
978-1-4244-1674-5/08 /$25.00 ©2008 IEEE                              CIS 2008 

Global Asymptotic Stability of Stochastic Neural 
Networks with Time-Varying Delays 

 

Zhengxia Wang1,2,* ,  Dacheng Wang2  ,Xinyuan Liang1, Haixia Wu3 

1 Department of Computer Science and 
Engineering, 

Chongqing  University , 
Chongqing, P R China 
*zxiawang@163.com 

 

2 School of Science 
Chongqing Jiaotong University 

Chongqing, P R China 
 
  
 

3 Department of Computer and Modern 
Education Technology 

Chongqing Education College 
Chongqing , P R China 

 

 
Abstract—This paper is concerned with asymptotic 

stability of stochastic neural networks with time-varying 
delay. Distinct difference from other analytical approach 
lies in “linearization” of neural network model, by which 
the considered neural network model is transformed into a 
linear time-variant system. A sufficient condition is 
derived such that for all admissible disturbance, the 
considered neural network is asymptotic stability in the 
mean square. The stability criterion is formulated by 
means of the feasibility of a LMI, which can be easily 
checked in practice. Finally, a numerical example is given 
to illustrate the effectiveness of the developed method. 
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I.  INTRODUCTION  
Different classes of neural networks with or without delays 

have been extensively studied in the past few years, due to its 
practical importance and successful applications in many areas 
such as combinatorial optimization, signal processing and 
pattern recognition [1]. Moreover, it should be pointed out that 
the applications of neural networks rely heavily on the 
dynamical behaviors of the networks. Therefore, stability 
analysis of neural networks has been investigated and a great 
number of approaches have been proposed. Time delay is 
inevitably encountered in neural network, since the 
interactions between different neurons are asynchronous. Time 
delays are a source of instability and bad performance of 
neural networks. Recently, many research interests have been 
attracted to the stability analysis for delayed neural networks. 
A great deal of result related to this issue have been reported, 
see [2-4] and reference therein. 

In recent years, the stability analysis issues for neural 
networks in these presence of parameter uncertainties or 
stochastic perturbations have caught some people’s notice 
[5,6]. Connection weights of the neurons depend on certain 
resistance and capacitance values that include uncertainties, 
and in real nervous systems the synaptic transmission is a 
noisy process brought on by random fluctuations from the 
release of neurotransmitters, and other probabilistic causes. A 
neural network could be stabilized or destabilized by some 

stochastic inputs [7], which implies that it is of practical 
significance to study the stability for delayed stochastic neural 
networks. However, the stability analysis of stochastic neural 
networks is more difficult than that of traditional neural 
networks. 

In [8], the asymptotical stability was studied for uncertain 
stochastic neural networks with discrete and distributed 
delays. in [9]exponential stability was studied for uncertain 
stochastic neural networks with multiple delays, in [10] delay-
dependent stability was studied for uncertain stochastic neural 
networks with time-varying delay. 

Motivated by the aforementioned discussion, this paper 
focuses on the asymptotical stability problem for stochastic 
neural networks with time-varying delay. An “linearization” 
approach is employed to shift nonlinear system into an interval 
linear time-varying system under the appropriate assumption 
on the activation functions. A stability criterion is developed 
by using the Lyapunov stability theory and the LMI technique. 
The LMI condition can be efficiently solved by LMI Control 
Toolbox, and no turning of parameters is required [11]. 

