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Abstract—This paper presents a new design of two degree-of-
freedom (2-DOF) non-symmetric parallel mechanism which can
be employed as humanoid arm structure. Unlike conventional
multi-DOF parallel mechanism, this design targets to reduce
the number of actuators, and thus the total cost. The major
feature of this mechanism is that it can move an end-effector in
six-dimension (6D) space with only two motors, including three
translational and three rotational motions. The forward, inverse
kinematics as well as workspace of this parallel manipulator is
analyzed and visualized. A prototype is developed and successfully
implemented into the robotic lion dancing system as a humanoid
arm structure.

Index Terms—arm structure, parallel mechanism

I. INTRODUCTION

A parallel manipulator is a closed-loop kinematic chain
mechanism whose end-effector is linked to the base by several
independent kinematic chains. So far, the most commonly
studied parallel mechanism is the six degree-of-freedom (6-
DOF) manipulator proposed by Gough et al [1], which is
currently well-known as Stewart Platform. The name of Stew-
art was attached to this architecture because Gough’s earlier
work (and a photograph of his platform) were mentioned in the
reviewers’ remarks to a paper by Stewart [2] published in 1965.
A Stewart platform can achieve 6-DOF motions (x, y, z, pitch,
roll, yaw) with three legs having two motors each. Merlet [3]
presented a method for designing optimal parallel manipulators
of the Gough platform type, according to design constraints
like a specified workspace, best accuracy over the workspace,
minimum articular forces for a given load, etc. In some cir-
cumstances, it is not necessary to generate 6-DOF motions of
the end-effector. Therefore, less-DOF mechanism designs are
proposed by researchers to reduce the number of actuators, and
thus the total cost. Li et al. [4] performed the type synthesis of
5-DOF parallel manipulators systematically by the constraint-
synthesis method. Kong et al. [5] proposed a general method
for the type synthesis of 5-DOF parallel manipulators based
on screw theory and using the concept of virtual chains.
A novel parallel manipulator architecture was introduced by
Angeles et al. [6] to produce 4-DOF SCARA (Selective-
Compliance Assembly Robot Arm) motions. Richard et al. [7],
[8] presented a 4-DOF parallel manipulator which can generate
translations in all directions and rotation around an axis of a
fixed direction. In the machine tool industry, manufacturers
have introduced several 3-DOF parallel machines over the last
decade. Most of these machines are based on the Delta robot

[9], a translational 3-DOF parallel mechanism. The design
of a spherical 3-DOF parallel manipulator was considered by
Gosselin et al. [10] from a kinematic viewpoint using criteria
of symmetry, workspace maximization, and isotropy. Lee et al.
[11] presented a 3-DOF manipulator that can achieve two
rotational motions and one translational motion based on the
concept of in-parallel actuated mechanism. Another 3-DOF
spatial parallel manipulator is proposed by Carretero et al.
[12], [13] to achieve the tipping, tilting and focusing of the
secondary mirror of a telescope.

Most parallel mechanisms proposed by previous researchers
use symmetric architecture, i.e., the legs and corresponding
joints in those parallel mechanisms are the same. This type
of mechanism has its advantages such as easiness for control
implementation, convenience for assembling etc. However, for
certain particular motions of end-effector, the symmetric archi-
tecture may take more actuators and special joints (spherical or
universal) to achieve the motion, which increases the system
cost. Therefore, in this paper, an asymmetric architecture is
utilized to build up a parallel mechanism to achieve the
end-effector motion by using reduced number of actuators.
Specifically, two motors are employed to design a humanoid
arm structure, and to achieve the motion of an end-effector
in six directions, four of which are parasitic motions. Unlike
conventional design, this parallel humanoid arm structure does
not target to reduce the parasitic motions, because the parasitic
motions are also useful in some cases such as the humanoid in
a lion dancing system that can perform life-size lion dancing
with the traditional lion dance outfit to generate a lively effect
of the lion head.

The subsequent sections are organized as follows. In Section
II, the architecture of the 2-DOF parallel manipulator is
described. Following that, the system kinematic is analyzed
in Section III. Subsequently, the inverse kinematics analysis
of this arm structure is presented in Section IV. After that, the
workspace of this mechanism is computed and visualized in
Section V. In the end, the paper is concluded in Section VII.

