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Abstract—Whilst thematic analysis and 2D spatial analysis 

are well studied, research on 3D spatial analysis is still at an 

intensive stage. Spatial relationships are the fundament of a large 

group of operations to be performed in Geographic Information 

System (GIS), e.g. inclusion, adjacency, equality, direction, 

intersection, connectivity, and their appropriate description and 

maintenance is inevitable. Similar to 2D variants, 3D GIS should 

be capable to perform metric (distance, length, area, volume, etc), 

logic  (intersection, union, difference), generalisation, buffering, 

network (shortest way) and merging operations. Except metric 

operations, most of them require knowledge about spatial 

relationships. The third dimension increases drastically the 

number and complexity of all possible spatial relationships, 

compared with 2D GIS. A formalism for the detection of spatial 

relationships based on set topology notions has already been 

proposed by several authors, however the description of 3D 

spatial relationships is not sufficiently studied. The design of a 

spatial query language or the extending of existing languages, 

updating procedures to ensure topology consistency of database, 

etc., these are tasks that need further development. In this paper, 

the definition of a new spatial model will be given. It will be 

referred to as Geometric Domain Spatial Model. According to the 

proposed definition of an object, the geometry of each spatial 

object can be associated with four abstractions of geometric 

objects, i.e. point, line, surface and body. 

Keywords—3D spatial analysis, 3D spatial, Geometric Domain 

Spatial Model 

I.  INTRODUCTION  

Research in the GIS community is trying to work out a 
conceptual model capable of integrating geometric (position, 
shape and size) and thematic characteristics of objects and 
mutual spatial relationships. These models can be considered 
an explicit description of cells (or objects). The concept of a 2D 
GIS introduced by [8,10] as "Formal Data Structure", and 
extended to comprise 3D information and texture in several 
successor models, follows an integrated approach for 
describing geometry, semantic and spatial relationships in one 
spatial model. The model has been extensively studied (see [9], 
[3]). The investigations into 2D and 3D spatial analysis 
promised results that have motivated the utilisation of 3D FDS 
as a starting point of this paper. A review of the 3D extensions 
and implementations of the model are listed below. A 
modification of the initial 2D FDS has led to an extension, 
called 3D FDS, allowing operations with body objects. An 
experimental 3D Vector GIS (TREVIS) has been used to test 

the model (see [2]). Despite the promising results, the study on 
suitability of 3D FDS for urban areas is still not sufficient. 
Developed software for visualisation is hardware-dependent, 
with limited possibilities, and does not offer texturing (only 
wire frame). 

The next extension, achieved by including a tetrahedron as 
a fourth describing element, results in the Tetrahedral Network 
(TEN), which makes available new operations with volumes 
(e.g. in geo-sciences and environmental management). A 
package of programs for 3D raster conversion, creating 3D 
Voronoi polyhedrons and Delaunay tetrahedrons and basic 
query analysis have been developed and tested. Analysis of the 
various models based on FDS yields a generalised concept for 
an ndimensional data model named Simplicial Network Data 
Model (SNDM). The implementation work on this data model 
is done using an object-oriented approach. The developed 
software, i.e. Integrated Simplicial Network Application 
Package (ISNAP), allows 2D and 3D triangulation 
(unconstrained and constrained), graphic display (orthogonal, 
perspective and stereo views, wire frame, surface illumination, 
etc.) of surface, query of point, line and face, derivation of 
contour lines and derivation of a regular grid DTM. Further 
investigations into the applicability of the model for more 
complex 3D analysis (e.g. intersection, buffering) are 
necessary. The software for visualisation of 3D data has to be 
extended. 3D tools for interactive editing still have to be 
developed. 

The model is well studied in the spatial domain as well. In 
[2] have completed a study on binary topological relations that 
can be derived from 3D FDS. The suitability of 3D FDS and its 
3D extensions has still not been sufficiently studied for 3D 
visualisation and remote access. Despite some experiments 
with urban models, the results obtained are only preliminary: 
the models are mostly visualised in wire frame, no texture is 
applied and no real-time navigation is intended. The GIS 
models still deal only with spatial objects (with discernible and 
indiscernible boundaries) and do not provide a framework for 
the accommodation of non-spatial objects. 

