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Abstract—In order for individuals suffering from trans-
femoral amputation to walk in a variety of circumstances, the 
above-knee prosthesis based on posture recognition was 
presented. The body posture of lower limb was classified into 
four classes, “stair”, “sitting”, “standing”, and “walking”. For 
measure the amputee’s movement intent, surface EMG signals 
which can reflect amputee’s movement intent and can be 
measured without invasion were applied to identify postural 
adjustments by support vector machine. The result of this study 
indicates that this method can recognize every postural 
adjustment with a higher identification rate, and has a great 
potential in practical application of artificial lower limb. 
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I.  INTRODUCTION 
Above-knee (A/K) prosthesis is an artificial device used to 

replace the missing limb of a trans-femoral amputee. Although 
the evolution of the above-knee limb prosthesis over the recent 
decades has progressed from purely mechanical systems to 
systems that include microprocessor control, most 
commercially available prostheses are passive [1]. Their 
mechanical properties, these remaining fixed, are not optimal 
during the whole gait cycle, for different walking speeds, 
terrains, especially the sudden posture irregularities. 

The development of a powered prosthesis changes 
significantly the nature of the user-prosthesis interface and 
control problem. Unlike a passive device that can 
fundamentally only react to a user’s input, a powered device 
can both act as well as react. In order for individuals suffering 
from trans-femoral amputation to walk in a variety of 
circumstances, the A/K prosthesis should be able to detect 
stairs, sitting down, and other non-standard gait behaviors and 
respond appropriately [2]. Therefore, posture recognition was 
applied to reflect the changing of posture. 

Studies of the anticipatory postural adjustments suggest that 
there are three major components that influence anticipatory 
postural adjustments: motor action, perturbation, and postural 
task [3]. The electromyography (EMG) signals are the signal 
detecting the superposed motor unit action potentials. 
Especially the surface EMG, which is the approach used by 
actively powered myoelectric upper extremity prostheses, 
incorporates surface electrodes (often in the prosthesis socket) 

to extract command signals from the muscles in the residual 
limb [4] [5]. 

Human motion is actuated by the cooperative activities of 
several muscles with the EMG signals reflecting the activity of 
each muscle, and it can be applied to measure the amputee’s 
movement intent [6]. After a limb is amputated, the brain 
continues to send signals to the remainder of the limb. 
Therefore the surface EMG signals were applied to identify the 
changing of posture. 

By taking into account the similarity among profiles within 
functional groups, the number of basic functions was reduced. 
Through the analysis of the average EMG profile in every 
posture, five muscles were applied to classification. The body 
posture of lower limb was classified into four classes, “stair”, 
“sitting”, “standing”, and “walking”. 

Therefore, this study will contribute in realizing the power 
knee which can detect non-standard gait behaviors and respond 
appropriately. Support vector machine (SVM) algorithm was 
applied to recognize different posture of lower limb by surface 
EMG signals. 

II. OUR APPRPACH 
This study proposes an intelligent control framework for the 

control of the powered trans-femoral prosthesis as shown in 
Fig. 1. It is composed of pattern recognition, self-lock control, 
gait control, motor control, and physical feedback.  

The EMG signals were translated into state signals and 
posture signals by pattern recognition, and these signals were  

 

Figure 1.  The above-knee prosthesis model 
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applied to gait control on account of natural gait. In addition, 
the state signals were applied to self-lock control on account of 
safe requirement, and control the power knee through motor 
control. Otherwise, physical quantities sampled from 
prosthesis’ knee joint such as moment and angle of knee joint 
construct a physical feedback. Those signals were combined 
organically with the input of control system. 

Using EMG information, they can provide for a more 
natural gait by discriminating different posture changes. It can 
be programmed to detect the posture changes and other 
pathological behaviors and react appropriately. 