Notations: for convenience, some notations are 
introduced.  For a real square matrix X, the notation 

0( 0)X X> < means that X is symmetric and positive definite 
(negative definite). I is the identity matrix with appropriate 
dimension. The superscript ‘‘T’’ represents the transpose. 
For 0>τ , ([ ,0]; )nRτ℘ −  denotes the family of continuous 
functions ϕ from ]0,[ τ− to nR  with the norm 

0|| || sup | ( ) |τ ϑϕ ϕ ϑ− ≤ ≤= . Let ),}{,,( 0 PFF tt ;Ω  be a complete 
probability space with a filtration 

0}{ ≥ttF satisfying the usual 
conditions (i.e. it is right continuous and

0F  contains all P-pull 
sets); )];0,([

0

np
F RhL − the family of all 0F -measurable 

)];0,([ nRτ−℘ -valued random variables { ( ) : 0}ξ ξ θ τ θ= − ≤ ≤  
such that  

0sup | ( ) |pEτ θ ξ θ− ≤ ≤ < ∞ where E{.} stands for the 
mathematical expectation operator with respect to the given 
probability measure P; );(1,2 ++×℘ RRR n the family of all 
nonnegative functions ),( txV on +× RRn which are continuously 
twice differentiable in x and differentiable in t. 



         

II. PROBLEM FORMULATION 
the neural network with time-varying delay and stochastic 

perturbations can be described as follows: 

( ) [ ( ) ( ( )) ( ( ( ))] ( , ( ), ( ( ))) ( )dx t Dx t AG x t BG x t t dt t x t x t t d tτ σ τ ω= − + + − + −   (1) 

where 
1 2( ) ( ( ), ( ), ( ))Tnx t x t x t x t= … is the state vector, 

1 2( , , , )nD diag d d d= … has positive entries di >0, A and B are 
known constant matrices with appropriate dimensions , 

1 1 2 2( ( )) ( ( ( )), ( ( )), , ( ( )))Tn nG x t g x t g x t g x t= …  is the neuron activation 
function vector with g(0)=0, 

1 2( ) ( ( ), ( ), , ( ))Tmt t t tω ω ω ω= …  is an m-
dimensional Brownian motion defined on 

0( , ,{ } , )t tF F PΩ ;
. )(tτ is 

time-varying delay. 
1 2( , , , , , ) n m

nx y y y t Rσ ×∈…  is locally Lipschitz 
continuous and satisfies the linear growth condition as well. 
Moreover , σ satisfies 

1 2

[ ( ( ), ( ( ), ) ( ( ), ( ( ), )]

( ) ( ) ( ( )) ( ( ))

T

T T

trace x t x t t t P x t x t t t

x t x t x t t x t t

σ τ σ τ
τ τ

− −

≤ Σ + − Σ −
                                       (2) 

where 1 0Σ >  and 2 0Σ >  are known constant matrices with 
appropriate dimensions. 

In order to obtain our main results, the assumptions are 
always made throughout this paper. 

(H1)The active function g(.) is bounded, and there exists 
constants Li>0 such that ,for any 

, , 1,2, ,x y R i n∈ = " , | ( ) ( ) | | |i i ig x g y L x y− ≤ − , 

(H2)The time-varying delay ],0[),0[:)( hti →∞τ  are 
continuous and differentiable functions with 
| ( ) | 1, 1, 2, .i t i nτ ε≤ < =� "  

Recall the assumption (H1) on the activation functions and 
g(0)=0, we can define, for 1,2, ,i n= "  

( ( ))
( ) , ( ) 0,

( )
0, ( ) 0,

i i

i

g x t
ix t

i

i

x t
s t

x t

 ≠= 
=

                                                            (3) 

Obviously, )(tsi  is piecewise continuous on R. From (3) 
and the assumption (H1),we have 1 1is− ≤ ≤ . Furthermore, 
system (1) can be rewritten as, respectively, 

( ) [ ( ) ( ) ( ) ( ( )) ( ( )]
( , ( ), ( ( ))) ( )

dy t Dy t AS t y t BS t t y t t dt
t x t x t t d t

τ τ
σ τ ω

= − + + − −
+ −

                           (4) 

Where ( ) ( ( ))i n nS t diag s t ×=  

In Ref.[12], the fact 

0 0

( ) ( ) ( ) ( ) [ ( ) ( )]dx t x t x t d x t Ax t A x t d
τ τ

τ ξ ξ θ ξ τ ξ
− −

− = − + = − + + + −∫ ∫�               (5) 