In [4] presents a framework for a 3D GIS, which maintains 
different views per object, e.g. point objects can be displayed 
by different symbols. The topology handled follows Molenaar's 
approach with several extensions: each point knows its adjacent 
lines, every face knows its bounding lines, and every line 
knows its bounding faces. Thus the bidirectional links between 



         

all the cells are stored. The model is intended for 
implementation in object-oriented DBMS as the GUI is built 
using OpenGL. The author warns about the large amount of 
data produced as a result of the explicit storage of many 
relationships. 

In [5] presents an idea to incorporate Constructive Solid 
Geometry (CSG) primitives in the topological model in order 
to facilitate the data acquisition by CAD systems. The author 
introduces six ATDs for topographic objects and four ATDs for 
primitives and thematic classes. The CSG primitives are 
decomposed into defined ATD classes before storage in the 
database.  

II. DESIGN 

In this section, the definition of a new spatial model will be 
given. It will be referred to as Geometric Domain Spatial 
Model. According to the proposed definition of an object, the 
geometry of each spatial object can be associated with four 
abstractions of geometric objects, i.e. point, line, surface and 
body. A point is a spatial object that does not have shape or 
size but position is the space. A line is a type of a spatial object 
that has length and position. A surface is an abstraction of 
spatial object that has position and area. A body is a type of 
spatial object that has a position and a volume. All the 
Geometric Object (GO) are built of smaller, simpler elements, 
i.e. constructive objects. The model consists of two 
constructive objects (CnsO), i.e. node and face. The formal 
definition of the spatial model establishes the rules according to 
which an object can be composed, clarifies allowed 
configurations and specifies the topological primitives (closure, 
boundary, interior and exterior) needed for the later elaboration 
on neighbourhood relations. Furthermore, we assume that all 
the objects are embedded in Euclidean 3D-space, denoted by 
IRn where 0 ≤ n ≤ 3 . The formalism employs fundamental 
definitions, theorems and concepts of set theory (see [6] and 
[7]) and linear algebra  [1]. The basic category utilised in the 
definitions is the one of indexed sets. The index gives a unique 
identification of any spatial object, which facilitates many 
stages of the implementation. 

The data structure presented here is not complete 
implementation of all the components of the object defined 
above. We concentrate mainly on GA, GR and GB, assuming 
that they represent the most important information to create 
VRML documents and have crucial impact on the successful 
communication between client and server (see Figure I). 

We will as it was stated above, geometric description 
(GDsc) is influenced by a number of factors: the purpose of 
the application (e.g. environmental analysis or town planning), 
the method for data collection, the rendering engine used for 
visualization, etc. Boundary representations (B-reps) seem to 
be the best suited description for urban modeling due to 1)the 
prevalent attention to the surfaces of the objects, and 2) mostly 
surface measurements to build geometry. On another hand 
most of the rendering engines (VR browsers in our approach) 
are based on Breps. Some recent developments in 3D 
reconstruction of man-made objects draws the attention up to 
the constructive solid geometry (CSG) structures, which in 
practice is realizable in VRML. We consider, however, the 

storage of real measurements a crucial requirement for our 
data structure. Since it is more difficult to be realized in 
Constructive Solid Geometry (CSG) structures, we concentrate 
on B-reps description without dipper elaboration. 

The CnsO in B-reps are points, lines (arcs) and faces, 
which are used in different combinations in CAD and GIS 
structures [2]. The model presented here is based on existence 
of two of these CnsO, i.e. points named nodes and faces. This 
is to say that a surface and body object will be described as a 
set of faces, while line object will be a set of nodes and point 

object will be the node containing the coordinates (see Figure 
1 and 2). 

