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Abstract—A visual servoing method using a more precise 
model is presented in this paper. It uses a secant to approximate 
the second order term in the Hessian of the Newton model. This is 
different from the popular so-called quasi-Newton uncalibrated 
visual servoing method, which neglects the second order term 
directly. Its performance is superior to the so-called quasi-
Newton uncalibrated visual servoing method, especially in large 
residual cases. To guarantee the global convergence of this 
method, a trust region method is used. Besides, a recursive least 
squares algorithm is employed to estimate the coupled image 
Jacobian, so it is not necessary to know the parameters of the 
camera and the robot. More than that, an approach to improving 
the control precision of the end-effector in the workspace is also 
proposed. In the end, a three-degree-of-freedom robot with two 
fixed cameras system is simulated to validate the method. The 
simulation results demonstrate the effectiveness of the method. 

Keywords—uncalibrated visual servoing, large residual, 
jacobian estimation, robot. 

I. INTRODUCTION 
Most of visual servoing methods in previous works need to 

calibrate the camera and the robot. A set of calibration 
movements have to be made for the calibration and it is needed 
to recalibrate frequently. However, these movements are not 
necessary for our task, sometimes, even interfering with our 
task. Moreover, in many circumstances, it is very difficult to 
calibrate them exactly or unable to calibrate them at all. 

Hosoda et al. [1] proposed an uncalibrated visual servoing 
method in which least squares algorithm with exponential data 
weighting was used to estimate the coupled image Jacobian. 
Jagersand [2] developed a static quasi-Newton uncalibrated 
visual servoing method. In this method, Broyden’s method is 
used to estimate the coupled image Jacobian, and a trust region 
method is employed to adjust the step length so that each step 
is maximal while maintaining convergence. The uncalibrated 
visual servoing methods mentioned above are just fit for 
stationary targets. Piepmeier et al. [3][4] proposed a dynamic 
qusi-Newton uncalibrated visual servoing method. It is fit for 
both moving targets and stationary targets. Besides, researchers 
proposed many other methods. For example, Jiang et al. [5] put 
forward an indirect iterative learning control method for a 
discrete visual servo without a camera-robot model. Liu et al. 
[6] proposed an uncalibrated visual servoing method using a 
depth-independent interaction matrix. Among all of these 
methods, the quasi-Newton uncalibrated visual servoing 

method is quite popular. However, the so-called quasi-Newton 
uncalibrated visual servoing method, exactly, is a Gauss-
Newton method. It drops the second order term directly. In zero 
residual, small residual or the low degree of nonlinearity cases, 
it is quadratic or nearly quadratic convergent; But in large 
residual or high degree of nonlinearity cases, the method 
sometimes can’t converge or converges very slowly. 
Additionally, Gauss-Newton method needs that the Jacobian 
matrix is full rank, otherwise the method makes no sense. In 
fact, the singularity of Jacobian matrix occurs frequently. 
Besides, Gauss-Newton method is not globally convergent. 

For the shortcomings of Gauss-Newton method, Miura et 
al. [7] put forward an uncalibrated visual servoing method 
using modified simplex optimization. It is globally convergent. 
However, the estimation of Jacobian is not accurate because of 
the large motions of the robot between the vertices of the 
simplex, which may lead to low precision of the robot control. 
Kim et al. [8] proposed an uncalibrated visual serving method 
for large residual problems. It uses a secant to approximate the 
second order term rather than dropping it directly. However, 
the method to compute the second order term destroys much 
information. This may lead to instability of the method. 

A new uncalibrated visual servoing method for large 
residual problems is developed in this paper. It also uses a 
secant to approximate the second order term, but the method to 
compute the second order term is different from Kim’s, it 
destroys the least information, so it is much more stable. 
Besides, a trust region method, which guarantees the global 
convergence of this method, is used. More than that, a method 
to improve the control precision in the workspace is proposed. 
This is much different from previous works, for they are 
mainly concerned with the control precision in the image plane. 
In practice, the control precision in the workspace is our real 
concern. In the end, a three-degree-of-freedom robot is 
simulated to validate the control algorithm. 

