
 

978-1-4244-1676-9/08 /$25.00 ©2008 IEEE                             RAM 2008 

Optimality Criteria for the Design of Manipulators 
 
 

Carbone G., Ottaviano E., Ceccarelli M. 
LARM: Laboratory of Robotics and Mechatronics 

DiMSAT, University of Cassino, Cassino, Italy 
{carbone; ottaviano; ceccarelli}@unicas.it 

 
 

Abstract—In this paper design criteria for manipulators are 
discussed and formulated for a multi-objective optimization 
problem. Optimality aspects are identified as suitable for 
numerical computations in a kinematic design procedure by 
looking at main aspects for analysis and design purposes. 
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I. INTRODUCTION 
Robotic manipulations are widely used in industrial 

applications and even in non-industrial environments, since 
manipulators are used to help human beings and/or to execute 
manipulative tasks. Several analysis results and design 
procedures have been proposed in a very rich literature in the 
last two decades.  

Robot performance is studied in terms of analysis that is 
also aimed to identify criteria as indices of merit. Evaluation 
can be computed by using synthetic numerical values of those 
criteria, even for comparative and catalogue purposes. Thus, 
there has been and still there is great attention for formulating 
performance criteria with numerically efficient algorithms. In 
addition, performance analysis is often formulated with 
numerical procedures that have been deduced for specific robot 
architectures. But then they have been extended to serial and 
parallel manipulators as general indices of merit. Those  
performance criteria are often used with suitable adaptations in 
design algorithms. Recently, optimal design procedures have 
been proposed for manipulators by using performance criteria 
as objective functions with the availability of commercial 
packages of numerical techniques for solving optimization 
problems. Illustrative examples of those approaches are [1-7] in 
which design procedures are proposed as single-objective or 
multi-objective optimization problems by using optimality 
criteria from performance analysis. 

Since the beginning of 1990’s at LARM: Laboratory of 
Robotics and Mechatronics in Cassino, a research line has been 
dedicated to the development of analysis formulation of 
manipulator performance that could be used in design 
algorithms and even in proper optimization problems by taking 
advantage of the peculiarity of solving techniques in 
commercial software packages. Recent results are reported in 
[8-14] as regarding serial and parallel manipulators, just to cite 
illustrative experiences.  

A well-trained person is usually characterized for 
manipulation purpose mainly in terms of positioning skill, arm 
mobility, arm power, movement velocity, and fatigue limits. 
Similarly, robotic manipulators are designed and selected for 
manipulative tasks by looking mainly at workspace volume, 
payload capacity, velocity performance, and stiffness. 
Therefore, it is quite reasonable to consider those aspects as 
fundamental criteria for manipulator design and operation 
characterization. 

In this paper, we have addressed our attention to 
performance analysis of manipulators with the aim to identify 
and formulate optimality criteria that can be useful both for 
evaluation and design purposes. Main aspects have been 
surveyed to propose efficient numerical computations for the 
basic manipulator characteristics regarding workspace, 
singularity, path planning, lightweight design, power 
consumption, and stiffness.  

 

II. THE DESIGN PROBLEM  
The design problem for manipulators consists in several 

phases whose the first one concerns with the kinematic design 
of the structure in terms of architecture, mobility, and size. The 
architecture can be chosen as open chain or parallel structure. 
In addition, different solutions can be selected within each 
structure as depending on manipulative tasks. In this paper, we 
have addressed attention to the problem of dimensional design 
that include mobility and size of a manipulator, [15]. In 
general, kinematic dimensional design is aimed to compute 
values of design parameters that characterize and size the 
kinematic structure of a manipulator. Several aspects can be 
considered in a design procedure and since they may give 
contradictory results, a formulation of multi-objective 
optimization problem can be useful to consider them 
simultaneously toward a suitable optimal solution. This can be 
formulated in a very general form as  

 min F(X) (1) 

subject to 

 G(X) < 0 (2) 

 H(X) = 0 

where X is the vector whose components are the design 
parameters; F is the objective function vector whose 



 

         

components are the expressions of mobility criteria; G(X) is 
the vector of constraint functions that describes limiting 
conditions, and H(X) is the vector of constraint functions that 
describes design prescriptions. 

In general, the design parameters in Eq.(1) are the sizes and 
mobility angles of manipulators architectures. The formulation 
of the design problem as an optimization problem gives the 
possibility to consider contemporaneously several design 
aspects that can be contradictory for an optimal solution. Thus, 
optimality criteria are of fundamental interest even for efficient 
computations in solving optimization problems for manipulator 
design. In this case, the analysis of manipulator performance 
must be aimed to computational algorithms that can be 
efficiently linked to the solving technique of the highly non-
linear optimal design problem of manipulators. 