The most significant spatial relationships for the VRML 
document among geometric objects and their composing 

objects, are the relationships object-face and face-node. The 
query for creation of VRML documents starts always from the 
object level and ends at the lowest constructive object level, 
i.e. nodes. This requires an object-facenode traverse of the 
data base, which is assured by storage of boundary 
relationships, e.g. face is a list of nodes, body is a list of faces. 

 

 
Figure 1.  Implemented components: GDsc, GAtt, GB 

 



         

 
Figure 2.  Relational data structure 

In order to simplify the composing rules to create 
composite objects, we establish the following rules for 
composition of objects in geometry domain: 
geometric objects (GO(CnsO)): The major principle is 
aggregation, i.e. the composite object is a child, containing all 
the primitives of parent objects. 
geometric attributes (GA): The rules are aggregation and 
inheritance. If the composite object has its own geometric 
attributes they are dominant, e.g. a surface, presented as a 
composite object of a street, canal and parcel, can have a 
geometric attribute texture covering the three parent objects. 
behavior (GB): Maintenance of behavior of composite objects 
is similar to the geometric attributes. In general, two distinct 
cases are possible: 1)the child have an individual behavior, 
which is dominant for the composite object and 2)the child 
does not have behavior, i.e. the parent behavior can be 
activated individually.  

Bearing in mind the assumptions about composing rules, 
the composite object can be expressed as a list of composing 
objects. 

The data are organized in a relational data model as each 
component (GDsc, GAtt, GB) is represented by one relational 
table (e.g. SURF_D, SURF_A, SURF_B) (see Figure 1 and 2). 
Thus each GO (body, surface, line, point and composite 

object) has three relational tales. The R-tree leaves and non-
leaves are organized in relational tables containing information 
about MBB (minX, minY, minZ, maxX, maxY and maxZ 
coordinates of a R-tree box ) and the identifiers of the three 
children leaves (non-leaves). The number of entries, i.e. three, 
was chosen among experimented 2,3,4 and 5 entries per non-
leave. The aim was to achieve such groups of objects in the 
height h-1,i.e. the first non-leave level which can be used to 
create one LOD. This means that the MBB has to give an idea 
about the shape of the three grouped objects. As an 
experimented criterion for grouping was used: the minimal 

oblique distance, the minimal horizontal distance, and the min-
max angle, between weight centers of the objects. The best 
results were achieved with criterion min distance and min-max 
angle between mass centers of the objects. An additional 
column with the position in the r-tree was included in the 
attribute tables of each GO and CO and CnsO in order to 
facilitate the traversal of the FACE and NODE tables. Note, 
the FACE and NODE table contain all the faces and nodes in 
one 3D model. 

The method for creating LOD for visualization is 
expected to perform satisfactory results for buildings, 
however, large surface objects will cause visualization 
artifacts. Suppose the DTM is one object, its bounding box 
will cover the entire model and in case of rough relief will 
hide large parts of the model. Apparently either these LOD 
should not be applied to such surfaces, or the surfaces should 
be subdivided further into smaller parts. 

III. PERFORMANCE 

The last study examines the performance of GDSS. The 
results contribute to the verification of the model and the 
overall evaluation of the system architecture. GDSM was 
proposed as an alternative to 3D FDS for our system 
architecture. In this respect, the definition of GDSM and the 
logical model GDSS are conceptually related to 3D FDS. 
Therefore, the basic idea of the test is a proof of the improved 
performance of GDSS with respect to 3D FDS. Single aspect of 
the performance are investigated here, i.e. size of the database. 
The performance test concerning size concentrates on the effect 
of three major concepts in GDSS: 1) the elimination of arcs and 
modified representation of some relationships, 2) the 
maintenance of R-tree tables and fields for codes and 3) the 
storage of geometric attributes and behaviour. While the 
reduction in the database size due to arc removal can be 
predicted, the effect of modified relationships and the storage 
of additional data is difficult to evaluate. This test investigates 
whether the modified geometric description of GDSS provides 
a sufficient reduction to compensate for the size of the new 
included data. If this is the case, the tests will be considered 
successful, i.e. GDSS ensures more efficient data organisation 
than 3D FDS. 