II. CONCEPT DESIGN

A. Description of the Arm Structure

Figure 1 presents the proposed design of the humanoid
arm structure. Generally speaking, compared with the serial
mechanisms used in normal robot arms, parallel mechanisms
have the following merits [12].
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• High payload capacity;
• High stiffness realized due to its truss structure;
• High-speed and acceleration, because of the non-

accumulation of link’s weight in one of the actuators;
• High static and dynamic accuracy, because of non-

accumulation axial positioning errors.

Therefore, in this study, parallel mechanism is employed for
the concept design of the humanoid arm structure.
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Fig. 1. Concept design of humanoid arm structure of robotic lion

Joints and motions in the humanoid arm structure are
illustrated in Fig. 1(b). Two motors are used as the shoulders,
and the other two are employed as the elbows. Two bearing
seats mounted on top of the two arms can rotate about the
arms’ axes. Two bearing shafts are used to support the bar
on the top of the mechanism, where the end-effector such as
lion head can be mounted. One side of the bar is fixed on
one of the bearing shafts, whereas the other side can slide
as well as rotate through a cylindrical joint. Therefore, the
left and right arms of the parallel mechanism are not exactly
symmetric. In this study, we assume the two shoulder motors
are fixed, and the two elbow motors are utilized to generate
the motion of lion head in six directions (three rotations and
three translations). The motors at shoulders and torso can be
used to compensate motion range of the end-effector such as
the nodding and turning motion of lion head.

B. Number of Degree-of-freedom

The number of degree-of-freedom of this 2-DOF parallel
manipulator can be calculated from following equation:

M = 6(n− g − 1) +

g�

i=1

fi, (1)

where M is the number of DOFs of the mechanism, n is the
number of bodies in the mechanism, g is the number of joints
and fi is the number of DOFs of the ith joint. For this parallel
arm structure, n = 7 (as illustrated in Fig. 1(a)), g = 7, fi = 1
for each of the revolute joints, and fi = 2 for the cylindrical
joint. Application of Eqn. (1) yields

M = 6(7− 7− 1) + 6× 1 + 2 = 2. (2)

It can be seen that the number of DOFs is consistent with that
of motors. Therefore, the system is neither over constraint nor
under constraint.

III. FORWARD KINEMATIC ANALYSIS

Forward kinematics is the process of relating a system’s
pose to the position and orientation of the end effector. It is
widely used in robotics, computer games, and animation. In
this study, the end effector (such as lion head) is mounted on
the horizontal bar on top of the arm structure. The purpose of
kinematic analysis is to describe the position as well as orien-
tation of the lion head by using the rotation angles of the two
elbow motors. There are six parameter to completely define the
end-effector in 3D space, i.e., three displacement parameters
utilized for determining the position of point O′ on the end-
effector and three angular parameters for the orientation of the
end-effector. To facilitate the following discussion, we assume
that the bar goes through the two revolute joints at B1 and B2.
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Fig. 2. Coordinates definition on the arm structure

A. Formulation of Forward Kinematics

As illustrated in Fig. 2, two Cartesian coordinate systems
are employed for the forward kinematic analysis, i.e., global
coordinates (x, y, z) that is fixed on the base of the system,
and local coordinates (x′, y′, z′) that is fixed on the bar or the
end-effector. According to the geometric relationship presented
in Fig. 2, the following equations can be found

x1 = l1,

y1 = a1 sin α, (3)

z1 = a1 cos α,

and

x2 = −l2,

y2 = −a2 sin β, (4)

z2 = a2 cos β,

where (x1, y1, z1), (x2, y2, z2) are defined on the global co-
ordinate system (x, y, z). Note that the directions of α and β



are opposite. Because the three points (x1, y1, z1), (x2, y2, z2)
and (xm, ym, zm) are on a line (ignore the offset of the bar),
it can be obtained that

xm − x1

x2 − x1

=
ym − y1

y2 − y1

=
zm − z1

z2 − z1

= t, (5)

(xm − x1)
2 + (ym − y1)

2 + (zm − z1)
2 = l2

1
, (6)

which results in,

[(x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2]t2 = l2

1
. (7)

Therefore,

t = l1/
�

[(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2]. (8)