III. OPTIMALITY CRITERIA 
A choice of a design criterion can be made according to two 

aspects, namely computational efficiency and possibility to be 
used both for serial and parallel manipulators. Flexibility for 
computational issues can be reached by using a general 
formulation that can have even computational complexity or 
can require certain computational efforts.  

Alternatives in formulating and choosing optimality criteria 
are always possible depending of the designer experience, 
design goals, and manipulator applications. Indeed, any choice 
of optimality criteria can be questionable when considering the 
above-mentioned aspects. In fact, many different indices and/or 
their computations have been proposed in a rich literature on 
manipulators both for analysis and design purposes. Those 
indices can be used and they have been used with proper 
formulation as optimality criteria in specific algorithms for 
optimal design of specific manipulators. Of course, any 
optimality criterion as well as its formulation can suffer 
drawbacks in terms of conceptual aim and numerical 
efficiency. In this paper we have focused attention on 
performance versatility. Within such aspects, computation of 
the proposed optimality criteria can require computational 
efforts, like for example those for time-consuming  iterative or 
scanning processes, and they can need additional numerical 
constraints, like for example those for avoiding singular 
numerical situations and bounding the feasible ranges for 
design parameters. The generality of a formulation, which can 
ensure a successful application to any manipulator topology, 
has been treated as much as possible by using standard 
expressions with adequate precisions with the aim to give a 
fairly simple numerical evaluation of the proposed optimality 
criteria and to obtain numerical versatility of the algorithms for 
efficiency within the overall design procedure. 

Therefore, considering the above-mentioned aspects we 
have proposed significant optimality criteria in term of 
workspace analysis, singularity avoidance, path planning, 
lightweight design, power consumption, and stiffness features. 

 

A. Workspace criterion 
The workspace is one of the most important kinematic 

properties of manipulators, because of its impact on 

manipulator design and its location in a work cell. 

A manipulator workspace can be identified as a set of 
reachable positions by a reference point at the manipulator’s 
extremity. This is referred as position workspace. Similarly, 
orientation workspace can be identified as a set of reachable 
orientations by a reference point at the manipulator’s extremity. 
Interpreting the orientation angles as workspace coordinates 
permits to treat the determination of the orientation workspace 
likewise the determination of the position workspace when a 
Cartesian space is considered in the computations. 

The analytic mapping for the forward Kinematics of a n-
DOF manipulator with r-dimensional task-space can be 
expressed in the form 

)(k:k n qp, r =ℜ→ℜ    (3) 

A general numerical evaluation of the workspace can be 
deduced by formulating a suitable binary representation of a 
cross-section in the task-space, as described in [16]. A cross-
section can be obtained with a suitable scan of the computed 
reachable positions and orientations p, once the forward 
kinematic problem has been solved to give p as function of the 
kinematic input joint variables q. A binary matrix P can be 
defined in a cross-section plane for a cross-section of the 
workspace as follows: if the (i, j) grid pixel includes a 
reachable point, then Pij = 1; otherwise Pij = 0, as shown in Fig. 
1. Therefore, a binary mapping for a workspace cross-section 
can be given as  

⎪⎩

⎪
⎨
⎧

∈
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 W(H)   if  P1
 W(H)   if  P0

 = P
ij

ij
ij    (4) 

where W(H) indicates workspace region; ∈ stands for 
‘belonging to’ and ∉ ‘“not belonging to’.  

The workspace volume V can be computed considering the 
cross-sections areas Az and the number of slices nz that have 
been considered for the workspace volume evaluation, 
according to scheme of Fig. 1, as 
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Figure 1.  A general scheme for a binary representation and evaluation of 

manipulator workspace. 



 

         

Similarly, the orientation workspace can be analyzed by 
using a suitable binary representation with another binary 
matrix for a workspace region that can be described in term of 
orientation angles, whose values can be considered in the 
reference axes of a grid mesh. Consequently, a numerical 
evaluation of orientation workspace can be carried out by using 
the formulation of Eqs. (3) to (4) in order to identify a 
corresponding binary matrix and to compute the corresponding 
orientation performance measures cross-sections areas Aϕ , and 
orientation workspace volume Vor, when a 3D representation of 
the orientation capability is obtained by using three angular 
coordinates as Cartesian coordinates. 

