element, results in the Tetrahedral Network
(TEN), which makes available new operations with volumes
(e.g. in geo-sciences and environmental management). A
package of programs for 3D raster conversion, creating 3D
Voronoi polyhedrons and Delaunay tetrahedrons and basic
query analysis have been developed and tested. Analysis of the
various models based on FDS yields a generalised concept for
an ndimensional data model named Simplicial Network Data
Model (SNDM). The implementation work on this data model
is done using an object-oriented approach. The developed
software, i.e. Integrated Simplicial Network Application
Package (ISNAP), allows 2D and 3D triangulation
(unconstrained and constrained), graphic display (orthogonal,
perspective and stereo views, wire frame, surface illumination,
etc.) of surface, query of point, line and face, derivation of
contour lines and derivation of a regular grid DTM. Further
investigations into the applicability of the model for more
complex 3D analysis (e.g. intersection, buffering) are
necessary. The software for visualisation of 3D data has to be
extended. 3D tools for interactive editing still have to be
developed.

The model is well studied in the spatial domain as well. In
[2] have completed a study on binary topological relations that
can be derived from 3D FDS. The suitability of 3D FDS and its
3D extensions has still not been sufficiently studied for 3D
visualisation and remote access. Despite some experiments
with urban models, the results obtained are only preliminary:
the models are mostly visualised in wire frame, no texture is
applied and no real-time navigation is intended. The GIS
models still deal only with spatial objects (with discernible and
indiscernible boundaries) and do not provide a framework for
the accommodation of non-spatial objects.

In [4] presents a framework for a 3D GIS, which maintains
different views per object, e.g. point objects can be displayed
by different symbols. The topology handled follows Molenaar's
approach with several extensions: each point knows its adjacent
lines, every face knows its bounding lines, and every line
knows its bounding faces. Thus the bidirectional links between

all the cells are stored. The model is intended for
implementation in object-oriented DBMS as the GUI is built
using OpenGL. The author warns about the large amount of
data produced as a result of the explicit storage of many
relationships.

In [5] presents an idea to incorporate Constructive Solid
Geometry (CSG) primitives in the topological model in order
to facilitate the data acquisition by CAD systems. The author
introduces six ATDs for topographic objects and four ATDs for
primitives and thematic classes. The CSG primitives are
decomposed into defined ATD classes before storage in the
database.

II. DESIGN

In this section, the definition of a new spatial model will be
given. It will be referred to as Geometric Domain Spatial
Model. According to the proposed definition of an object, the
geometry of each spatial object can be associated with four
abstractions of geometric objects, i.e. point, line, surface and
body. A point is a spatial object that does not have shape or
size but position is the space. A line is a type of a spatial object
that has length and position. A surface is an abstraction of
spatial object that has position and area. A body is a type of
spatial object that has a position and a volume. All the
Geometric Object (GO) are built of smaller, simpler elements,
i.e. constructive objects. The model consists of two
constructive objects (CnsO), i.e. node and face. The formal
definition of the spatial model establishes the rules according to
which an object can be composed, clarifies allowed
configurations and specifies the topological primitives (closure,
boundary, interior and exterior) needed for the later elaboration
on neighbourhood relations. Furthermore, we assume that all
the objects are embedded in Euclidean 3D-space, denoted by
IRn where 0 ≤ n ≤ 3 . The formalism employs fundamental
definitions, theorems and concepts of set theory (see [6] and
[7]) and linear algebra [1]. The basic category utilised in the
definitions is the one of indexed sets. The index gives a unique
identification of any spatial object, which facilitates many
stages of the implementation.

The data structure presented here is not complete
implementation of all the components of the object defined
above. We concentrate mainly on GA, GR and GB, assuming
that they represent the most important information to create
VRML documents and have crucial impact on the successful
communication between client and server (see Figure I).

We will as it was stated above, geometric description
(GDsc) is influenced by a number of factors: the purpose of
the application (e.g. environmental analysis or town planning),
the method for data collection, the rendering engine used for
visualization, etc. Boundary representations (B-reps) seem to
be the best suited description for urban modeling due to 1)the
prevalent attention to the surfaces of the objects, and 2) mostly
surface measurements to build geometry. On another hand
most of the rendering engines (VR browsers in our approach)
are based on Breps. Some recent developments in 3D
reconstruction of man-made objects draws the attention up to
the constructive solid geometry (CSG) structures, which in
practice is realizable in VRML. We consider, however, the

storage of real measurements a crucial requirement for our
data structure. Since it is more difficult to be realized in
Constructive Solid Geometry (CSG) structures, we concentrate
on B-reps description without dipper elaboration.