The coordinates of (xm, ym, zm) can be expressed in terms of
x1, y1, z1, x2, y2, z2 as

xm=x1+(x2−x1)l1/
�

[(x2−x1)2+(y2−y1)2+(z2−z1)2], (9)

ym=y1+(y2−y1)l1/
�

[(x2−x1)2+(y2−y1)2+(z2−z1)2], (10)

zm=z1+(z2−z1)l1/
�

[(x2−x1)2+(y2−y1)2+(z2−z1)2]. (11)

By using Eqns. (9) - (11) and Eqns. (3) - (5), the position
of O′ can be computed from the motors’ position α and β.
The next step is to formulate the orientation of the bar from
α and β. First, the direction of x′ in the global frame can be
calculated as

−→
x′ = [x1 − x2, y1 − y2, z1 − z2]

T

=

�
� l1 + l2

a1 sin α + a2 sin β
a1 cos α− a2 cos β

�
� . (12)

Similarly,
−−−→
A1B1 = [x1 − l1, y1, z1]

T

=

�
� 0

a1 sin α
a1 cos α

�
� . (13)

The vector of y′ is the cross product of
−→
x′ and

−−−→
A1B1

−→
y′ =

−−−→
A1B1 ×

−→
x′

=

�
�a1sα(a1cα−a2cβ)−a1cα(a1sα + a2sβ)

a1cα(l1 + l2)
−a1sα(l1 + l2)

�
� , (14)

where sβ, cβ, sα, cα represent sin β, cos β, sin α and cos α
respectively. The direction of z′ is
−→
z′=

−→
x′ ×

−→
y′ =�

� (−a1 + a2sαcβ − a2sαsβ)a1(l1 + l2)
−a1a2(a1cα− a2cβ)(sαcβ + cαsβ) + (l1 + l2)

2a1sα
a1{(l1+l2)

2cα−(a1sα+a2sβ)[sα(a1cα−a2cβ)−cβ(a1sα+a2sβ)]}

�
� .

(15)

Thus, the orientation of the lion head with respect to the global
coordinates can be represented with following matrix

R1 =

� −→
x′

‖
−→
x′‖

−→
y′

‖
−→
y′‖

−→
z′

‖
−→
z′‖

�
=

�
� r11 r12 r13

r21 r22 r23

r31 r32 r33

�
� . (16)

On the other hand, the rotational matrix can be represented
with Euler angles. Suppose that the lion head starts with the
frame coincident with the global frame, then rotates about z′

axis by an angle of θz , and then rotates about y′ axis by
angle of θy , finally rotates about x′ axis by an angle of θx.
The general rotation matrix after these three rotations can be
represented as [14]

R2=

�
�cθzcθy cθzsθysθx−sθzcθx cθzsθycθx+sθzsθx

sθzcθy sθzsθysθx+cθzcθx sθzsθycθx−cθzsθx

−sθy cθysθx cθycθx

�
�. (17)

where sθx, cθx, sθy , cθy , sθz , cθz represent sin θx, cos θx,
sin θy , cos θy, sin θz and cos θz respectively. Comparing the
elements in R1 and R2 gives

θy = arctan[−r31/(
�

r2

11
+ r2

21
)],

θz = arctan[r21/ cos θy/(r11/ cos θy)], (18)

θx = arctan[r32/ cos θy/(r33/ cos θy)].

B. Simulation of Forward Kinematics

1) Variation of Displacement Parameters: Let a1 = a2 =
400mm and l1 = l2 = 150mm. By using Eqns. (9)-(11), the
variations of xm, ym and zm with respect to the motor angles
α and β are plotted as shown in Fig. 3. In Fig. 3(a), it can
be seen that xm is always equal to zero when α = −β. This
result can be observed in Fig. 3(d), i.e., O′ is on the plane of
xOy (xm = 0) when two arms move in the same direction and
the same magnitude. However, from Fig. 3(a), when α �= −β,
xm > 0. This is because the bar is fixed at the point B1,
and thus the distance between the end-effector (O′) and B1
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is fixed. When α �= −β, O′ is dragged to the left arm side,
i.e. xm > 0. Figure 3(b) shows the variation of ym. When
α = −β, ym varies from positive value (when α > 0) to
negative value (when α < 0). This variation can be observed
in Fig. 3(d). Similarly, from Fig. 3(c), it can be clearly seen
that zm reaches the highest value when the two arms are at the
upright position whereas zm becomes smaller when motors are
in any other positions, which is consistent with the inspection
from Fig. 3(d).
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2) Variation of Angular Parameters: The angular motions
of end-effector with respect to local coordinates x′, y′ and z′