One can use Eqs (3) to (4) in order to evaluate any cross-
section by properly adapting the formulation to the cross-
section plane and intervals of a scanning process. Therefore, an 
optimum design problem with objective functions regarding 
workspace characteristics can be formulated as finding the 
optimal design parameters values to obtain the position and 
orientation workspace volumes that are as close as possible to 
prescribed ones in the form 

'
pos

pos
PW

V

V
1)(f −=X  (6) 

'
or

or
OW

V
V

1)(f −=X  (7) 

where | . | is the absolute value; the subscripts pos and or 
indicate position and orientation, respectively; and prime refers 
to prescribed values.  

 

B. Singularity avoidance criterion 
Design requirements can also be focused conveniently on a 

free singularity condition. In fact, it is desirable to ensure a 
given workspace volume within which the manipulator 
extremity can be movable, controllable, and far enough from 
singularities. The singularity analysis both for serial and 
parallel manipulators can be performed by means of Jacobian 
matrices. The instantaneous relationship between the velocity 
in the task-space and active joint velocity can be expressed as 

qAtB:)q(J n &=ℜ→ℜ , r
   (8) 

For serial manipulators B is the identity matrix, while for 
many parallel manipulators including the modified Gough-
Stewart platform design, A is the identity matrix. For 
manipulator designs for which neither A nor B become the 
identity matrix, a single Jacobian can be defined as either A-1B 
or B-1A provided A or B is invertible, the difference being the 
direction from task-space to joint space and vice-versa, in 
which the Jacobian is defined. Indeed, Eq. (8) can be 
conveniently expressed, as 

 qt &J=      (9) 

Matrix J represents the analytic Jacobian of a manipulator 
at the configuration q ∈ℜn and it indicates how infinitesimal 

changes of the configuration q translate into infinitesimal end-
effector motions in the vicinity of k(q). Vector q&  represents 
the joint rates, and t is the twist array containing the linear 
velocity vector v and the angular velocity vector ω of the 
moving platform. 

In general, the conditions for identifying singular 
configurations can be represented by surfaces in the n-
dimensional Joint Space and they can be obtained by vanishing 
the determinant of the Jacobian matrices (for square matrices). 

In particular, if Eq.(8) is considered, matrix A gives the 
Inverse Kinematics singularities; and B gives the Direct 
Kinematics singularities. Direct Kinematics singularities can be 
defined for parallel manipulators only, and they occur inside 
the workspace. In such configurations a parallel manipulator 
loses its rigidity, becoming locally movable, even if the 
actuated joints are locked.  

The concept of singularity has been extensively studied and 
several classification methods have been defined. Manipulator 
singularities can be classified into three main groups. Parallel 
manipulator singularities arise whenever A, B, or both, become 
singular; serial manipulator singularities arise if A becomes 
singular. Thus, a distinction can be made among three types of 
singularities, by considering Eq. (8), namely:  

- the first type of singularity occurs when A becomes 
singular but B is invertible, being 

A ⇒ not full rank and B ⇒ full rank  (10) 

- the second type of singularity occurs only in closed 
kinematic chains and arises when B becomes singular but A is 
invertible, i.e. 

A ⇒ full rank and B⇒ not full rank  (11) 

- the third type of singularity occurs when A and B are 
simultaneously singular, while none of the rows of B vanish.  

Under this type of singularity, the movable platform can 
undergo finite motions even if the actuators are locked or, 
equivalently, it cannot resist forces or moments into one or 
more directions over a finite portion of the workspace, even if 
all actuators are locked. The Jacobian matrix is pose dependent 
and non-isotropic. Consequently, it is important to consider the 
Jacobian in a rational design procedure, also because of those 
influences. Indeed, one can propose an objective function fJ 
that can be deduced by analyzing the analytical expression of 
the determinant of matrix J in the form 

( )
( ) 0

J Jdet
Jdetmin

f =     (12) 

with the condition 

( ) 0Jdet ≠      (13) 

that can take into account somehow all the situations in a 
singularity analysis, when the initial guess value J0 is 
considered to let f3 be adimensional. Furthermore, since 
Jacobian matrices are pose dependent, the minimum value has 



 

         

been considered convenient to obtain a single value function fJ.  

 

C. Optimal path planning 
Path planning can be regarded as the way to obtain a 

constrained trajectory when initial and final points are given. In 
order to determine a path for the end-effector from a start point 
to a goal point, different trajectories can be performed by the 
actuator actions. Polynomial splines are used to represent the 
joint position as function of travelling time. Cubic Splines are 
widely used for interpolation since they assure speed and 
acceleration continuity.  