A. Size performance 

To evaluate the impact of R-tree tables on the data volume, 
appropriate calculations of their size are provided separately 
(see Table 1). The leaf table is only one and contains the 
identifiers of the objects and minimum maximum co-ordinates 
of the bounding per object (body, surface). Non-leaf tables 
have non-constant numbers and depend on the height of the R-
tree, respectively on the number of object stored. The total 
number of objects in the Enschede data set is 26, in Vienna 
1600. Consequently, the height of the R-tree for Enschede data 
is three and for Vienna data seven. A record in the non-leave 
table contains the identifier of the current non-leave, three 
identifiers of the sub-tree and the min-max co-ordinates of the 
MBB. Since the number of records is different for each R-tree 
table, the total number of the records in all the non-leave tables 
is given. According to the position in the R-tree, geometric 
objects and constructive elements receive a code, which is 
recorded in an extra field in the _A tables (for objects), FACE 

 



         

and NODE. Since they do not introduce new records, the total 
number of records is given by the sum of R-tree tables (see 
Table 1). 

TABLE I.  SIZE OF R-TREE TABLES AND CODES 

  Enschede Vienna 

  b/r 
Num. 
tab. 

num. 
Rec. 

bytes 
Num. 
Tab. 

num. 
rec. 

bytes 

R-tree 
leaves 

26 1 26 26 1 1600 41600 

R-tree 
non-
leaves 

32 3 13 416 7803 25696   

Code 
body_A 

4 0 11 44 0 1600 6400 

Code 
surf_A  

4 0 19 76 0 0 0 

Code 
face 

4 0 4834 19336 0 92268 4E+05 

Code 
node 

4 0 960 3840 0 30756 1E+05 

Total * 4 39 23738 8 2403 6E+05 

 

Finally, Table 2 summarises the size cost 3D FDS, the 
content of GDSS equal to 3D FDS (denoted with GDSS-). 
GDSS without R-tree tables (denoted by GDSS) and GDSS 
including R-tree tables (GDSS+). 

TABLE II.  SIZE COMPARISON: GDSS VS. 3D FDS 

 

GDSS in all three variants presented requires less disk 
space than 3D FDS. A comparison of size between 3D FDS 
and GDSS- reveals that 3D FDS is almost twice as large. The 
volume of data for GDSS- is 42% and for 3D FDS 32% 
respectively for Enschede and Vienna. The table NODE is the 
same in both models, the two groups of tables BODYOBJ & 
BODY_T and SURFOBJ & SURF_T are almost identical. The 
number of surface and body objects is different but influence 
on the volume of data is minor. Clearly, the biggest  difference 
comes from 1) the number of CnsO maintained (face in GDSS 
versus arc, face and edge in 3DFDS), and 2) the manner of 
representing the GO (surface and body) by CnsO, i.e. FACE, 
BODY_G and SURF_G tables in GDSS, FACE and EDGE 
tables in 3D FDS. In the following analysis, we will assume 
that the size of GDSS- is approximately 35% of the size of 3D 
FDS and we will evaluate the influence of the ARC table and 
different geometric representation separately. 

The ARC table occupies about 20% (Enschede) and 13% 
(Vienna) of the total storage space of 3D FDS. The fewer ARC 
records in the Vienna data set are caused by the lack of DTM. 
The ratio node:arc:face, which is usually quite stable for TIN 

(1:3:2), is 1:2.5:1.6 for Enschede and 1:0.8:0.6 for Vienna. This 
is to say that the Enschede data set is an example of almost 
completely triangulated surfaces. In contrast, the Vienna data 
set contains only faces with four and more nodes. These figures 
are an indication that the size of the ARC table can vary from 
data set to data set but cannot decrease below 10-12% and 
cannot increase above 20-25%. Hence, the average "cost" of 
arc's existence is evaluated at about 18% of the total size of 3D 
FDS. 