are presented in Fig. 4. According to Fig. 4(d), when α = −β,
i.e., the two arms move in the same direction as well as same
speed, there is only rotational motions about x′ axis, whereas
the angular displacement about y′ and z′ are equal to zero.
This fact coincides with the data variation plotted in Fig. 4(b)
and 4(c) (the black line across the plotting surface).

IV. INVERSE KINEMATIC ANALYSIS

Inverse kinematics is the process of determining the pa-
rameters of a jointed flexible object (a kinematic chain) in
order to achieve a desired pose. In this study, the purpose of
inverse kinematic analysis is to derive motor angles α and β
from the orientation of the end-effector. Because this is a 2-
DOF mechanism, θz and θx are selected as two independent
parameters to represent the nodding and shaking motion of the
end-effector (lion head).

A. Formulation of Inverse Kinematics

By comparing r11 in R1 with the corresponding element in
R2, following equation can be obtained

tan θz =
a1 sin α + a2 sin β

l1 + l2
. (19)

Similarly, comparing r31 and r32 with corresponding elements
in R2 gives

�
(l1 + l2)2 + (a1 sin α + a2 sin β)2 sin θx�

(l1 + l2)2 + a2

1
+ a2

2
+ 2a1a2(sin α sin β − cos α cos β)

=

−a1 sin α(l1 + l2)�
[a2

1
a2

2
(sin α cos β + cos α sin β)]2 + a2

1
(l1 + l2)2

. (20)

From Eqns. (19) and (20), the two unknowns, α and β can be
solved numerically.

B. Simulation Result of Inverse Kinematics

The simulation result of α and β with respect to θx and θz

is presented in Fig. 5. From Fig. 4(d), it can be seen that when
θz = 0 and θx �= 0, the two motor angles move in the same
direction, i.e., α = −β. This result can be observed in Fig. 5.
With reference to the black bold line in Fig. 5, the value of
α decreases with the increase of θx (θz = 0). However, the
variation of β with respect to θx (θz = 0) is opposite to that
of α, yet in the same magnitude.

V. WORKSPACE ANALYSIS

The purpose of this section is to analyze the workspace of
the humanoid arm structure by using the kinematic analysis
result. Workspace is the volume of space which the end-
effector of the manipulator can reach. There are two types
of workspace, dextrous workspace and reachable workspace.
Dextrous workspace is the volume of space which the robot
end-effector can reach with all orientations. The reachable
workspace is the volume of space which the end-effector
can reach in at least one orientation. Clearly, the dextrous
workspace is a subset of reachable workspace. It can be found
that there is no dextrous workspace for this proposed humanoid
arm structure because the end-effector cannot achieve all
orientations at any point in the workspace. Therefore, the
workspace study here focuses on the reachable workspace.
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A. Workspace Computation and Visualization

By using Eqns. (9)-(11), the workspace of the arm structure
is computed numerically and presented in Fig. 6. To facilitate
the understanding, the explaination of the workspace is broken
down into four steps as follows.

Step one: Figure 6(a) represents the position of end-effector
(point O′) when α = −π/4 and β varies from −π to π. It can
be seen that the trajectory of end-effector is a closed 3D curve
in the space.

Step two: Let α = π/4 and β varies from −π to π. Another
3D curve that is symmetric to the previous one with respect
to the plane of ym = 0 is obtained as shown in Fig. 6(b).

Step three: Subsequently, let α vary from −π/4 to π/4,
and β vary from −π to π. It can be found from Fig. 6(c) that
a set of 3D curves similar to the one in Fig. 6(a) form a shell
of cylindrical surface. It is noted that the shape of all those
curves are the same.