II.  UNCALIBRATED VISUAL SERVOING USING GAUSS-
NEWTON METHOD 

Let θ  be the current joint angles, *θ  be the desired joint 
angles, where nR∈θ , * nR∈θ , n is the number of degrees 
of freedom of the robot; Current feature vector and desired 
feature vector in the image plane are denoted by  y  and *y , 



         

respectively, where mR∈y , * mR∈y , m is the number of 
features. When the end-effector changes from current pose to 
desired pose, the joint angles changes from θ  to *θ  and the 
feature vector changes from y  to *y . The error in the image 

plane is *= −y yf . Constructing a least squares objective 
function 
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Then, the control problem of driving the joints from θ  to *θ  
is transformed into solving the least squares problem. 

Let J be the Jacobian of f . Then, the gradient of Φ  is 

 T=g J f  (2)                                        

and the Hessian of  Φ is 

 SJJG += T  (3) 
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The Taylor series expansion about θ  is 
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Dropping the higher order terms we get the quadratic model 
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Substituting (2) and (3) into (5), yield 
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The Newton’s method to minimize kq  is 
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kS  is very difficult to compute. So, it is often dropped. Then, 
the method becomes the Gauss-Newton method 
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The method proposed by Jagersand [2] is of this kind. 
Piepmeier et al.’s method [3][4] also belongs to this kind, the 
difference is that it adds a time varying term to (8) so that it is 
fit for moving targets.  

III. NEW UNCALIBRATED VISUAL SERVOING METHOD 
As stated in section I, there are many shortcomings of 

Gauss-Newton method for it drops the second order term 
directly. In this section, a new uncalibrated visual servoing 
method which doesn’t drop the second order term directly but 
uses a secant to approximate it is presented. The approach to 
approximating the second order term is following that in the 
algorithm nl2sol [9], which is a very successful algorithm for 
solving nonlinear least squares problems. 

A. The approximation of the second order term 

It is to approximateS , which is a symmetrical matrix. So, 
to approximate it better, the approximation also should be a 
symmetric. Besides, new information 1kf + and 1k +J should be 

incorporated into 1k +S . A secant approximation is used here, 
that is letting the second-order approximant to transform the 
current change of θ  into the observed first-order change. 
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where 1k k k+∆ = −θ θ θ . Let 1 1 1
T T

k k k k kJ f J f+ + += −z . Then, 

1k +S should satisfy 

 1k k k+ ∆ =S θ z  (10) 

There are many symmetrical matrix 1k +S  satisfy (10). Here, 

we choose the one that is nearest to kS because it destroys the 

least information stored in kS  . Following the approach of 
nl2sol, obtain  
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where 1 1
T T

k k k k kJ f J f+ += ∆ = −v g . 

B. Trust region method 
The method using a quadratic model q  to approximate the 

nonlinear function Φ  is just locally convergent. In order to 
obtain global convergence, we use a trust region method [10]. 
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By solving (12), obtain the control law 

 2 1
1 ( )T T

k k k k k k kJ J S D J fθ θ α −
+ = − + +  (13) 

where α is the Levenberg-Marquardt parameter and D is the 
diagonal scaling matrix. They are updated by More’s approach 
[11]. 

If the quadratic model kq can approximate the nonlinear 
function Φ very well, we increase the trust region, otherwise 
we decrease it. The trust region radius kh  is adjusted 
according to the ratio between the actual reduction of the 
function and the predicted reduction of it. The closer the ratio 
is to unity, the better kq  approximates Φ . The actual 
reduction of the function is 

 1k k +∆Φ = Φ − Φ  (14) 

and the predicted reduction of the function is 

 k kq q∆ = Φ −  (15) 

Then, the ratio between the actual reduction and the predicted 
reduction is 

 r
q

∆Φ=
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 (16) 

The strategy to update the trust region radius is as follows 
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C. The new uncalibrated visual servoing algorithm 

The new uncalibrated visual servoing algorithm is as follows: 

Step1. Set k=0. Given the initial image Jacobian 0

∧
J , the 

initial feature vector 0y , the desired feature vector *y  

and the initial second order term 0 0=S . 

Step2.  Compute the approximation of the Hessian by (3). 

Step3.  Compute the joint angles by (13). 

Step4. Update the image Jacobian as (19) and (20) in section 
IV.  

Step5. Calculate the ratio between actual reduction of the 
function and the predicted reduction by (14), (15), (16) 
and update the trust region radius by (17). 

Step6.  Update S  by (11). k = k+1, return to step2. 

The algorithm is based on trust region method [10], More’s 
approach [11] and nl2sol method [9]. It is convergent and the 
analysis of the convergence can be seen in these works. 

