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Abstract— The objective of this paper is to exploit the 
potential of considering the information gain in greedy mapping 
strategies based on a triangular mesh map for automatic 
modeling of a large rough outdoor environment. An energy cost 
function is used to represent the travel cost and two methods to 
estimate possible new terrain in one spot using a 3D image sensor 
are described. For the first method, assuming a partly known 
environment, the information gain is estimated by applying the 
ray tracing algorithm to the known part of the environment. For 
the second method, the new information gain is calculated using 
polygon clipping in an unknown environment. Simulation results 
in a typical rough agricultural field showed that the exploration 
strategy, which was incorporated with energy consumption and 
the information gain estimation with a ray tracing algorithm 
using a coarse map, had an advantage over other polices in terms 
of energy consumption and the path length. 
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I.  INTRODUCTION 
The main objective of exploration is to create an accurate 

map of an unknown area. To create an accurate map, a robot 
needs to know where it is, plan where to go next, collect the 
terrain information with sensor readings, and build the map to 
represent the environment. Therefore, the exploration task 
requires mobile robots to meet the objectives of both 
localization accuracy and exploring efficiency [1]. This work 
mainly focused on the exploring efficiency problem.   

Different exploration strategies have been employed for 
environmental modeling tasks. One group of exploration 
strategies is to choose the closest point as the next-best 
viewpoint among frontiers extracted from the boundary 
between the known and unknown areas [2]-[4]. The robot 
moved to the nearest frontier by the shortest path, took a scan 
and updated the environmental map. The mapping procedure 
repeated this iterative step until the entire area had been 
explored. Another family of methods [5]-[6] chooses the next-
best viewpoint considering safety factors.  

A large body of studies [1], [7]-[12] has centered on 
information-theoretic methods based on the use of information 
as a measure of utility for making exploration control actions. 
Bourgault et al. [1] attempted to maximize both the expected 
Shannon information gain and localization accuracy. Simmons 
et al. [9] investigated an explore algorithm based on next-best 
viewpoints which would provide the maximum new 

information gain and minimum driving cost using multiple 
robots. Feder et al. [11] proposed an information metric, named 
Fisher information, which was used to plan next sensing 
positions to maximum the terrain information gain and 
minimize expected dead-reckoning errors. Tovar et al. [12] 
developed optimal exploration strategies using a utility function 
which integrated the travel distance, size of the unexplored 
space, robot configuration uncertainty, landmark identification 
probability, and ability to see features like corners.  

Some researchers have started to investigate outdoor 
exploration tasks. Moorehead et al. [8] proposed a multiple- 
information-metrics exploration planner to integrate multiple 
sources of information in order to solve complex planetary 
exploration tasks. An information map was used to store 
multiple information sources for a 3D environment. This 
method enabled the robot explorer to maximize the total 
information gained while minimizing costs such as driving, 
sensing, and planning. The algorithm was demonstrated by 
creating traversability maps and exploring cliffs. Sujan and 
Dubowsky [10] developed an information-based visual robotic 
mapping approach based on a 3D occupancy grid map in an 
unstructured environment. The robot was controlled to 
maximize geometric knowledge gained about its environment 
using an evaluation function based on Shannon’s information 
theory. They firstly used the field of view of the camera to 
measure the new information gained in the exploration task.  

The aim of this project was to develop a next-best 
viewpoint algorithm for the construction of topographic maps 
for partially-known rough agricultural fields using a 3D image 
sensor. Agricultural environments have enough peculiarities to 
make the proposed development project challenging. In 
agricultural environments, there may be a commercial low-
resolution topographic map available. Agricultural fields are 
usually rough and large. The approach in this paper to 
agricultural environmental modeling has two important 
contributions. First, energy consumption is used to represent 
the travel cost rather than the path distance, which has been 
used in previous work. Second, a visibility analysis method 
based on frustum culling and ray casting is applied to estimate 
the new terrain information gain using a coarse triangular mesh 
map.  

II. TRIANGULAR MESH MAP 
Several environmental models have been implemented, 

including certainty grids [8], polygonal layouts [6], topological 



         

maps [13], and triangular mesh maps [14]. The triangular mesh 
map was used in this research to model the agricultural field 
surface because it allows a smoother path, compared with the 
square grid map [15].  

The triangular mesh map is incrementally built using laser 
sensor readings based on Delaunay triangulation [16]. The 
Visualization Toolkit [17] has been used to implement the 
triangulation in this work. Figure 1 shows an example of the 
triangular mesh map of an agricultural field. To find the 
boundary and holes in a triangular mesh map, a connectivity 
graph was built by adding all the boundary edges according to 
their connectivity relationships. By visiting all the edges of the 
connectivity graph, all the loops, including the outer boundary 
and holes, will be found. The loop of edges with the largest 
area is the outer boundary, while holes inside the outer 
boundary have smaller areas. 