The second factor that contributes to the improved 
performance of GDSS is the different geometric representation 
of body and surface. The table FACE (GDSS) is conceptually 
similar to the table EDGE (3D FDS), i.e. both of them 
represent the relationship between face and the next low 
dimensional CnsO: arc (3D FDS) and node (GDSS). They 
differ in the relational implementation: 10 bytes in GDSS 
against 13 bytes in 3D FDS. This is an indication for the more 
expensive face_arc than the face_node relation. Table FACE 
(3D FDS), which represents the co-boundary relationships 
face_body and face_surf, does not have an equivalent in GDSS. 
BODY_G and SURF_G are the two new tables, which contain 
the boundary relationships body_face and surf_face. In general, 
the information that can be extracted from FACE and EDGE 
table in 3D FDS is almost identical to the information of 
BODY_G, SURF_G and FACE in GDSS. Consequently, we 
should evaluate them together, i.e. the size of FACE+EDGE 
versus FACE+BODY_G+SURF_G tables. Despite the slight 
difference between EDGE (3DFDS) and FACE (GDSS), they 
can be ignored to show the space needed for the relations 
among face, surface and body only (see Table III).  

TABLE III.  FACE+EDGE (3D FDS) VS. FACE+BODY_G+SURF_G 

(GDSS)

 

As can be seen, the explicit boundary (body-face, 
surface_face) representation of these relations is much 
"cheaper". The differences in the volumes of data obtained 
from the two representations of surface, body and face, i.e. the 
tables containing information about them, is denoted as 
difference 1-2. The difference in representations of surface and 
body is denoted as difference 3-4 (see Table II). Table III 
shows the impact (in %) of the discussed volumes of data on 
the size of 3D FDS. 

 

 

 

  Enchede Vienna 

Name 
Byte/ 

record 
Record  
number byte 

Record  
number byte 

FDS 161 9763 138522 168205 2401576 

GDSS- 156 7365 79974 143202 1638956 

GDSS 411 7445 81879 144802 1690156 

GDSS+ * 7484 105617 147205 2255948 

 

  Relational Table Scheme Enschede Vienna 

   Byte Byte 

1 FACE + EDGE FDS 3D 93502 1574044 

2 
FACE + BODY_G 

 + SURF_G GDSS 63670 1108460 

 Difference 1-2 
FDS 3D-
GDSS 29832 465584 

3 FACE  FDS 3D 30660 371560 

4 
BODY_G + 
SURF_G GDSS 15330 185780 

  Difference 3-4 
FDS 3D-
GDSS 15330 185780 



         

TABLE IV.  THE COST OF ARC TABLE AND THE GEOMETRIC 

REPRESENTATION 

  Enschede Vienna Enschede Vienna 

  Byte Byte 
% dari 
FDS 3D 

% dari 
 FDS 3D 

FDS 3D 138552 2401576 100% 100% 

GDSS- 79974 1638956 57% 68% 

ARC 28836 300036 21% 12% 
Difference 1-2  

(Table II) 29832 465584 21% 19% 
Difference 3-4 

(Table II) 15330 185780 11% 7% 

 

It can clearly be seen that the sum of the data contained in 
GDSS-, the ARC table and the difference in geometric 
representations (i.e. difference 1-2) are approximately equal to 
the size of data in 3D FDS. Thus, the tests and the analysis 
have verified that geometric representation of the GDSS is 
more efficient than 3D FDS. Moreover, the better performance 
is due to reversal of geometric representations (from co-
boundary to boundary) and elimination of the ARC table. 