The CnsO in B-reps are points, lines (arcs) and faces,
which are used in different combinations in CAD and GIS
structures [2]. The model presented here is based on existence
of two of these CnsO, i.e. points named nodes and faces. This
is to say that a surface and body object will be described as a
set of faces, while line object will be a set of nodes and point

object will be the node containing the coordinates (see Figure
1 and 2).

The most significant spatial relationships for the VRML
document among geometric objects and their composing

objects, are the relationships object-face and face-node. The
query for creation of VRML documents starts always from the
object level and ends at the lowest constructive object level,
i.e. nodes. This requires an object-facenode traverse of the
data base, which is assured by storage of boundary
relationships, e.g. face is a list of nodes, body is a list of faces.

Figure 1. Implemented components: GDsc, GAtt, GB

Figure 2. Relational data structure

In order to simplify the composing rules to create
composite objects, we establish the following rules for
composition of objects in geometry domain:
geometric objects (GO(CnsO)): The major principle is
aggregation, i.e. the composite object is a child, containing all
the primitives of parent objects.
geometric attributes (GA): The rules are aggregation and
inheritance. If the composite object has its own geometric
attributes they are dominant, e.g. a surface, presented as a
composite object of a street, canal and parcel, can have a
geometric attribute texture covering the three parent objects.
behavior (GB): Maintenance of behavior of composite objects
is similar to the geometric attributes. In general, two distinct
cases are possible: 1)the child have an individual behavior,
which is dominant for the composite object and 2)the child
does not have behavior, i.e. the parent behavior can be
activated individually.

Bearing in mind the assumptions about composing rules,
the composite object can be expressed as a list of composing
objects.

The data are organized in a relational data model as each
component (GDsc, GAtt, GB) is represented by one relational
table (e.g. SURF_D, SURF_A, SURF_B) (see Figure 1 and 2).
Thus each GO (body, surface, line, point and composite

object) has three relational tales. The R-tree leaves and non-
leaves are organized in relational tables containing information
about MBB (minX, minY, minZ, maxX, maxY and maxZ
coordinates of a R-tree box) and the identifiers of the three
children leaves (non-leaves). The number of entries, i.e. three,
was chosen among experimented 2,3,4 and 5 entries per non-
leave. The aim was to achieve such groups of objects in the
height h-1,i.e. the first non-leave level which can be used to
create one LOD. This means that the MBB has to give an idea
about the shape of the three grouped objects. As an
experimented criterion for grouping was used: the minimal

oblique distance, the minimal horizontal distance, and the min-
max angle, between weight centers of the objects. The best
results were achieved with criterion min distance and min-max
angle between mass centers of the objects. An additional
column with the position in the r-tree was included in the
attribute tables of each GO and CO and CnsO in order to
facilitate the traversal of the FACE and NODE tables. Note,
the FACE and NODE table contain all the faces and nodes in
one 3D model.

The method for creating LOD for visualization is
expected to perform satisfactory results for buildings,
however, large surface objects will cause visualization
artifacts. Suppose the DTM is one object, its bounding box
will cover the entire model and in case of rough relief will
hide large parts of the model. Apparently either these LOD
should not be applied to such surfaces, or the surfaces should
be subdivided further into smaller parts.

III. PERFORMANCE

The last study examines the performance of GDSS. The
results contribute to the verification of the model and the
overall evaluation of the system architecture. GDSM was
proposed as an alternative to 3D FDS for our system
architecture. In this respect, the definition of GDSM and the
logical model GDSS are conceptually related to 3D FDS.
Therefore, the basic idea of the test is a proof of the improved
performance of GDSS with respect to 3D FDS. Single aspect of
the performance are investigated here, i.e. size of the database.
The performance test concerning size concentrates on the effect
of three major concepts in GDSS: 1) the elimination of arcs and
modified representation of some relationships, 2) the
maintenance of R-tree tables and fields for codes and 3) the
storage of geometric attributes and behaviour. While the
reduction in the database size due to arc removal can be
predicted, the effect of modified relationships and the storage
of additional data is difficult to evaluate. This test investigates
whether the modified geometric description of GDSS provides
a sufficient reduction to compensate for the size of the new
included data. If this is the case, the tests will be considered
successful, i.e. GDSS ensures more efficient data organisation
than 3D FDS.

