
Image-based Visual Servoing of a Real Robot Using a
Quaternion Formulation

T. Koenig, Y. Dong, and G. N. DeSouza
ECE Department

University of Missouri
Columbia, MO, USA

post@tikey.de, ydfff@mizzou.edu, DeSouzaG@missouri.edu

Abstract—In this paper we present the results from
our visual servoing system for a real industrial robot.
In contrast to other visual servoing system in the liter-
ature, the one presented here, which was derived from
[4], uses a quaternion representation of the rotation
instead of the more common matrix representation. By
doing so, the proposed system avoids potential singu-
larities introduced by the rotational matrix representa-
tion. After performing exhaustive tests in a simulated
environment, our controller was applied to a Kawasaki
UX150. In the case of simulation, the movement of
the camera and the image processing were performed
using Matlab-Simulink, which allowed us to test the
controller regardeless of the mechanism in which the
camera was moved and the underlying controller that
was needed for this movement. In the case of the real
robot, the controller was tested initially using another
simulation program provided by Kawasaki Japan and
later with the real Kawasaki robot. The setup for testing
and the results for all three cases above are presented
here, but for more details on the simulations, the reader
is encouraged to check [8].

Index Terms—Image-based servo, visual servoing,
quaternion.

I. INTRODUCTION

Any control system using visual-sensory feedback loops
falls into one of four categories. These categories, or
approaches to visual servoing, are derived from choices
made regarding two criterias: the coordinate space of the
error function, and the hierarchical structure of the control
system. These choices will determine whether the system
is a position-based or an image-based system, as well as if
it is a dynamic look-and-move or a direct visual servo [5].

For various reasons including simplicity of design, most
systems developed to date fall into the position-based, dy-
namic look-and-move category [2]. In this paper however,
we describe an image-based, dynamic look-and-move visual
servoing system. Another difference between our approach
and other more popular choices in the literature is in the
use of a quaternion representation, which eliminates the
potential singularities introduced by a rotational matrix
representation [4].

The proposed controller was tested using two simula-
tions and later it was tested on a real robot setting (Figure
1). In that case, a camera was attached on the end-effector

Fig. 1: Robot/Camera setting for testing with detailed view of
the cameras on the end-effector (only one is actually used)

and the full closed loop control was applied using the signal
from the cameras (image-based control).

We based the development of our controller on the ideas
introduced in [4], which requires the assumption that a
target object has four coplanar and non-colinear feature
points denoted by Oi, where i = 1 . . .4. The plane defined
by those 4 feature points is denoted by Π. Moreover, two
coordinate frames must be defined: ◦F (t) and ∗F , where
◦F (t) is affixed to the moving camera and ∗F represents
the desired position of the camera. Figure 2 depicts the
above concepts as well as the vectors ◦m̄i (t) ,∗m̄i ∈ R

3

representing the position of each of the four feature points
with respect to the corresponding coordinate frames. That
is:

◦m̄i = [◦xi
◦yi

◦zi]
T i = 1 . . .4 (1)

∗m̄i = [∗xi
∗yi

∗zi]
T i = 1 . . .4 (2)

The relationship between these two sets of vectors can be
expressed as

◦m̄i = ◦t∗ + ◦R∗ ∗m̄i (3)

where ◦t∗ (t) is the translation between the two frames, and
◦R∗ (t) is the rotation matrix which brings ∗F onto ◦F .

Intuitively, the control objective can be regarded as the
task of moving the robot so that ◦m̄i (t) equals ∗m̄i ∀i as
t → inf. However, an image-based visual servoing system
is not expected to calculate the Euclidean coordinates of
these feature points. Instead, it can only extract the image

978–1–4244–1676–9/08/$25.00 © 2008 IEEE RAM 2008

Π
∗F

◦F

∗d

∗n

◦R∗, ◦t∗ ◦m̄i

∗m̄i
Oi

Fig. 2: Relationships between the frames and the plane

coordinates of those same points. That is, the coordinates
◦pi and ∗pi of the projection of the feature points onto the
image plane, given by: ◦pi = A◦mi and ∗pi = A∗mi, where
A is the matrix of the intrinsic parameters of the camera.
So, the real control objective becomes that of moving the
robot so that ◦pi equals ∗pi.