TABLE V.  THE COST OF GB, GA AND R-TREE TABLES 

  Enschede Vienna Enschede Vienna 

  byte byte 
Enlargement 
in% of GDSS- 

Enlargement 
in% of GDSS- 

GDSS- 79974 1638956 100% 100% 

GDSS 81879 1690156 2% 3% 

GDSS+ 105617 2255948 32% 37% 

 

The enlargement of GDSS with additional information 
(behaviour, colours, and textures) and corresponding R-tree 
tables and codes, still does not exceed the size of the 3D FDS 
(Table I). GB and GA increase the size of database by only 2-
3% (see Table IV). It should not be forgotten that the size of 
the images for texturing is not considered. Here, only the 
parameters maintained in GDSS are considered. The disk space 
occupied by GDSS+, i.e. GDSS including the R-tree and the 
codes is about 30% larger than GDSS. This number includes 
the size of the R-tree tables and the additional fields for the 
codes in the tables for CnsO and GO. The impact of the R-tree 
tables is minor, i.e. about 2% of the total size of GDSS+. The 
enlargement is a result of the codes introduced. The main 
contribution gives the FACE table. Since the type of relations 
kept there is 1:m, further normalisation of the FACE table will 
improve the performance. The test verified that the 
supplementary information including the R-tree representation 
lead to a size that is compatible (even smaller) with the size of 
3D FDS. 

B. Time performance 

The tests are performed under the several assumptions and 
simplification listed below: 

• Since the key issue of our approach is visualisation of 3D 
spatial analysis, the performance test related to time 
focuses only on queries, which result in a VRML 
document 

• Even though the outcome of the query might be a CnsO, 
the VRML document is to be created including the GO 
(GOs), which contains this particular CnsO. In this respect, 
the visualisation of spatial queries passes two compulsory 
phases. First, the data needed to complete the user query is 
specified and, second, the data to create the VRML 
document is extracted. The objects included in the VRML 
document may vary considerably depending on the 
preferred manner for representation. Irrespective their 
number and way of representation, all the objects require 
the set of standard parameters for scene design structured 
according to the VRML syntax orientation, texture, texture 
co-ordinates, colour and a number of minor variable 
parameters. We will refer to the query that extracts data for 
a VRML creation as a visualisation query. 

• The queries are simplified to extract only geometric 
description (the colour is constant). Since the parameters 
for visualisation might be organised in a similar way in 3D 
FDS, the issue is not relevant for testing. 

• The tests conducted here refer to visualisation queries as 
the result of simple user queries. The first argument for 
this restriction is the specifics of the visualisation queries, 
i.e. they require traverse of all the tables concerning 
geometric description. The second argument is that the 
eventual bad performance of such queries will be an 
indication of even worse performance of complex user 
queries. The last argument refers to the variety of user 
queries, which may be quite significant and require special 
schema for investigations. 

• The experiments are based on representative queries that 
are embedded SQL statements. The geometric description 
in VRML differs significantly from the geometric 
description in both the conceptual models. This is to say 
that an SQL query cannot extract the needed subset of data. 
However, a particular subset of data extracted in a certain 
sequence can be formulated in an SQL query and further 
reorganised to match the VRML syntax. Thus, the 
visualisation query in our system is composed of two 
distinct steps: first, extraction of the data by an SQL 
statement (the data are the ID of the faces of a particular 
object (body or surface), the order of the nodes in a face 
and co-ordinates of the nodes; second, further 
reorganisation of the data by a host language (in our case 
Perl, the language used to write CGI scripts) 

• The visualisation queries are typical select operations and 
the SQL operator SELECT is therefore used to extract the 
needed data from the database. The SELECT SQL 
operator may or may not include the two phases (i.e. user 
and visualisation query) in one statement. For example, the 
query "visualise the buildings inside certain area" can be 
expressed by one SQL statement while the query "check 
for duplicated points" cannot be completed with one SQL 
statement 

The time for completion of the query is tested first internally at 
a database level and second externally at the client site. The 
first experiments are pure database SQL queries executed on 
the server inside the RDBMS. The time for data extraction is 



         

provided automatically by the RDBMS at the completion of the 
query. The time for creation, transmission and parsing of a 
VRML document is registered manually. The time considered 
is between the moment of starting CGI scripts and the complete 
display of the result in VR browsers. 