A. Size performance

To evaluate the impact of R-tree tables on the data volume,
appropriate calculations of their size are provided separately
(see Table 1). The leaf table is only one and contains the
identifiers of the objects and minimum maximum co-ordinates
of the bounding per object (body, surface). Non-leaf tables
have non-constant numbers and depend on the height of the R-
tree, respectively on the number of object stored. The total
number of objects in the Enschede data set is 26, in Vienna
1600. Consequently, the height of the R-tree for Enschede data
is three and for Vienna data seven. A record in the non-leave
table contains the identifier of the current non-leave, three
identifiers of the sub-tree and the min-max co-ordinates of the
MBB. Since the number of records is different for each R-tree
table, the total number of the records in all the non-leave tables
is given. According to the position in the R-tree, geometric
objects and constructive elements receive a code, which is
recorded in an extra field in the _A tables (for objects), FACE

and NODE. Since they do not introduce new records, the total
number of records is given by the sum of R-tree tables (see
Table 1).

TABLE I. SIZE OF R-TREE TABLES AND CODES

 Enschede Vienna

 b/r
Num.
tab.

num.
Rec.

bytes
Num.
Tab.

num.
rec.

bytes

R-tree
leaves

26 1 26 26 1 1600 41600

R-tree
non-
leaves

32 3 13 416 7803 25696

Code
body_A

4 0 11 44 0 1600 6400

Code
surf_A

4 0 19 76 0 0 0

Code
face

4 0 4834 19336 0 92268 4E+05

Code
node

4 0 960 3840 0 30756 1E+05

Total * 4 39 23738 8 2403 6E+05

Finally, Table 2 summarises the size cost 3D FDS, the
content of GDSS equal to 3D FDS (denoted with GDSS-).
GDSS without R-tree tables (denoted by GDSS) and GDSS
including R-tree tables (GDSS+).

TABLE II. SIZE COMPARISON: GDSS VS. 3D FDS

GDSS in all three variants presented requires less disk
space than 3D FDS. A comparison of size between 3D FDS
and GDSS- reveals that 3D FDS is almost twice as large. The
volume of data for GDSS- is 42% and for 3D FDS 32%
respectively for Enschede and Vienna. The table NODE is the
same in both models, the two groups of tables BODYOBJ &
BODY_T and SURFOBJ & SURF_T are almost identical. The
number of surface and body objects is different but influence
on the volume of data is minor. Clearly, the biggest difference
comes from 1) the number of CnsO maintained (face in GDSS
versus arc, face and edge in 3DFDS), and 2) the manner of
representing the GO (surface and body) by CnsO, i.e. FACE,
BODY_G and SURF_G tables in GDSS, FACE and EDGE
tables in 3D FDS. In the following analysis, we will assume
that the size of GDSS- is approximately 35% of the size of 3D
FDS and we will evaluate the influence of the ARC table and
different geometric representation separately.

The ARC table occupies about 20% (Enschede) and 13%
(Vienna) of the total storage space of 3D FDS. The fewer ARC
records in the Vienna data set are caused by the lack of DTM.
The ratio node:arc:face, which is usually quite stable for TIN

(1:3:2), is 1:2.5:1.6 for Enschede and 1:0.8:0.6 for Vienna. This
is to say that the Enschede data set is an example of almost
completely triangulated surfaces. In contrast, the Vienna data
set contains only faces with four and more nodes. These figures
are an indication that the size of the ARC table can vary from
data set to data set but cannot decrease below 10-12% and
cannot increase above 20-25%. Hence, the average "cost" of
arc's existence is evaluated at about 18% of the total size of 3D
FDS.