A. Stair Recognition 
The ability to successfully negotiate stairs and steps is an 

important factor for functional independence [7]. But passive 
A/K prosthesis can’t produce power to make the person walk, 
and can’t climb stairs on the amputee's own initiative. It drives 
the keen joint by body, and makes the amputee be tired with a 
long-playing dressing. The power knee should provide the user 
with an external source of energy for lifting the body when 
climbing the stairs [8] [9]. So it is necessary for the knee joint 
to recognize the stair movement. 

B. Walking Recognition 
The conventional above-knee prosthesis walks with a fixed 

speed, and it is easy to make the disabled people tired. Subjects 
naturally selected a walking velocity associated with a 
minimum of muscular activity. Hence it is required that the 
speed will be changed within one stride and that the knee will 
react immediately as the change in speed occurs.  

The surface EMG profiles strongly depend on walking 
speed, and the general trend is that increase of EMG amplitude 
increase also walking speed [10] [11]. So it can be applied to 
recognize the walking speed, such as slow, normal, and fast. 

C. Standing Recognition 
Standing also a common functional activity of daily living, 

and a principal and importance requirement for the A/K 
prosthesis is avoiding collapsing during stance (giving way), 
namely the knee moment must be generated to guarantee 
stability all along the stance phase, and the knee was flexed in 
the swing phase. Otherwise people should stand before and 
after walking when he change his posture between walking and 
sitting. So it is necessary for the knee joint to recognize 
standing. 

D. Sitting Recognition 
Rising from a chair and sitting down are common 

functional activities of daily living. In the past two decades, 
researchers have studied the biomechanics of sit-to-stand and, 
to a lesser extent, stand-to-sit activities [12]. The EMG 
parameters of muscles indicated a significant difference in the 
course of sit-to-stand and stand-to-sit [13]. So the surface EMG 
signals can be applied to identify the convert of sit to stand. But 
the peak EMG activities of rectus femoris and tibialis anterior 
increased with decreasing chair height, and they were affected 
by the foot position. So it is necessary to eliminate these 
disturbances. 

III. ALGORITHM DESCRIPTION 
Support Vector Machine represents a new approach for 

pattern classification that has attracted a great deal of interest in 
machine learning. It succeeded in solving many pattern 
recognition problems and performed better than non-linear 
classifiers [14]. 

A. Support Vector Machine 
The object of the SVMs is finding the optimal hyperplane 

to separate clusters in the nonlinearly separable context. Unlike 
neural networks, SVMs training always finds global minimum 
of the risk function and small size problems. It uses SRM 
principle to construct hyperplane, which makes the class 
interval among every class of data be maximum [15]. 

Given a training set of instance-label pair ),( ii yx , 
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where C is the parameter that determines the tradeoff 
between the maximization of the margin and minimization of 
the classification error. 

This problem can convert into the dual problem. So support 
vector machines require the solution of the following 
optimization problem: 
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Here training vectors xi are mapped into a higher 
dimensional space by the function φ . The SVMs finds a linear 
hyperplane with the maximal margin in this higher dimensional 
space. C >0 is the penalty parameter of the error term. 

To avoid computing the transformation )(xφ explicitly, the 
scalar product is replaced with ),( ji xxK  instead. 

)()(),( j
T

iji xxxxK φφ≡ .                          (7) 

Solving (4) gives a decision function of the form 

( ) ( )( )∑ = += m
i jiii bxxyxf 1 ,Ksign α .               (8) 

The degrees of freedom of the SVMs model are decided by 
the choice of kernel, the parameters of the kernel and the 
choice of the regularization parameter as shown in Table I [16]. 

B. Application of SVM to Posture Recognition 
On account of SVM was originally designed for two-class 

problems, the body posture of lower limb was classified into 
four classes, “stair” (up stair and down stair), “sitting” (sit-to-
stand and stand-to-sit), “standing”, “walking” (different speed: 
slow, normal and fast) as shown in Fig. 2. 