IV. JACOBIAN ESTIMATION 

In uncalibrated visual servoing, the Jacobian is unknown. 
Some researchers have proposed methods to approximate the 
image Jacobian by executing a set of calibration movements. 
However, the visual serving model is high degree of nonlinear. 
So, it is needed to make these calibration movements 
frequently. However, these movements are not necessary for 
our task, sometimes, even interfering with our task. Jagersand 
has proposed a Broyden’s method for Jacobian estimation. 
However, when noise occurs in the system, the control method 
may be unstable in that it just uses the information in the latest 
step. Exponentially weighted recursive least squares (RLS) 
algorithm uses information of more steps. It is much more 
stable. Piepmeier et al. [3][4] have proposed a Jacobian 
estimation method using RLS algorithm. We use this method 
to estimate the coupled image Jacobian. The method is to 
construct a cost objective function 
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which is an exponentially weighted sum of the differences 
between the current quadratic model and past quadratic 
models, then, minimizing it. By doing this, we can get the 
approach to updating the Jacobian as follows: 
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where  λ  is the forgetting factor, 0 1λ< ≤ .  

V. METHOD TO IMPROVE THE PRECISION OF CONTROL 

In uncalibrated visual servoing, many researchers are 
mainly concerned with the error in image plane. However, in 
some cases, the error of end-effector can be very large even if 
the error in image plane is zero or near zero, as it is shown in 
Fig. 1. 

It is natural to think of arranging the cameras in parallel. 
However, cameras arranged in parallel or near in parallel are 
insensitive to the depth information. We propose a method to 
arrange the two cameras, arranging them vertically. For the 
convenience of analysis, assuming that the target is moving in 
the plane that the x coordinate is the same. As shown in Fig. 2, 
the target is moving the same distance L along the direction 
vertical and  parallel to the optical axis from the initial position 

0P  to 1P  and 2P , respectively. 0u , 1u and 2u  are the 
corresponding positions in the image plane. From the 

geometry relation, we can get 0 0
0

fu Y
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( )fu Y L
Z
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, where f  is the focus length. Then 
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When 0 0Y Z L<< − , 2 0 1 0| | | |u u u u− << − . That is to say 
the camera is much sensitive to the movement vertical to the 
optical axis but less sensitive to the movement parallel to the 
optical axis in this situation. When two cameras arranged on 
parallel, both of them may be insensitive to the movement that 
parallel to the optical axis. However, when two cameras 
arranged vertically, the movement is parallel to the optical axis 
of one camera but vertical to the other. In this situation, one 
camera is insensitive the movement, but the other one is 
sensitive to it. The control precision in the workspace can be 
improved remarkably by this method when the target can be 
recognized on the two directions vertical to each other.   

 

 

VI.  SIMULATION RESULTS 

Fig. 3 shows a three degree-of-freedom system that has been 
simulated to validate the new uncalibrated visual servoing 
controller and RLS algorithm as given in section III part C. 
The length of three links of the robot are L1=0.3 m, L2=0.4 m, 
L3=0.4 m. The vision of the robot is composed of two cameras. 
The focus length of the two camera are both 0.01 m. The 
image plane size is 640pixels×480pixels. Zero-mean noise 

1± pixel is added to the observed image. When the two 
cameras arranged nearly in parallel, translation and rotation of 
the two camera frames with respect to the robot base frame are 
set as follows: 
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0.0000   0.9988  0.0499    0.4307

 
0.0000  -0.0499    0.9988   -2.0000
0.0000   0.0000    0.0000    1.0000

bT

 
 
 =
 
 
 

 

2

1.0000    0.0000   0.0000     0.4453
0.0000    0.9988   -0.0499   0.6307

 
0.0000  0.0499   0.9988    -2.0000
0.0000    0.0000   0.0000    1.0000

bT

 
 
 =
 
 
 

 

When the two cameras arranged vertically, translation and 
rotation of the two camera frames with respect to the robot 
base frame are set as follows: 
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Given the initial image Jabobian  
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80.7172-     150.4202   13.0000-

)0(J  

By taking the new uncalibrated visual servoing method stated 
in section III, it is not needed to know the Jacobian exactly but 
just given a roughly estimated Jacobian. The real initial 
Jacobian is 

 
Figure 2. The changes of feature in the image plane when the target    

moving along the directions that are parallel and vertical to the 
optical axis, respectively 

 
Figure 1. Camera model showing large error of end-effector while the 

error in image plane is zero or near zero 
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12.1837     78.1153-    144.1090-
127.3389-        171.5632       0.0000

10.3524      66.3744-   154.3290-
128.7172-       173.4202       0.0000
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Though (0)
∧
J  is much different from (0)J , the simulation 

results bellow demonstrate that the precision of robot control 
is still very high.  