The second factor that contributes to the improved
performance of GDSS is the different geometric representation
of body and surface. The table FACE (GDSS) is conceptually
similar to the table EDGE (3D FDS), i.e. both of them
represent the relationship between face and the next low
dimensional CnsO: arc (3D FDS) and node (GDSS). They
differ in the relational implementation: 10 bytes in GDSS
against 13 bytes in 3D FDS. This is an indication for the more
expensive face_arc than the face_node relation. Table FACE
(3D FDS), which represents the co-boundary relationships
face_body and face_surf, does not have an equivalent in GDSS.
BODY_G and SURF_G are the two new tables, which contain
the boundary relationships body_face and surf_face. In general,
the information that can be extracted from FACE and EDGE
table in 3D FDS is almost identical to the information of
BODY_G, SURF_G and FACE in GDSS. Consequently, we
should evaluate them together, i.e. the size of FACE+EDGE
versus FACE+BODY_G+SURF_G tables. Despite the slight
difference between EDGE (3DFDS) and FACE (GDSS), they
can be ignored to show the space needed for the relations
among face, surface and body only (see Table III).

TABLE III. FACE+EDGE (3D FDS) VS. FACE+BODY_G+SURF_G

(GDSS)

As can be seen, the explicit boundary (body-face,
surface_face) representation of these relations is much
"cheaper". The differences in the volumes of data obtained
from the two representations of surface, body and face, i.e. the
tables containing information about them, is denoted as
difference 1-2. The difference in representations of surface and
body is denoted as difference 3-4 (see Table II). Table III
shows the impact (in %) of the discussed volumes of data on
the size of 3D FDS.

 Enchede Vienna

Name
Byte/

record
Record
number byte

Record
number byte

FDS 161 9763 138522 168205 2401576

GDSS- 156 7365 79974 143202 1638956

GDSS 411 7445 81879 144802 1690156

GDSS+ * 7484 105617 147205 2255948

 Relational Table Scheme Enschede Vienna

 Byte Byte

1 FACE + EDGE FDS 3D 93502 1574044

2
FACE + BODY_G

 + SURF_G GDSS 63670 1108460

 Difference 1-2
FDS 3D-
GDSS 29832 465584

3 FACE FDS 3D 30660 371560

4
BODY_G +
SURF_G GDSS 15330 185780

 Difference 3-4
FDS 3D-
GDSS 15330 185780

TABLE IV. THE COST OF ARC TABLE AND THE GEOMETRIC

REPRESENTATION

 Enschede Vienna Enschede Vienna

 Byte Byte
% dari
FDS 3D

% dari
 FDS 3D

FDS 3D 138552 2401576 100% 100%

GDSS- 79974 1638956 57% 68%

ARC 28836 300036 21% 12%
Difference 1-2

(Table II) 29832 465584 21% 19%
Difference 3-4

(Table II) 15330 185780 11% 7%

It can clearly be seen that the sum of the data contained in
GDSS-, the ARC table and the difference in geometric
representations (i.e. difference 1-2) are approximately equal to
the size of data in 3D FDS. Thus, the tests and the analysis
have verified that geometric representation of the GDSS is
more efficient than 3D FDS. Moreover, the better performance
is due to reversal of geometric representations (from co-
boundary to boundary) and elimination of the ARC table.

TABLE V. THE COST OF GB, GA AND R-TREE TABLES

 Enschede Vienna Enschede Vienna

 byte byte
Enlargement
in% of GDSS-

Enlargement
in% of GDSS-

GDSS- 79974 1638956 100% 100%

GDSS 81879 1690156 2% 3%

GDSS+ 105617 2255948 32% 37%

The enlargement of GDSS with additional information
(behaviour, colours, and textures) and corresponding R-tree
tables and codes, still does not exceed the size of the 3D FDS
(Table I). GB and GA increase the size of database by only 2-
3% (see Table IV). It should not be forgotten that the size of
the images for texturing is not considered. Here, only the
parameters maintained in GDSS are considered. The disk space
occupied by GDSS+, i.e. GDSS including the R-tree and the
codes is about 30% larger than GDSS. This number includes
the size of the R-tree tables and the additional fields for the
codes in the tables for CnsO and GO. The impact of the R-tree
tables is minor, i.e. about 2% of the total size of GDSS+. The
enlargement is a result of the codes introduced. The main
contribution gives the FACE table. Since the type of relations
kept there is 1:m, further normalisation of the FACE table will
improve the performance. The test verified that the
supplementary information including the R-tree representation
lead to a size that is compatible (even smaller) with the size of
3D FDS.