IV. EVALUATION AND EXPERIMENTAL RESULTS 
The surface EMG signals were recorded to recognize state 

pattern by the hybrid NN-GA algorithm. By taking into account 

TABLE I.  WALKING EXPERIMENT PARAMETERS 

Kernel’s types ),( ji xxK  

Linear kernel j
T
iji xxxxK =),(  

Polynomial kernel d
j

T
iji rxxxxK )()( += γ  

Gaussian radial basis 
function kernel )||||exp(),( 2
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Sigmoid kernel )tanh(),( rxxxxK j
T
iji += γ  

 

 

Figure 2.  Flow-chart of posture recognition. 

the similarity among profiles within functional groups, the 
number of basic functions could be reduced. Through the 
analysis of the average EMG profile among the 14 leg muscles, 
five muscles were applied to classification. 

A. Signal Recording 
The surface EMG signals of five muscles (EMG1: rectus 

femoris, EMG2: biceps femoris, EMG3: semitendinosus, 
EMG4: gastrocnemius medialis, EMG5: soleus muscle) were 
recorded by means of surface electrodes over the skin of the leg 
simultaneously on the right side of the right side of the body in 
each of 5 normal subjects (4 male and 1 female), and 2 disable 
subjects. Otherwise, two sensors were put under the heel and 
toe inside the shoe to provide the synchronization signal for the 
heel strike (when the foot first hits the ground) and toe-off 
(when the foot leaves the ground for swing), and a angle sensor 
was applied to record the synchronization angle of knee joint. 

The surface EMG sensor automatically converts this signal 
to a root mean square (RMS) signal (an analog rectification is 
done inside the circuitry), and the active range is from 20 to 
500 Hz. After preprocessing and feature extraction of EMG 
signals, SVM algorithm which was based on the theoretical 
learning theory and can be used for pattern classification or 
regression, was applied to recognize the posture of lower limb. 
Otherwise, cross validation is used to select the kernel function 
and parameters.  

B.  Standing Recognition 
In the trial scenario, the standing experimental subject 

started with a transition from standing to walking. After four 
strides of walking, a transition from walking to standing was 
performed. For these transition, the subject was asked to walk 
at a self-selected pace. Fig. 3 shows a set of surface EMG 
signal from a subject. 

 
Figure 3.  The EMG signal from standing to walking, and then to standing. 
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As can be seen, the transition from standing to walking and 
walking to standing can be identified easy by the changes of 
EMG signals. 

C. Terrains Status 
1) Stair Recognition: In the trial scenario, the standing 

experimental subject started with a transition from flat to up-
stair walking. After 10 stairsteps of walking, a transition from 
up-stair to flat walking was performed, and then the person 
went down stairs. At the end of this trial, a transition from 
down-stair to flat walking was performed.  

Fig. 4 shows a set of surface EMG signals from a subject. 
Fig. 4 (A) reflected the transition from flat to up-stair walking, 
and then to flat walking, and Fig. 4 (B) reflected the transition 
from flat to down-stair walking and then to flat walking. As 
can be seen, each muscles reflected different characteristic 
between the transition from flat walking to up-stair walking 
and transition from flat walking to down-stair walking, and it 
can be applied to identify the changes of EMG signals. 

2) Flat Recognition: Subjects walked on a motor driven 
treadmill (2.0*0.7m) at the selected walking speeds. The 
standing experimental subject started with a  slow walking, 
and then accelerated to normal and subsequently to fast 
walking. After two strides of fast walking, the person 
decelerated to normal and then slow walking. Fig. 5 shows a 
set of surface EMG signals from a subject. The minimum, 
maximum and average speeds for each class of walking speeds 
are shown in Table II. 

As can be seen, the surface EMG profiles increased as the 
increase of walking speed. So it can be applied to recognize the 
change of walking speed by the changes of EMG signals. 