 
We test the Gauss-Newton uncalibrated visual servoing 

method and the new uncalibrated visual servoing method in 
small and large residual case, respectively. The initial position 
of the end-effector is [0.4453 0.2654 0.4596]T m, the 
corresponding joint angles is [60 70 60]T degree. In the small 
residual case, the desired position of the end-effector is [0.3266 
0.4502 0.5365] T, the corresponding joint angles is [50 40 30]T 

degree. In the large residual case, the desired position of the 
end-effector is [0.6741 0.4035 0.1469]T, the corresponding 
joint angles is [20 60 5]T degree. Jacobian estimation all uses 
RLS method. Fig. 4 and Fig. 5 show the results of Gauss-
Newton and new uncalibrated visual servoing method in small 
residual case. Fig. 6 and Fig. 7 show the results of the two 
methods in large residual case. Comparing Fig. 4, Fig. 5, Fig. 6 
and Fig. 7, it can be found that in small residual cases the 
performance of Gauss-Newton uncalibrated visual servoing is 
good, but in large residual cases Gauss-Newton uncalibrated 
visual servoing can’t converge to the desired value, the 
performance of new uncalibrated visual servoing method is 
quite good in large residual cases, even in small residual cases 
the performance new uncalibrate visual servoing method is 
superior to Gauss-Newton uncalibrated visual servoing method.  

Though as show in Fig. 5 and Fig. 7 the error in image 
plane is very small, if the two cameras are arranged in parallel 
the error of end-effector in the workspace can be very large(see 
table I). Comparing table I and table II, it can be found that by 
taking the method to improve the control precision stated in 
section  V the precision can be improved greatly.  

TABLE I.  END-EFFECTOR ERRORS WITH CAMERAS IN PARALLEL [10-4m] 

Errors 1 2 3 4 5 6 
Standard 
Deviation

x error -15 -13 -20 -33 -46 -23 30.09 
y error 8.85 9.3 7.21 17 29 13 17.41 
z error -153 -119 -162 -279 -233 -235 224.13 

TABLE II.    END-EFFECTOR ERRORS WITH CAMERAS IN VERTICAL [10-4m] 

Errors 1 2 3 4 5 6 Standard 
Deviation

x error -7.49 -7.80 -15 -6.98 -2.38 -8.51 9.68 
y error -18 -14 12 -13 -14 -5.58 14.56 
z error 11 -5.13 -3.53 -15 2.52 -3.92 9.02 

 

 

 

 
Figure 3.   Three-degree-of-freedom robot and the world coordinate 

 
Figure 4. Simulation result of Gauss-Newton uncalibrated visual servoing 

method in small residual case 

 
Figure 5.   Simulation result of new uncalibrated visual servoing method 

in small residual case 



         

 

 
 

VII. CONCLUSIONS 
In this paper, A RLS algorithm is used to estimate the 

coupled image Jacobian. So, it is not needed to calibrate the 
camera and the robot. This is very useful in the cases where it 
is hard or unable to calibrate the camera and the robot. 

A new uncalibrated visual servoing method for large 
residual problems is presented in this paper. It uses a secant to 
approximate the second order term rather than dropping it 
directly. That is to say, it is a more accurate model of the 
nonlinear function. So, the convergence is much faster and 
much more stable than the Guass-Newton uncalibrated visual 
servoing method, especially in large residual cases.  

A trust region method is used. It guarantees that the 
algorithm is globally convergent and the convergence is as fast 
as possible. 

For static object with two cameras, a method to improve the 
control precision in the workspace by arranging the two 
cameras vertically is proposed. This paper discusses 
uncalibrated visual servoing. It just needs to make the two 
cameras roughly vertical. Even though, it can improve the 
precision in the workspace than arranging them in parallel or 
near parallel. This is the guideline for the arranging of the 
cameras. 

A three degree-of-freedom system has been simulated to 
validate the algorithm. The simulation results demonstrate that 
the algorithm is quite fast and stable and that the control 
precision is very high.  
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Figure 7.    Simulation result of new uncalibrated visual servoing method 

in large residual case 

 
Figure 6. Simulation result of Gauss-Newton uncalibrated visual servoing 

method in large residual case 