B. Time performance

The tests are performed under the several assumptions and
simplification listed below:

• Since the key issue of our approach is visualisation of 3D
spatial analysis, the performance test related to time
focuses only on queries, which result in a VRML
document

• Even though the outcome of the query might be a CnsO,
the VRML document is to be created including the GO
(GOs), which contains this particular CnsO. In this respect,
the visualisation of spatial queries passes two compulsory
phases. First, the data needed to complete the user query is
specified and, second, the data to create the VRML
document is extracted. The objects included in the VRML
document may vary considerably depending on the
preferred manner for representation. Irrespective their
number and way of representation, all the objects require
the set of standard parameters for scene design structured
according to the VRML syntax orientation, texture, texture
co-ordinates, colour and a number of minor variable
parameters. We will refer to the query that extracts data for
a VRML creation as a visualisation query.

• The queries are simplified to extract only geometric
description (the colour is constant). Since the parameters
for visualisation might be organised in a similar way in 3D
FDS, the issue is not relevant for testing.

• The tests conducted here refer to visualisation queries as
the result of simple user queries. The first argument for
this restriction is the specifics of the visualisation queries,
i.e. they require traverse of all the tables concerning
geometric description. The second argument is that the
eventual bad performance of such queries will be an
indication of even worse performance of complex user
queries. The last argument refers to the variety of user
queries, which may be quite significant and require special
schema for investigations.

• The experiments are based on representative queries that
are embedded SQL statements. The geometric description
in VRML differs significantly from the geometric
description in both the conceptual models. This is to say
that an SQL query cannot extract the needed subset of data.
However, a particular subset of data extracted in a certain
sequence can be formulated in an SQL query and further
reorganised to match the VRML syntax. Thus, the
visualisation query in our system is composed of two
distinct steps: first, extraction of the data by an SQL
statement (the data are the ID of the faces of a particular
object (body or surface), the order of the nodes in a face
and co-ordinates of the nodes; second, further
reorganisation of the data by a host language (in our case
Perl, the language used to write CGI scripts)

• The visualisation queries are typical select operations and
the SQL operator SELECT is therefore used to extract the
needed data from the database. The SELECT SQL
operator may or may not include the two phases (i.e. user
and visualisation query) in one statement. For example, the
query "visualise the buildings inside certain area" can be
expressed by one SQL statement while the query "check
for duplicated points" cannot be completed with one SQL
statement

The time for completion of the query is tested first internally at
a database level and second externally at the client site. The
first experiments are pure database SQL queries executed on
the server inside the RDBMS. The time for data extraction is

provided automatically by the RDBMS at the completion of the
query. The time for creation, transmission and parsing of a
VRML document is registered manually. The time considered
is between the moment of starting CGI scripts and the complete
display of the result in VR browsers.

TABLE VI. ENCHEDE TEST SITE: INTERNAL AND EXTERMAL TEST

Objects
3D

FDS

GDSS
Internal

test

GDSS
External

test

Number
of

Vertices

Number
of faces

Number
of

database
records

One
building

14sec 0.2 sec 2 sec 16 10 48

One
surface

4sec
0.06
sec

2 sec 11 1 12

Composite
object

20sec 0.2 sec 2 sec 24 15 72

DTM 15min 30 sec 50 sec 703 1399 4197

Entire
model

- 40 sec 60 sec 842 1533 4293

TABLE VII. VIENNA TEST SITE: INTERNAL AND EXTERMAL TEST

Number
Buildings

3D
FDS

GDSS
Number
of
vertices

Number
of
Faces

Number of
Database
records

1 7 min 15 sec 22 13 66

2
13
min 30 sec 42 25 126

10
47
min 3 min 138 89 414

20 - 6 min 366 223 1098

50 - 13 min 1072 636 3216

200 - 27 min 4028 2414 12084

400 - 56 min 7930 4765 30938

600 - - 12046 7223 36138

1600 - - 30756 18578 92196

BID 818 40 sec 62 33 186

BID 773 50 sec 80 42 240

The results demonstrate faster traverse of GDSS tables
compared with 3D FDS tables. The better performance of
GDSS, however, is not sufficient for real work in a client-
server environment. The results obtained for the Enschede data
set (small data set) are satisfactory for small subsets and
disappointing for large ones (e.g. DTM needs 50 sec external
time). The traverse seconds increase drastically in the case of
large models (Vienna), e.g. 200 buildings (about several
neighbourhoods) already need 27 minutes internal time and 40
minutes external time. As mentioned before, the external time
is influenced by a broader spectrum of factors (server
occupation, Internet connection, host programming language),
the internal time is precisely the traversing time of the tables.