This idea will be further detailed in the following sec-
tion.

II. DESIGN OF THE CONTROLLER

As mentioned above, the control objective is to regulate
the camera to a desired position relative to the target
object. In order to achieve this control objective the image
coordinates at the desired position have to be known. This
can be done by taking an image of the target object at the
desired position and extracting the feature points using
an image processing algorithm. Once a picture is taken
and the image coordinates are extracted, those coordinates
can be stored for future reference. It is assumed that the
motion of the camera is unconstrained and the linear and
angular velocities of the camera can be controlled indepen-
dently. Furthermore the camera has to be calibrated, i. e.
the intrinsic parameters of the camera A must be known.

A. Homography
In order to estimate the Euclidean coordinates of the

feature points from their observed pixel coordinates we use
a homography relating the desired and the current pixel
coordinates. That is:

◦pi = αiA
◦H∗A−1∗pi . (4)

where ˆ◦H∗ is the 3x3 Homography matrix, A contains the
intrinsic parameters of the camera and αi (t) represents a
depth ratio, since the above relation can only be known
within a scale factor. The equation above is then used to
estimate ˆ◦H∗ given the observed pixel points and A.

As we will explain next, the actual Euclidean coordi-
nates of the feature points are not explicitly calculated.
Instead, once ˆ◦H∗ is obtained, the rotation and translation
components embedded in it are employed in the direct

derivation of the control inputs using a quaternion formu-
lation. The conversion from rotation and translation into a
quaternion form as well as other derivations omitted here
can be found in [9].
B. Controller

As we mentioned earlier, in the Euclidean space the
control objective can be expressed as:

◦R∗ (t) → I3 as t → inf (5)
||◦t∗ (t)|| → 0 as t → inf (6)

and the translation regulation error e(t) ∈ R
3 can be

defined using the extended normalized coordinates as:
e = ◦me −∗me

=
[◦xi
◦zi

−
∗xi
∗zi

◦yi
◦zi

−
∗yi
∗zi

ln

(◦zi
∗zi

)]T (7)

The translation regulation objective can then be quantified
as the desire to regulate e(t) in the sense that

||e(t)|| → 0 as t → inf . (8)

It can be easily verified that if (8) is satisfied, the extended
normalized coordinates will approach the desired extended
normalized coordinates, i. e.

◦mi (t) → ∗mi (t) and ◦zi (t) → ∗zi (t) (9)

as t → inf. Moreover, if (8) and (9) are satisfied, (6) is
also satisfied.

Similarly, the rotation regulation objective in (5) can be
expressed in terms of its quaternion vector q = [q0 q̃]T ,
q̃ = [q1 q2 q3]T [1] by:

||q̃(t)|| → 0 as t → inf . (10)

In that case, if (8) and (10) are satisfied, the control
objective stated in (5) is also satisfied.

For such translational and rotational control objectives,
it was shown in [4] that the closed-loop error system is
given by:

q̇0 =
1
2

q̃T Kω
(
I3 − q̃×

)−1
q̃ (11)

˙̃q = −1
2

Kω
(
q0I3 − q̃×

)(
I3 − q̃×

)−1
q̃ (12)

∗ziė = −Kve + z̃iLωωc (13)

and the control inputs by:

ωc = −Kω
(
I3 − q̃×

)−1
q̃ (14)

vc =
1
αi

L−1
v (Kve + ∗ẑiLωωc) (15)

where ∗ẑi = eT Lωωc is an estimation for the unknown ∗zi; q̃×
is the anti-symmetric matrix representation of the vector
q̃; Lv,Lω are the linear and angular Jacobian-like matrices;
Kω,Kv ∈ R

3×3 are diagonal matrices of positive constant
control gains; and the estimation error z̃(t) ∈ R is defined
as z̃i = ∗zi −∗ẑi .

A proof of stability for the controller above can be found
in [4].