We used to transform the system 

( ) ( ) ( )dx t Ax t A x t τ= + −�                                                                (6) 

into a distributed delay system: 

0

( ) ( ) ( ) ( ) ( ) [ ( ) ( )]d dx t A C x t A C x t C Ax t A x t d
τ

τ θ θ τ θ
−

= + + − − − + + + −∫�            (7) 

Where, C is a parameter matrix which makes the stability 
result less restrictive to some degree. Such process is 
generically called a parameterized first-order model 
transformation since only one-integration over one delay 
interval is used herein. Obviously, the new system (7) may 
exhibit some additional dynamics. However, the stability of 
(7) implies the stability of (6) for all [0, ]hτ ∈ (but the inverse is 
not always true). We refer the readers to Ref. [12] for the 
further discuss to the original system (5). 

Applying the model transformation above to the 
considered systems (4), we derive 

( )

( ) ( ( ) ) ( ) ( ( ( )) ) ( ( ))
( ( )) ( )

( , ( ), ( ( )) ) ( )
( ( )) ( ( )))

t

t t

y t D AS t C y t B S t t C y t t
D AS y

C t x t x t t d t
B S t y t dτ

τ τ
ξ ξ

σ τ ω
ξ τ ξ τ ξ−

= − + + + − − −
− +

− + −
+ − −∫

�     (8

) 

For the analysis made above, the stability of (8) implies the 
stability of (4),and hence, in what follows we mainly focus on 
the stability analysis for system (8). 

Remark 1. The assumption (2) on the stochastic 
disturbance term, )),((),(( tttxtxT τσ − .has been used in recent 
papers dealing with stochastic neural networks, see[9] and 
references therein. 

We are now in a position to introduce the notion of global 
asymptotic for the stochastic neural network (4) with time-
varying delay. 

Before starting the main results, we first need the 
following lemmas. 

Lemma 1. Given any real matrices 1 2 3, ,Σ Σ Σ  of  appropriate 
dimensions and a scalar 0>ε  such that 

3 30 T< Σ = Σ . Then , the 
following inequality holds: 

1 1
1 2 2 1 1 3 1 2 3 2 .T T T Tε ε − −Σ Σ + Σ Σ ≤ Σ Σ Σ + Σ Σ Σ  

Lemma 2. (Schur Complement). The following linear 
matrix inequality(LMI) 

( ) ( )
0

( ) ( )T

Q x S x
S x R x
 

> 
 

 

Where ( ) ( ), ( ) ( ),T TQ x Q x R x R x= =  and S(x) depend affinely on x, 
is equivalent to  

( ) 0,R x >  1( ) ( ) ( ) ( ) 0.TQ x S x R x S x−− >  

III. STOCHASTIC STABILITY ANALYSIS  
Definition1. For the neural network (4) and 

every
0

2 ([ ,0]; )nFL h Rξ ∈ − , the trivial solution (equilibrium point) is 



         

globally, asymptotically stable in the mean square if the 
following holds: 

2lim | ( ; ) | 0
t
E x t ξ

→∞
=                                                                      (9) 

soIt '�  formula [13] plays a key role in the stability analysis 
of stochastic systems. To facilitate the reader, some related 
results are cited here (see [16] for details). For a general 
stochastic system 

 1 2( ) ( ( ), ) ( ( ), ) ( )dx t h x t t dt h x t t d tω= +  on 0tt ≥ with initial value 
nRxtx ∈= 00 )( , where )(tω  is m-dimensional Brownian motion 

defined on ),}{,,( 0 PFF tt ;Ω , nn RRRh →× +:1
 and 

mnn RRRh ×+ →×:2 . Let );(1,2 +×∈℘ RRRV nn , an operator LV is 
defined from nn RR × to R by 

1
1 2 22( , ) ( , ) ( , ) ( , ) [ ( , ) ( , ) ( , )],T

t x xxLV x t V x t V x t h x t trace h x t V x t h x t= + +            

Where 

1
2

( , )( , ) ,

( , ) ( , )( , ) ( , , ),

( , )( , ) ( ) .

t

x
n

xx n n
i j

V x tV x t
t
V x t V x tV x t
x x

V x tV x t
x x ×

∂=
∂

∂ ∂=
∂ ∂

∂=
∂ ∂

…

 

Then, one can have 

0

0 0( ( ), ) ( , ) ( ( ))
t

t

EV x t t EV x t E LV x s ds= + ∫
 

The main purpose of this paper is to present some LMI-
based stability criteria under which the global asymptotical 
stability in the mean square of system (4) can be checked 
effectively by using the Matlab LMI Control Toolbox[11]. 