IV. THUS THE DATA NEEDED FOR VRML DOCUMENTS ARE

CONSTANT, I.E. CO-ORDINATES, FACES, CONCLUSIONS

Since the scope of the paper was restricted to the geometric
domain, the geometric characteristics of objects, i.e. attributes,
description, relationships and behaviour, were further
elaborated. This thesis advocated the hypothesis that a 3D
topological model can be adopted for visualisation and real-

time navigation. The presented review and comparison of three
3D topological models has revealed deficiencies concerning
either 3D modelling, or spatial analysis or 3D visualisation and
interaction. Therefore a Geometric Domain Spatial Model
(GDSM) to describe 3D geometry and represent spatial
relations was proposed. The model is similar in some concepts
to 3D FDS and differs mainly in the number of constructive
objects. The model maintains two constructive elements, i.e.
nodes and faces (arbitrary number of nodes, convex, planar,
oriented, without holes), which are used to build four geometric
objects, i.e. body, surface, line and point. Nodes constitute
faces, points and lines, faces constitute surfaces and bodies.
Since the model is not a complete subdivision of the space, two
relations, i.e. face-in-body and node-in-body, are explicitly
described. In order to prove the capability of GDSM to perform
3D spatial analysis, the ability of GDSM to distinguish binary
topological relations (according to the 9-intersection model)
between geometric objects was extensively analysed. Since the
possible relations between simple objects in 3D space were not
fully studied, negative conditions applicable for 1D, 2D and 3D
space were first derived and then the possible relations were
computed. An alternative approach to determine possible
relations as well as sketches of all the object configurations has
verified the obtained results. Sixty-nine topological relations
between two simple objects (regardless of the dimensions of
the object and the space) can be identified by the 9-intersection
model. Afterwards GDSM was estimated for its potential to
detect all the possible topological relations. The operations
needed to identify all the relations were formally described
using set theory notions.

REFERENCES

[1] H. Anton, “Elementary Linear Algebra with Applications,” 9th Edition,
John Wiley&Sons, Inc., New York, USA, 864 p, 2005

[2] C. Ellul, and M. Haklay, “Deriving a Generic Topological Data
Structure for 3D Data,” presented at Topology and Spatial Databases
Workshop, Glasgow, UK, May 5-6. , 2005

[3] J. Jin, N. An, and A. Sivasubramaniam, “Analyzing range queries on
spatial data,” In ICDE'00. Washington, DC, February 28 - March 3, 525-
534, 2000

[4] J.F. George, D. Batra, J.S. Valacich, J.A. Hoffer, “Object-Oriented
System Analysis and Design, Prentice Hall, 2004

[5] R. Reis, M. Egenhofer, and J. Matos, “Topological relations using two
models of uncertainty for lines,” 7th International Symposium on Spatial
Accuracy Assessment in Natural Resources and Environmental
Sciences, 286-295, 2006

[6] S. Lipschultz, “Theory and problems of set theory and related topics,”
Schaum Publishing Co., New York, 1998

[7] A.V. Arkhangel'skii, V.I. Ponomarev, “Fundamentals of General
Topology: Problems and Exercises,” Kluwer, 2001

[8] M. Molenaar, T. Cheng, “Fuzzy spatial objects and their dynamics,”
ISPRS Journal of Photogrammetry and Remote Sensing, Pages 164-175,
2000

[9] P. Wanning, P. Dragan, and C. Crawford, “Handling Large Terrain Data
in GIS,” XXth ISPRS Congress, Istanbul, Turkey, p. 281, 2004

[10] M. Zuliansyah, C. Machbub, S.H. Supangkat, dan Y. Priyana. “Linear
Approaches for using Geometric Primitives for Calibration and 3D
Modelling”, Proceedings International Conference on Instrumentation,
Communication and Information Technology, Bandung, p: 407-412,
2005