Step four: Finally, varying both α and β from−π to π gives
the workspace of the arm structure as shown in Fig. 6(d). From
the figure, it can be found that the value of xm is always greater
than zero, which is due to the fact that the distance from point
O′ to B1 is fixed (l1). When the two motors move, point O′

will be dragged to a position where xm is greater than zero.
Apparently, the workspace of the arm structure is the shell
of a cone-shaped solid. Every cross section of the workspace
parallel to the plane of xm = 0 is a circle centering at (0, 0,
0). In other words, for a given xm, y2

m + z2

m is always equal
to a certain fixed positive value. This phenomenon is verified
in following section.
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(b) α = ±π/4, β from −π to π
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Fig. 6. Workspace of the arm structure

B. Verification of y2

m + z2

m > 0

To prove that y2

m + z2

m is a fixed positive value, in the first
place, it is necessary to prove that it is not equal to zero, i.e.,
ym and zm cannot both be zero. To prove the impossibility
of this situation, let ym = 0 and zm = 0, and see what
would happen. Obviously, with ym = 0 and zm = 0, Eqn.
(6) becomes

(x1 − xm)2 + y2

1
+ z2

1
= l2

1
. (21)

In terms of geometry, Eqn. (21) means that the distance
between a point (xm, 0, 0) and the other one (x1, y1, z1)
is equal to l1. With reference to Fig. 2, points O′′, B1 and
O′ form a triangle. Because ∠B1O

′O′′ ≥ π/2, it is always
greater than ∠O′O′′B1. Thus, ‖B1O

′′‖ > ‖O′B1‖, i.e.

(x1 − xm)2 + y2

1
+ z2

1
> l2

1
, (22)

which is contradict with Eqn. (21). Therefore, the assumption
of ym = 0 and zm = 0 is not correct, i.e., y2

m + z2

m is greater
than zero.

The next step is to prove that y2

m + z2

m is a
fixed value for a given xm. According to Eqn. (9),
a constant value of xm indicates that the value of
x1 + (x2 − x1)l1/

�
[(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2]

is constant. Furthermore, because x1 and x2 are con-
stants,

�
[(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2] (denoted as

Cx1,y1,z1
) is a constant too. Substituting Eqns. (3) and (4) into

Cx1,y1,z1
shows that

Cα,β = sinα sin β − cos α cos β (23)

is a constant value. From Eqns. (3), (4) and (9)-(11), the
following result can be achieved

y2

m+z2

m=a2

1
−

2a1a2Cα,β+2a2

1

Cx1,y1,z1

l1+
a2

1
+a2

2
+2a1a2Cα,β

C2
x1,y1,z1

l2
1
. (24)

From Eqn. (24), it can be seen that the right side of the equation
is a constant. Thus, by combining the result of Step one, the
value of y2

m + z2

m is always a fixed positive value for a given
xm. In other words, a cross section of the workspace of the
arm structure parallel to the plane of xm = 0 (Fig. 6(d)) is a
circle centering at (0, 0, 0).

VI. PROTOTYPE AND IMPLEMENTATION

A prototype of the humanoid arm structure has been devel-
oped as shown in Fig. 7. Two Powercube motors are employed
to drive the elbows, and two are used to drive shoulders. The
two elbow motors can generate the end-effector motion in six
translational and rotational directions. The two shoulder motors
and two torso motors (only show one torso motor in the figure)
can compensate the motion range of the arm structure.

This humanoid arm structure is successfully implemented to
a lion dancing system for holding the lion head. As shown in
Fig. 8(a), lion dance is a form of traditional dance in Chinese
culture, in which performers mimic a lion’s movements in a
lion costume. The lion costume may be operated by a single
dancer, or more frequently by a pair of dancers who form the



Fig. 7. Prototype of the arm structure

(a) Human dancing (b) Robotic lion

Fig. 8. Robotic lion dancing system

back and fore legs of the lion. In recent years, biomimetic (Bio-
mimetic refers to human-made processes, substances, devices,
or systems that imitate nature.) robotics develops very fast
because it exhibits much greater robustness in performance in
unstructured environments than today’s robots. In our research,
we proposed a robotic lion dancing system that uses advance
robotic technology to develop a mechatronic system (Fig. 8(b))
that can perform life-size lion dancing with the traditional
lion dance outfit, and thus the traditional art form and robotic
technology can be fused to stimulate people’s interest in
disappearing traditional art form as well as give new meanings
to the new art form. One of the major components in the
robotic lion system is the humanoid arm structure, on which
the lion head will be mounted to move in six directions.
Because only two motors are used to drive the arms’ motion
to achieve the end-effector motion, the power consumption of
the robotic lion is reduced greatly. By using this structure,
the lion head can achieve a vivid motion in three translational

directions and three rotational directions.