A path planning optimality criterion can be formulated by 
considering the optimal traveling time, which takes the robot to 
perform a trajectory between two points in Cartesian 
coordinates. Thus, one can write 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

straight

path
PP t

t
1)X(f     (14) 

where patht is the time that takes the robot to perform the 

trajectory and straightt  is the time that the robot will take to 
perform a straight line trajectory. The position of the motors 
can be considered that evolve in time as a polynomial given by  

3
3j

2
2j1j0ji tatataa(t)q +++=    (15) 

where aij are constants, which can be calculated as based on 
boundary conditions on position, velocity and acceleration in 
the joint space at initial and goal positions that are obtained by 
means of the inverse kinematics.  

A reasonable choice is to assume as start point a robot 
configuration in which all actuators are in zero position 
(q(i)=0). Then, goal point can be chosen as a point, which is 
located from starting point at a fixed distance d given by 

( ) ( ) ( )2
sg

2
sg

2
sg zzyyxxd −+−+−=  (16) 

One should also ensure that the whole trajectory from the 
start point to the goal point should belong to robot the 
workspace. Therefore, additional constraint equations can be 
added to Eq.(14) accordingly. On the other hand, restriction in 
the actuators movement must be fulfilled as related to 
maximum speed, acceleration and jerk that cannot overcome 
the prescribed maximum values of joint velocities, 
accelerations, and jerks, respectively.  

Summarizing an optimality criterion for path planning has 
been proposed in term of the path time that can be computed 
both in simulation procedures and experimental tests as one of 
the most used merit index for productivity of robot 
manipulation. 

 

D. Lightweight design 
Lightweight design is desirable in order to have a light 

mechanical structure for safety reasons and at the most for a 
general suitable maneuverability, installation, and location of 

the robot. 

A reasonable and computationally efficient expression of 
the lightweight design criterion can be given by  

d

T
L M

M1)X(f −=                     (17) 

as referred to MT which is the overall mass of a robot and to Md 
which is the desired overall mass of the same robot. The robot 
mass, MT can be computed as the sum of the mass of links Mi, 
the mass of actuators Mj, and the mass of cables and sensors 
Mk, in the form 
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  (18) 

It is worth noting that the most critical aspect for obtaining 
a lightweight mechanical design is to reduce the weight of 
links. In fact, cables and sensors are usually market 
components with given size and mass. Although actuators are 
usually market components their size and mass mainly depend 
on the desired performance in terms of output power and they 
can be properly selected. Thus, the objective function in 
Eq.(17) will minimize the masses of links and actuators. 

The mass of the links can be easily related with their 
volumes and density. Thus, a minimization process will attempt 
to reduce link lengths and cross section sizes. Nevertheless, a 
constraint should be added in the form  

i i minA A 0− <                          (19) 

where Ai is the cross section area of i-th link and Aimin is the 
minimum acceptable cross section area for i-th link. The 
constraints given by Eq.(19) are needed for obtaining cross 
sections of links greater than a minimum area whose value 
depends on manufacturing constraints and strength conditions. 

 

E. Power consumption 
Power consumption is a critical issue at the most, but not 

only in the design of battery powered manipulators for service 
tasks. Power consumption is a very important design issue for 
other robots due to the fast growing of energy costs. Power 
consumption is strongly related also to lightweight design and 
path planning aspects. In fact, a lightweight design can 
significantly reduce power consumption and can improve path 
planning performance by reducing the overall mass and inertia.  

A design criterion for minimizing power consumption can 
be written in the form 

A

D
pc E

E1)X(f
∆
∆

−=     (20) 

where DE∆ is the total dissipated mechanical energy and 

AE∆ is a given available mechanical energy for the robot 
system.  

In a manipulator, positive work of motors mrL∆ is 



 

         

necessary for increasing the kinetic energy during the motion 
with increasing angular speeds. But, this kinetic energy that is 
stored in the system will be dissipated by the system in order to 
stop the input shafts at the end of the motion. If one neglects 
the effects of potential energy, one can consider the value of 
total dissipated mechanical energy DE∆ close to the value of 
the positive work mrL∆  during the motion with increasing 
angular speeds. This positive work mrL∆ can be computed as  
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⎡
∆∆τ=∆ &   (21) 

where m is the total number of control points of the trajectory 
with increasing angular speeds; τc     is the actuator torque on the 
k-th input shaft of the N actuators at the c-th control point; ∆αc 
is the k-th joint variable at the c-th control point; ∆tc is the time 
step between the c-th control point and the (c-1)-th control 
point.  