D. Sitting Recognition 
In the trial scenario, the standing experimental subject 

started with a transition from standing to sitting. After several 
seconds resting, a transition from sitting to standing was 
performed. Fig. 6 shows a set of surface EMG signals from a 
subject. 

As can be seen, the transition from standing to sitting and 
sitting to standing can be identified easy by the changes of 
EMG signals. Although the surface EMG signals were 
influenced by the ratio of chair height to the leg’s length, and 
they were affected by the foot position, the trend was same and 
it can be applied to identify the change of sitting and standing. 

E. All Posture Recognition by SVM 
For prove the feasibility of this algorithm, a test sequences 

was preformed by the data collection consisted of sitting to  

TABLE II.  WALKING EXPERIMENT PARAMETERS 

Speed (m/s) Walking 
Mode Minimum Average  Maximum  

Slow 0.58 0.62 0.66 

Normal 0.95 0.97 1.02 

Fast 1.38 1.41 1.43 

 

Figure 4.  The EMG signal in the stair experiment: (A)from flat to up-stair 
walking, and then to flat walking, (B) from flat to down-stair walking and then 

to flat walking. 

standing, standing to walking, walking (slow walking, normal 
walking and fast walking), up stair walking, down stair 
walking, walking to standing, and standing to sitting. 
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Figure 5.  The EMG signal with slow, normal and fast walking. 

 

Figure 6.  The EMG signal in the sitting experiment: starting with a transition 
from standing to sitting, and performing a transition from sitting to standing 

after several seconds resting. 

Simulation result shows that surface EMG signal with 
adequate information to identify the changing of posture, such 
as sitting, standing, fast walking and so on as shown in Table 
III. And the SVM algorithm can be applied to posture 
recognition with a higher identification rate, and the root mean 
square error and maximum error are less than the other 

methods obviously. It can also effectively be used in other 
aspect of prosthesis recognition. 

There are a great many of factors influence the 
classification effect. Cross validation is used to select the 
kernel function and parameters. Firstly, the training data are 
separated to several folds. Sequentially a fold is considered as 
the validation set and the rest are for training. The average of 
accuracy on predicting the validation sets is the cross validation 
accuracy. 

V. CONCLUSION AND FUTURE WORK 
This prosthesis with EMG signals control can both provide 

partial restoration of “normal” function and improve the 
performance, comfort, and energy consumption of a trans-
femoral amputee through predicting the amputee’s movement 
intent. It can satisfy the optional control and safety need by 
physiological method, and adapt to the external status, the 
location of prosthesis, the shift of body, and so on. It represents 
a more natural and efficient means of electromyography control 
than one based on discrete, transient bursts of activity, 
promising to reduce the mental burden of a user, and the 
dexterity of control. 

From results of computer simulation, it is shown that this 
approach can predict the highly nonlinear relation between 
different posture of lower limb and EMG signals effectively. 
SVM are able generalize this relations, and it is a useful tool for 
identify body posture based on surface EMG signals with high 
accuracy and speed. By finishing the experiment, it is found 
that the selection of the model selection of SVM is key 
problem. Through more suitable model selection, it will reach a 
better classification result after training. 

Otherwise, the postural adjustments discussed in this study 
were only a part of postural adjustments in the daily life. Other 
posture changing should be discussed in the further research, 
such as stumbling, slipping, and so on. And the surface EMG 
signals were generated by normal subjects rather than from the 
amputee, more surface EMG signals extracted from disable 
people will be analyzed further, and which muscles were 
sampled according to the condition of every amputee should be 
discussed carefully. 

TABLE III.  IDENTIFICATION RESULT 

Posture Change Indentification Result 
(%) 

Standing to walk 93.5 
Standing 

Walking to Standing 92.1 

Sit-to-stand 94.1 
Sitting 

Stand-to-sit 93.4 

Up stair 89.4 
Stair 

Down Stair 90.1 

Slow 87.3 

Normal 89.2 Flat 
Walking 

Fast 88.1 
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