VII. CONCLUSION

A 2-DOF parallel mechanism is proposed for the design
of humanoid arm structure in this paper. The asymmetric
architecture is employed to achieve the end-effector motion
in six directions. Only two motors are used to reduce the
system power consumption as well as the total cost. Based
on the concept design, the forward kinematics and inverse
kinematics are analyzed and visualize. Furthermore, the 3D
workspace of the end-effector is computed and presented. A
prototype of the humanoid arm structure is developed and
successfully implemented into the robotic lion dancing system,
which shows that the humanoid arm structure can generate a
lively motion of the lion head in six directions.

ACKNOWLEDGMENT

This work is a collaborative research project between
Nanyang Technological University and Singapore Institute
of Manufacturing Technology. The authors acknowledge the
assistance from Ms. Ang Gim Ching Jenny, Mr. Han Boon
Siew and Mr. Ho Wee Kiat Desmond.

REFERENCES

[1] V. E. Gough and S. G. Whitehall, “Universal tyre test machine,” in
Proceedings of the 9th FISITA, International Automobile Technical
Congress, 1962, pp. 117–137.

[2] D. Stewart, “A platform with six degrees of freedom,” in Proceedings of
Institution of Mechanical Engineers, vol. 180 (15), 1965, pp. 371–386.

[3] J. P. Merlet, “Workspace-oriented methodology for designing a parallel
manipulator,” in Proceedings of the 1996 IEEE International Conference
on Robotics and Automation, Minnesota, USA, 1996, pp. 3726–3731.

[4] Q. Li and Z. Huang, “Type synthesis of 5-dof parallel manipulators,”
in Proceedings of the 2003 IEEE International Conference on Robotics
and Automation, Taipei, Taiwan, September 2003, pp. 14–19.

[5] X. Kong and C. M. Gosselin, “Type synthesis of 5-dof parallel manipula-
tors based on screw theory,” Journal of Robotic Systems, vol. 22, no. 10,
pp. 535–547, 2005.

[6] J. Angeles, A. Morozov, and O. Navarro, “A novel manipulator archi-
tecture for the production of scara motions,” in In Proceedings of the
2000 IEEE International Conference on Robotics and Automation, San
Francisco, CA, USA, April 2000, pp. 2370–2375.

[7] P.-L. Richard, C. M. Gosselin, and X. Kong, “Kinematic analysis and
prototyping of a partially decoupled 4-dof 3t1r parallel manipulator,”
Journal of Mechanical Design, vol. 129, pp. 611–616, 2007.

[8] X. Kong and C. M. Gosselin, “Type synthesis of 3t1r 4-dof parallel
manipulators based on screw theory,” IEEE Transactions on Robotics
and Automation, vol. 20, no. 2, pp. 181–190, 2004.

[9] R. Clavel and S. A. Sogeva, “Device for the movement and positioning
of an element in space,” US Patent, no. 4,976,582, December 1990.

[10] C. Gosselin and J. Angeles, “The optimum kinematic design of a
spherical three-degree-of-freedom parallel manipulator,” ASME Journal
of Mechanisms, Transmission, and Automation in Design, vol. 111, pp.
202–207, 1989.

[11] K.-M. Lee and D. Shah, “Kinematics analysis of a three-degree-of-
freedom in-parallel actuated manipulator,” IEEE Journal of Robotics and
Automation, vol. 4, no. 3, pp. 354–360, 1988.

[12] M. A. N. J. A. Carretero, R. P. Podhorodeski and C. M. Gosselin,
“Kinematic analysis and optimization of a new three degree-of-freedom
spatial parallel manipulator,” ASME Journal of Mechanical Design, vol.
122, pp. 17–24, 2000.

[13] J. A. Carretero, M. A. Nahon, and R. P. Podhorodeski, “Workspace
analysis of a 3-dof parallel mechanism,” in Proceedings of the 1998
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Victoria, B.C., Canada, 1998, pp. 1021–1026.

[14] J. J. Craig, Introduction to Robotics: Mechanics and Control. USA:
Addison-Wesley Publishing Company, 1989.