 
Figure 1.  Triangular mesh map of an agricultural field environment (the 

black blobs represent obstacles). 

III. IMAGE SENSOR MODEL 
A 3D camera model was used in this task to deal with the 

rough terrain visibility problem, in which one part of the terrain 
may occlude other parts. The image sensor’s capacity is 
defined by a viewing frustum. The viewing frustum shown in 
Fig. 2 is described by six planes, which are named the near, far, 
left, right, top, and bottom planes. The viewing frustum defines 
the visibility of every triangle in the terrain for each viewpoint, 
and triangles inside the viewing frustum are visible to the 
viewer. Frustum culling was used to process the triangular level 
before the individual pixel was handled in the visibility 
analysis. Hence, the object level, the triangle, can be rejected 
quickly in the simulation. The procedure is much faster than a 
ray casting method [18]. To cull the models, the six planes of 
the viewing frustum were dynamically generated in accordance 
with the sensor’s posture. These planes were calculated from 
the view and perspective projection matrices in the camera 
system. In order to determine whether a triangle within the 
mesh is inside the frustum, it was necessary to check that all the 
vertices of the triangle were located inside the volume of the 
frustum.  

 

 
Figure 2.  Image sensor viewing frustum.. 

The next step in the vision sensor simulation was to check 
the visibility of every triangle contained in the frustum using a 
ray casting algorithm. A ray, as shown in Fig. 2, is a straight 
line extending from the viewpoint to a pixel in the far plane of 
the viewing frustum. The algorithm begins by shooting a ray 
from the viewpoint to the screen (the far plane of the viewing 
frustum), then every triangle inside the viewing frustum is 
tested to see if the given ray intersects any of them. One ray 
may intersect more than one triangle when a triangle is behind 
another. From the point of intersection, the triangle nearest to 
the viewpoint is visible through this ray, while other triangles 
which intersect with the ray are shadowed. In this way, the 
visible triangles can be identified as those which intersect 
contiguous rays with the shortest distance to the viewpoint.  

IV. EXPLORATION ALGORITHM 

A. Overview 
To create a topological map using a 3D image sensor, the 

robot used the iterative greedy method to plan the next-best 
viewpoints. The objective of the greedy approach is to find an 
optimal path to minimize the travel cost and maximize new 
terrain information gain. To begin each step, the robot extracts 
the frontiers [4] from the triangles close to the boundary 
between the known and unknown area. It constructs a voting 
scheme using a utility function that includes the estimated 
energy cost for it to travel to the frontiers and the estimated 
new terrain information gain for the frontiers. The robot visits 
the frontier at the point of the maximum utility and takes a scan 
using its image sensor. The map is updated by combining the 
new data. The robot plans the next best viewpoint with the new 
map until it reaches the goal of exploration or it is blocked.  

The use of a triangular mesh to represent terrain allows the 
use of a graph search to easily find the next best viewpoint. The 
triangular mesh map is stored in the computer as a directed 
weighted graph. Once the graph is constructed, an optimal path 
between the current rover location and a destination can be 
planned by Dijkstra’s shortest path algorithm [19].   

Previous work focused on path distance as the only source 
of the travel cost for the exploration. However, travel distance 
alone is unsuitable to represent travel cost in the rough terrain 
of an outdoor unstructured environment. Energy consumption 
is very important for exploration tasks such as planetary 
exploration or agricultural applications. In this work, the 
energy cost function not only considered the travel distance, 
but also included the energy required to change elevation and 
the rolling resistance of the terrain during exploration. 
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B. Frontiers Extraction 
The outer boundary and the hole boundary edges are 

identified after finding all the loops in the connectivity graph 
extracted from the triangular mesh map. The candidate frontiers 
in the map are defined as those triangles that have a specific 
distance from the boundary and have never acted as a 
viewpoint previously. To reduce the number of candidate 
locations on the frontier, the distance between two candidate 
frontiers must satisfy the minimum-distance requirement.   

C. Utility Function 
The goal of this work was to maximize terrain information 

gain while minimizing energy consumption; therefore, the 
utility was constructed simply using a linear combination of 
new terrain information and the energy cost. The utility 
function can be described by the formula 

nii ωk)α(1α +××−−×= CostIGUtility ,       (1) 

where, 

iα = information gain weight (dimensionless decimal 
fraction), 

IG = estimated new terrain information gain (m2), 
      Cost = estimated energy consumption (N·m),    

K = information gain coefficient (m2/( N·m )), and 

nω  = utility offset (m2). 