TABLE VI.  ENCHEDE TEST SITE: INTERNAL AND EXTERMAL TEST 

Objects 
3D 

FDS 

GDSS 
Internal 

test 

GDSS 
External 

test 

Number 
of 

Vertices 

Number 
of faces 

Number 
of 

database 
records 

One 
building 

14sec 0.2 sec 2 sec 16 10 48 

One 
surface 

4sec 
0.06 
sec 

2 sec 11 1 12 

Composite 
object 

20sec 0.2 sec 2 sec 24 15 72 

DTM  15min 30 sec 50 sec 703 1399 4197 

Entire 
model 

- 40 sec 60 sec 842 1533 4293 

TABLE VII.  VIENNA  TEST SITE: INTERNAL AND EXTERMAL TEST 

Number 
Buildings 

3D 
FDS 

GDSS 
Number 
of 
vertices 

Number 
of 
Faces 

Number of 
Database 
records 

1 7 min 15 sec 22 13 66 

2 
13 
min 30 sec 42 25 126 

10 
47 
min 3 min 138 89 414 

20 - 6 min 366 223 1098 

50 - 13 min 1072 636 3216 

200 - 27 min  4028 2414 12084 

400 - 56 min 7930 4765 30938 

600 - - 12046 7223 36138 

1600 - - 30756 18578 92196 

BID 818   40 sec 62 33 186 

BID 773   50 sec 80 42 240 

 

The results demonstrate faster traverse of GDSS tables 
compared with 3D FDS tables. The better performance of 
GDSS, however, is not sufficient for real work in a client-
server environment. The results obtained for the Enschede data 
set (small data set) are satisfactory for small subsets and 
disappointing for large ones (e.g. DTM needs 50 sec external 
time). The traverse seconds increase drastically in the case of 
large models (Vienna), e.g. 200 buildings (about several 
neighbourhoods) already need 27 minutes internal time and 40 
minutes external time. As mentioned before, the external time 
is influenced by a broader spectrum of factors (server 
occupation, Internet connection, host programming language), 
the internal time is precisely the traversing time of the tables. 

IV. THUS THE DATA NEEDED FOR VRML DOCUMENTS ARE 

CONSTANT, I.E. CO-ORDINATES, FACES, CONCLUSIONS 

Since the scope of the paper was restricted to the geometric 
domain, the geometric characteristics of objects, i.e. attributes, 
description, relationships and behaviour, were further 
elaborated. This thesis advocated the hypothesis that a 3D 
topological model can be adopted for visualisation and real-

time navigation. The presented review and comparison of three 
3D topological models has revealed deficiencies concerning 
either 3D modelling, or spatial analysis or 3D visualisation and 
interaction. Therefore a Geometric Domain Spatial Model 
(GDSM) to describe 3D geometry and represent spatial 
relations was proposed. The model is similar in some concepts 
to 3D FDS and differs mainly in the number of constructive 
objects. The model maintains two constructive elements, i.e. 
nodes and faces (arbitrary number of nodes, convex, planar, 
oriented, without holes), which are used to build four geometric 
objects, i.e. body, surface, line and point. Nodes constitute 
faces, points and lines, faces constitute surfaces and bodies. 
Since the model is not a complete subdivision of the space, two 
relations, i.e. face-in-body and node-in-body, are explicitly 
described. In order to prove the capability of GDSM to perform 
3D spatial analysis, the ability of GDSM to distinguish binary 
topological relations (according to the 9-intersection model) 
between geometric objects was extensively analysed. Since the 
possible relations between simple objects in 3D space were not 
fully studied, negative conditions applicable for 1D, 2D and 3D 
space were first derived and then the possible relations were 
computed. An alternative approach to determine possible 
relations as well as sketches of all the object configurations has 
verified the obtained results. Sixty-nine topological relations 
between two simple objects (regardless of the dimensions of 
the object and the space) can be identified by the 9-intersection 
model. Afterwards GDSM was estimated for its potential to 
detect all the possible topological relations. The operations 
needed to identify all the relations were formally described 
using set theory notions. 
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