Theorem 1.If there exist positive definite matrices P , R2 , 
R3 , diagonal positive matrices R1 , R4,, R5, R6 and constant 
matrix nnRW ×∈  such that the following LMI holds:. 

1

2

3

4

5

6

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

T

T

T

T T

T T

T T

PA sPB sW hWD hWA hWB
A P R
sB P R
sW R

hD W R

hA W R

hB W R

 Ω − − − − − −
 

− − 
 − −
 

− −  <
 − − 
 − − 
 − − 

                (10) 

where 2
3 3 5 6 1 21 2 4 *T TPD D P W W R R R hR hR hR sΩ = − − + + + + + + + + + Σ + Σ

and 1(1 )s ε −= − , W=PC  , then the dynamics of the neural 
network (4) is globally, asymptotically stable in the mean 
square. 

Proof. Define a Lyapunov-Krasovskii functional candidate 
2,1( ( ), ) ( ; )n nV x t t R R R+∈℘ ×  by 

1 2 3( ( ), ) ( ( )) ( ( )) ( ( ))V x t t V x t V x t V x t= + +                  
(11) 

1 ( ( ), ) ( ) ( )TV x t t x t Px t=  

2
2 2 3 2

( )

0

4 5

( ( ) , ) ( ) ( ) ( )

( ( ) ( ) ( ) )

t
T

t t

t
T

h t

V x t t x R R s x d

x R R x d d

τ

θ

ξ ξ ξ

ξ ξ ξ θ

−

− +

= + + Σ

+ +

∫

∫ ∫

 

3 6
2

( ( ) , ) ( ( ) ( ) )
h t

T

h t

V x t t x R x d d
θ

ξ ξ ξ θ
−

− +

= ∫ ∫
 

Employing oIt� differential rule, one can deduce that 

2
2 2 3 2

2
2 3 2

0 0

4 5 4 5

4 5 4 5

4 5 4 5

( ( ), ) ( )( ) ( )
(1 ) ( ( ))( ) ( ( ))

( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

T

T

T T

h h

t
T T

t h

T T

t

LV x t t x t R R s x t
x t t R R s x t t

x t R R x t d x t R R x t d

hx t R R x t x R R x d

hx t R R x t x R R x d

ε τ τ

ξ ξ ξ ξ

ξ ξ ξ

ξ ξ ξ

− −

−

= + + Σ
+ − − + + Σ −

+ + − + + +

= + + +

≤ + + +

∫ ∫

∫

( )

t

tτ−
∫

                            (12) 

3 6 6
2 2

6 6

6 6
( )

( ( ) ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ( ) ) ( ( ) )

h h
T T

h h

t
T T

t h
t

T T

t t

L V y t x t R x t d x t R x t d

h x t R x t x h R x h d

h x t R x t x t R x t d
τ

ξ ξ ξ ξ

ξ ξ ξ

ξ τ ξ τ ξ

− −

−

−

= − + +

= + − −

≤ + − −

∫ ∫

∫

∫

                  (13) 

1

( )

( ( )) 2 ( ) {( ( ) ) ( ) ( ( ( )) ) ( ( ))

(( ( )) ( ) ( ( )) ( ( ))) }

( ( ( ), ( ( )), ) ( ( ), ( ( )), ))