III. IMPLEMENTATION

In summary, the task of controlling a robot with a
visual-servoing algorithm was divided into four major
steps:

1) Capturing images and obtaining the coordinates of
the feature points.

2) Estimating the Homography from the desired and
the current pixel coordinates of the feature points.

3) Calculating the quaternion from the Homography.
4) Calculating the input variables, i. e. the velocities of

the robot endeffector.
5) Moving the robot according to the given input vari-

ables.
The hardware available for this task consisted of a
Kawasaki industrial robot with a camera mounted on
its endeffector (Figure 1) and a vision-sensor network
using GPUs for capturing and processing images from the
camera.

The controller was implemented as a C++ class, in
order to guarantee the future reusablility of the code in
different scenarios (as it will be better explained below).
Basically, it follows the steps above until it calculates the
linear and angular velocities of the endeffector, i. e. the
input variables of the controller.

In order to safely test the controller, the real pair
robot/camera was intially replaced by two different sim-
ulators. The first simulator, which was implemented in
Matlab-Simulink, simulates an arbitrary motion of the
camera in space. The camera is represented using a simple
pin-hole model and a coordinate frame. With this simula-
tor, it was possible to move the camera according to exact
and arbitrary velocities.

In all real testing scenarios performed, the system
needed to extract reliable image coordinates of the feature
points. To achieve that, the system relied on a very ac-
curate calibration procedure [3]. Given that, the system
could then return the image coordinates of the feature
points at each time instant t. In the case of the simulated
scenarios, a camera simulator was also implemented using
C++ classes.

For the second set of simulation scenarios, a program
provided by Kawasaki Japan was employed. This program
simulates the exact same environment of a real robot,
including the possibility of executing other programs we
developed and that would eventually be required to move
the real robot. This fact, allowed us to test a complete
version of the code developed before the real deployment of
the system. Some of this code is responsible for performing
the forward and inverse kinematics, as well as the dynamics
of the robot.

In order to demonstrate the system in a more realistic
setting even during simulation, noise was added to the
image processing algorithm and a time discretization of the
image acquisition was introduced to simulate the camera.

A. Describing the Pose and Velocity of Objects
The position and orientation (pose) of a rigid object

in space can be described by the pose of an attached
coordinate frame. There are several possible notations to
represent the pose of a target coordinate frame with re-
spect to a reference one, including the homogeneous trans-
formation matrix, Euler Angles, etc. [6] and [7]. Since we
were using the Kawasaki robot and simulator, we adopted
the XYZOAT notation as defined by Kawasaki. In that
system, the pose of a frame ◦F with respect to a reference
frame ∗F is described by three translational and three
rotational parameters. That is, the cartesian coordinates
X, Y, and Z, plus the Orientation, Approach, and Tool
angles in the vector form: X =

[
x y z φ θ ψ

]T

xy
z

start position

desired position

−15−5 −5

0

0 05 5

10

20

30

40

Fig. 3: Linear-motion simulation in euclidean space.

IV. RESULTS

The controller was tested in three different environ-
ments: simulated, simulated with noise, and real robot.
For each of these environments, the controller was then
tested for three different scenarios: pure linear motion;
pure angular motion; and combined motion. The four
feature points were arranged in a square around the origin
of the reference frame: The desired pose of the camera
was the same for all the simulations, only the start poses
differ. The desired pose of the camera was 20 units above
the target object, exactly in the middle of the four feature
points. The camera was facing straight towards the target
object, i. e. its z-axis was perpendicular to the xy-plane and
pointing out. The x-axis of the camera was antiparallel to
the x-axis of the reference frame and the y-axis parallel
to the y-axis of the reference frame. This pose can be
described by:

∗Xw =
[

0 0 20 0◦ 180◦ 0◦
]T (16)

The control gains used for the controller were kept small
so that we could analyse the trajectory at small intervals.