The kinetic energy of a robot strongly depends on inertial 
characteristics of the moved links in terms of mass and inertia 
moment. Thus, inertia characteristics pay an important role for 
power consumption and they should be carefully sized and 
included as design parameters or even as explicit optimality 
criteria for manipulator design within the performance 
evaluations in Eqs.(20) and (21). 

 

F. Stiffness criterion 
Stiffness and accuracy of a robotic manipulator are strongly 

related to each other since positioning and orientating errors are 
due to compliant displacements and clearances as well as to 
control, construction and assembling errors. The last errors can 
be evaluated by a kinematic analysis (calibration) by 
considering uncertainties in the kinematic parameters due to 
tolerances of construction and assembling of a robotic 
manipulator mechanism. 

The stiffness properties of a manipulator can be defined 
through a matrix that is called ‘Cartesian stiffness matrix K’. 
This matrix gives the relation between the vector of the 
compliant displacements ∆S = (Sx, Sy, Sz, Sϕ, Sψ, Sθ) occurring 
at the movable platform when a static wrench W = (Fx, Fy, Fz, 
Tx, Ty, Tz) acts upon it, and W itself in the form 

SWq ∆=ℜ→ℜ K, :)(K 66   (22) 

The stiffness matrix can be numerically computed by 
defining a suitable model of the manipulator, which takes into 
account lumped stiffness parameters of links and motors.  

The proposed stiffness models with lumped parameters can 
take into account both the compliance of actuators and links 
along and about X, Y, and Z directions. They are based on the 
assumption of small compliant displacements. Under this 
assumption the superposition principle holds. Thus, the 
compliance of each link and actuator can be considered as an 
additive term to the overall compliance. Moreover, also the 
effects of tension/compression, bending and torsion stiffness of 

a link can be considered as an additive term to the stiffness of 
the link itself. These additive terms can be defined as lumped 
parameters and they can be represented as linear or torsion 
springs. For example, a planar beam under an axial load along 
X axis can be represented with lumped stiffness parameter as 
shown in Fig.2a). In the model of Fig.2a) the symbol kC is the 
lumped stiffness parameter of the compression/tension stiffness 
of the beam that is represented by a linear spring. Similarly, a 
scheme of a planar beam with a bending force FB can be 
represented as in Fig.2b). In the model of Fig.2b) the symbol kB 
is the lumped stiffness parameter of the bending stiffness of the 
beam. Thus, a torsional spring will represent effects of  torsion 
and bending. 

The stiffness matrix can take into account the effects of 
tension/compression, bending and torsion. Simplified stiffness 
models with lumped parameters can be defined by considering 
only the non negligible terms and therefore, corresponding 
linear and torsional springs can be identified as related to the 
non zero entries. only. In addition, the stiffness of the actuators 
can be taken into account in a similar manner and they can be 
represented as linear or torsion springs too. Indeed the 
superposition principle can be applied by combining 
contributions into single springs. Thus, each spring can model 
compliance both of links and actuators.  

     
a)    b) 

  
c)     d) 

Figure 2.  Models for stiffness evaluation of  a planar beam: a) the case with 
axial load FA acting along X-axis and its model with lumped stiffness 

parameter kC; b) the case with a bending force FB and its model with lumped 
stiffness parameter kB. 

 

The stiffness matrix K can also be used to compute 
accuracy performance. In fact, the vector of compliant 
displacements ∆S=[∆U, ∆Y]T can be computed with its 
translating component ∆U and rotational component ∆Y by 
using Eq. (22) once the matrix K is determined when a static 
wrench acting on the movable platform is given.  

From the above-mentioned considerations two objective 
functions that take into account stiffness performance can be 
defined as  
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where | | is the operator for obtaining positive absolute values; 
∆Ud and ∆Ug are maximum compliant displacements along X, 
Y, and Z-axes; ∆Yd and ∆Yg are vectors whose components are 
the maximum compliant rotations ϕ, θ and ψ about X, Y, and Z 
axes, respectively; d and g subscripts stand for design and 
given values, respectively. 

Criteria fPS and fOS of Eqs. (23) and (24) can be considered 
separately or in a single objective function component, 
according to specific requirements. But, because of the 
definition in Eq. (20) this formulation needs the condition 

det K ≠ 0     (25) 

that can be used as additional constraint.  

 

IV. CONCLUSIONS 
Optimality criteria for manipulators design have been 

proposed as suitable for numerical computation. Performance 
aspects are outlined and formulations are derived for design 
purposes in a frame for a multi-objective optimization problem. 
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