T

t

t t

T

LV y t y t P D AS t C y t BS t t C y t t

C D AS t y BS t y t d

trace x t x t t t P x t x t t t
τ

τ τ

ξ ξ τ ξ τ ξ

σ τ σ τ
−

= − + + + − − −

− − + + − −

+ − −

∫
                      (14) 

2
1 2 3 4 4 6 1 2

1 1 1 1 1 1
1 2 3 4

1 1
5 6

( ( ), ) ( ){

(1 ) (1 )

} ( ) ( ) ( )

T T T

T T T T T

T T T T T

LV x t t x t PD D P W W R R R hR hR hR s

PAR A P PBR B P WR W hWDR D W

hWAR A W hWBR B W x t x t x t

ε ε− − − − − −

− −

= − − + + + + + + + + +Σ + Σ

+ + − + − +

+ + = Ω

          (15) 

Where  

2
1 2 3 4 4 6 1 2

1 1 1 1 1 1
1 2 3 4

1 1
5 6

(1 ) (1 )

T T

T T T T T

T T T T

PD D P W W R R R hR hR hR s

PAR A P PBR B P WR W hWDR D W

hWAR A W hWBR B W

ε ε− − − − − −

− −

Ω = − − + + + + + + + + + Σ + Σ

+ + − + − +

+ +

         (16) 

From (10) ， we known that 0<Ω . Taking the 
mathematical expectation of both sides of (), we have 

2[ ( ( ), )] [ ( ) ( )] | ( ) |TE LV x t t E x t x t E x tε≤ Ω ≤ −                                         (17） 

It indicates that system (4) is globally asymptotically stable 
in the mean square. This completes the proof. 

In Theorem 1, if we select model transformation matrix C 
as matrix B in system (11), consequently, W=PB, and 
A=0,that is the model was a pure delay model, then from 
Theorem 1 we have the following corollary: 

Corollary1. Suppose that the assumptions (H) are 
satisfied. Then system (1) is globally stable if there exist 



         

positive definite matrices P , R2 , R3 and diagonal positive 
matrices R1 , R4 such that the following LMI holds: 

1

2

3

4

6

0 0 0
0 0 0 0
0 0 0

0 0 0

T

T

T T

T T

sPB sPB hPBD hPBB
sB P R
sB P R

hD B P R

hB B P R

 Ω − − − −
 

− − 
 − − < 
 − −
 
− −  

                         (18) 

1 3 3 62 4T TPD D P PB B P R R hR hRΩ = − − + + + + + +  

IV. NUMERICAL EXAMPLE  
Example1. Consider a neural network with time-varying 

delay (3) with parameters 

1 0 0.125 0.25 0.25 0
0 1 0.25 0.125 0 0.25

D A B
     

= = =     
     

 

1 2

0.08 0 0.09 0
0 0.08 0 0.09

   
Σ = Σ =   

   
   

There exists at least a feasible solution to the conditions in 
Theorem 1, where h=10, 0.2ε = . 

1

33.6165 4.0292 10.2448 0
4.0292 33.6165 0 10.2448

P R   = =   
   

2 3

4 5

6

3.6547 0 0.7307 0
0 3.6547 0 0.7307

0.6417 0 0.6413 0
0 0.6417 0 0.6413

12.0638 0 0.2714 0.0688
0 12.0638 0.0688 0.2714

R R

R R

R W

   
= =   
   
   = =   
   

−   = =   −   

 

It follows from Theorem 1 that the stochastic neural 
network is globally asymptotically stable in the mean square. 

V. CONCLUSION  
The global asymptotical stability analysis problem for 

stochastic neural network with time-varying delay has been 
studied in this paper. Distinct difference from other analytical 
approach lies in “linearization” of neural network model, by 
which the considered neural network model is transformed 
into a linear time-variant system. Then, a process, which is 
called parameterized first-order model transformation, is used 
to transform the linear process. Novel criteria for global 
asymptotic stability of the unique equilibrium point of 
stochastic neural network with time-varying delays are 
obtained. The stability criterion is expressed by means of LMI, 
which can be readily tested by some standard numerical 
package. Therefore, the developed result is practical. 
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