As mentioned in Section III, we simulated both the noise
and the discrete aspects of a real camera. That is, we added

noise to the image coordinates to simulate a typical accu-
racy of 0.5 pixels within a random error of 2 pixels in any
direction. These values were obtained experimentally using
real images and a previously developed feature extraction
algorithm.

u [pixel]

v
[p

ix
el

]

start coordinates
desired coordinates

60
60

80

80

100

100

120

120

140

140

Fig. 4: Coordinates of the feature points in image space for the
linear-motion simulation.

A. Linear Motion
In this experiment the camera did not rotate, i. e. the

orientation of the camera in the start pose was the same
as in the desired pose. The camera was simply moved a
few units along the z-axis of the reference frame as well
as the x- and the y-axis of the reference frame. A typical
start pose used in the tests is (in XYZOAT coordinates):

◦Xw =
[−10 −10 40 0◦ 180◦ 0◦

]T (17)

t [s]

v c

vc

ω
c

ωc

−20

−4

0

0

1 3

4

5 7

20

40

×10−15

Fig. 5: Control inputs for the linear-motion simulation.

Figure 3 shows the pose of the camera at ten time
instants. The z-axis of the camera – the direction in which
the camera is “looking” – is marked with a triangle in
the figure. The four points on the target object, lying
in the xy-plane, are marked with a star. In Figure 4 the
image coordinates of the four points are shown. The image
coordinate at the start pose is marked with a circle, the
image coordinate at the desired pose with a star.

In Figure 5 the control inputs are shown. The first part
shows the linear velocities, the second part the angular
velocities of the camera.

u [pixel]

v
[p

ix
el

]

start coordinates
desired coordinates

60

80

100

120

140

160 200 240

Fig. 6: Coordinates of the target points in image space for the
angular-motion simulation.

B. Angular Motion
In this part of the experiments, the start position of

the camera was kept identical to the desired position, only
the orientation was changed. A typical start pose used was
given by:

◦Xw =
[

0 0 20 45◦ 150◦ 5◦
]T (18)

x
y

z

start position
desired position

−5
−5 0

0

5

5

5

15

25

Fig. 7: Angular-motion simulation in euclidean space.

As in Section IV-A, Figures 6, 7 and 8 show the
movement of the camera in euclidean space, the image
coordinates of the four feature points and the control
variables.

C. Coupled Motion
Here, the camera could perform any combined motion,

i. e. both the position and the orientation at the beginning
differ from the desired pose of the camera. Once again, a
typical start pose was:

◦Xw =
[

10 −10 40 90◦ 140◦ 10◦
]T (19)

As in Section IV-A, Figures 9, 10 and 11 show the move-
ment of the camera in euclidean space, the coordinates of

t [s]

v c
vc

ω
c

ωc

−4

−2

0

0

0.2

0.4

1

2

3 5 7

Fig. 8: Control inputs for the angular-motion simulation.

the four feature points in the image plane, and the control
variables.

x
y

z

start position

desired position

−10 −10

0

0 0

10

10

20

30

40

Fig. 9: Coupled-motion simulation in euclidean space.

u [pixel]

v
[p

ix
el

]

start coordinates
desired coordinates

60

80

80

100

120

120

140

160 200

Fig. 10: Coordinates of the target points in image space for the
coupled-motion simulation.

D. Influence of Noise
The setup for this simulation is the same as in Sec-

tion IV-C, but with noise added to the pixel coordinates.
That is, at each discrete time a set of image coordinates
is simulated and random Gaussian noise N(0.5,2) is added
to these same pixel coordinates.

As before, Figures 12, 13 and 14 show the movement of
the camera in euclidean space, the image coordinates of the

t [s]

v c

vc

ω
c

ωc

0

0

0.4

0.8

1 2 3 4 5 6 7

20

40

Fig. 11: Control inputs for the coupled-motion simulation.

x
y

z

start position

desired position

−15
−10−5

0

5

5 10

15

25

35

45

Fig. 12: Display in Euclidean space for the simulation of coupled
motion with added noise.

four feature points, and the control variables, respectively.
However, due to the limitation in space, here we depict
only the scenario for the coupled motion.

E. Tests with Real Robot
After the controller was validated through the simula-

tions above, we run the same scenarios as in Section IV-C
for the real robot.

As in Section IV-D, Figures 15, 16 and 17 show, respec-
tively, the movement of the camera in euclidean space, the
image coordinates of the four feature points and the control

u [pixel]

v
[p

ix
el

]

start coordinates
desired coordinates

60

80

80

100

100

120

120

140

140 160 180 200

Fig. 13: Coordinates of the target point in image space for the
coupled-motion simulation with noise.

t [s]

v c
vc

ω
c

ωc

0

0

0.4

0.8

1

1.2

3 5 7

20

40

Fig. 14: Control inputs for the coupled-motion simulation with
noise.

−100−50
0
50

850

950

1050

1150
1250

1350
x [mm] y [mm]

z
[m

m
]

Fig. 15: Real robot moving in Eucledean space for the coupled-
motion scenario.

variables. Also as in Section IV-D, here we only depict the
case of coupled motion (rotation and translation).

V. CONCLUSIONS

An implementation of an image-based visual servo con-
troller using C++ was presented. Various experiments
were conducted using a simulation of the robot, as well
as the real robot. For the simulation performed in Matlab-
Simulink and a Kawasaki robot simulator, two scenarios
were utilized: with and without noise. In all cases, the

100

100

200

200

300

300

400

400 500

v
[p

ix
el

]

u [pixel]

start

desired
estimated

Fig. 16: Coordinates of the target point in image space for the
real robot in coupled motion.

v c

vc

ω
c

ωc

−4

−0.04

−0.02

0

0

0.02

4
8

t [frames]
1000 2000 3000

Fig. 17: Control inputs for the coupled motion of the real robot.

controller achieved asymptotic regulation. This implemen-
tation experimentally validates the controller developed in
[4].

At this point, the control gains were kept small and
the discretized intervals were based on a normal camera
(30fps). Those choices let us achieve a convergence in less
than 7 seconds. However, for real-world applications, those
same choices must be revised so that the convergence can
be made a lot faster.

The control model and all software modules used
in this paper will be made available on line at
http://vigir.missouri.edu

Acknowledgment

The authors would like to thank Kawasaki, in special
Mitsuichi Hiratsuka, for the use of their simulator.

References

[1] J. C. K. Chou and M. Kamel. Finding the position and orientation
of a sensor on a robot manipulator using quaternions. Interna-
tional Journal of Robotics Research, 10(3):240–254, June 1991.

[2] G. N. DeSouza and A. C. Kak. A subsumptive, hierarchical, and
distributed vision-based architecture for smart robotics. IEEE
Transactions on Systems, Man and Cybernetics - Part B, 34(5),
Oct. 2004.

[3] R. Hirsh, G. N. DeSouza, and A. C. Kak. An iterative approach to
the hand-eye and base-world calibration problem. In Proceedings
of 2001 IEEE International Conference on Robotics and Automa-
tion, volume 1, pages 2171–2176, May 2001. Seoul, Korea.

[4] G. Hu, W.E. Dixon, S. Gupta, and N. Fitz-Coy. A quaternion
formulation for homography-based visual servo control. In IEEE
International Conference on Robotics and Automation, pages
2391–2396, 2006.

[5] S. Hutchinson, G. D. Hager, and P. Corke. A tutorial on visual
servo control. IEEE Transactions on Robotics & Automation,
12(5):651–670, October 1996.

[6] B.N. Saeed. Introduction to Robotics, Analysis, Systems, Appli-
cations. Prentice Hall Inc., 2001.

[7] Mark W. Spong and M. Vidyasagar. Robot Dynamics and
Control. John Wiley & Sons, 1989.

[8] T. Koenig and G. N. DeSouza. Implementation of a Homography-
based Visual Servo Control using a Quaternion Formulation.
Proceedings of Fifth International Conference on Informatics in
Control, Automation and Robotics, , May 2008.

[9] T. Koenig and G. N. DeSouza. Implementation of
a Homography-based Visual Servo Control using a
Quaternion Formulation. MU-ViGIR Technical Report,
http://vigir.missouri.edu/publications.htm