D. Energy Cost 
The total energy requirement for the vehicle to reach a goal 

location from a starting location would be predicted by the 
integration of energy (E) in the piecewise path.  

Assuming that soil hardness of the field is known and 
uniform, the energy requirement can be calculated by the 
following formula [20]: 
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where, 

totalE  = the energy requirement (N·m),  

W  = the weight of the robot (N),  

i∆z  = slope height of the ith segment of a piecewise path 
(m),  

hid  = horizontal distance of the ith segment of a piecewise 
path (m), 

iµ  = 0.04B* +
i

ih

l
d

, rolling resistance coefficient 

(dimensionless),  
      n  = the number of the segments of the path, 

 B = constant (dimensionless), related with the robot 
weight, soil hardness, and the tire size and 

il  = the Euclidean distance of the ith segment of a piecewise 
path (m). 

The energy consumption is proportional to the elevation 
change, i∆z . When driving uphill, i∆z  is positive and the 
slope resistance is in the opposite direction of the vehicle’s 
tractive force. When driving downhill, i∆z  is negative, and the 
slope resistance is in the same direction as the vehicle’s tractive 
force. This manuscript assumed the vehicle travels at a constant 
speed; therefore, brake energy will be required when the 
negative elevation change, i∆z , is excessive.  

The energy consumption is also proportional to the 
horizontal trip distance of the vehicle. The contribution of 
travel distance to energy consumption will vary considerably in 
relation to the rolling resistance coefficient, iµ . A tire’s rolling 
resistance coefficient depends on the soil hardness, terrain 
slope, and wheel parameters.   

The vehicle dynamics and the safety factor are also of 
concern in this work. In this work, the maximum climbing 
slope for the robot was set as 30º and the maximum downhill 
slope was 35º. When the uphill slope is greater than 30º or 
downhill slope is greater than 35º, the slope factor will be set to 
infinity because of the vehicle limitation.  

The soil hardness might be highly variable in one field 
considering soil type and moisture content can cause significant 
changes in CI values. While it wasn’t considered in this work, a 
soil strength map with site-specific CI value could be used to 
calculate the variable rolling resistance at any point in the field. 

E. Information Gain 
Two different methods to estimate the new terrain 

information gain have been developed. To address the case of 
exploration without a coarse map a priori, the overlap of the 
sensor’s 2D footprint with the map was used to find how much 
new terrain area might be found in the next step. A 3D 
visibility analysis method based on frustum culling and ray 
casting was employed to estimate the new terrain information 
gain when a low-resolution map is available in advance. 

1) Information gain estimation method 1 
The Sutherland-Hodgman algorithm [18] was used to 

calculate the overlap between the terrain boundary and the 
sensor foot print. The algorithm uses a divide-and-conquer 
strategy to attack the problem. First, it identifies the 
intersection between the triangles within the viewing frustum 
and triangles within the outer boundary. Any area within the 
viewing frustum that does not coincide with triangles within the 
boundary is neglected. The resulting polygon will include 
triangles about which information is known and those which 
are to be explored as shown in Fig. 3. The terrain information 
gained can be estimated by calculating unknown area of 
unexplored terrain within the polygon. 

2) Information gain estimation method 2 
With a partially known map and 3D camera model, 

visibility analysis can be used to estimate which triangle is 
visible from every candidate viewpoint of the image sensor. 
The information gain can be calculated by applying frustum 
culling and a ray tracing algorithm to the known part of the 
environment.  



         

 

 
Figure 3.   The sensor’s footprint used to estimate the information gain. 

V. SIMULATION SETUP 
A four-wheel drive robot (mass: 16 kg; length: 50 cm; 

width: 49 cm; height: 26 cm) with four identical wheels (wheel 
diameter: 25.2 cm; wheel width: 7.5 cm) was used in the 
simulation. A 3D laser sensor model with a 90° field of view, 
50 meter depth of field, and 1:1 aspect ratio was used as the 
vision system. It was assumed that the robot traveled at a 
steady speed of 3 m/s. Two different methods of estimating 
information gain were tested on the field. The starting location 
was varied to investigate its affect on algorithm performanc. By 
combining three different information gain weights with two 
utility functions, five exploration strategies ( iα =0 results in 
identical functions) were tested: 

(1) minimum energy consumption ( iα  =0),  
(2) considered both energy requirement and information 

gain 1 (method 1, iα  =0.5),  

(3) maximum information gain 1 (method 1, iα =1), 
(4) considered both energy requirement and information 

gain 2 (method 2, iα =0.5), and  
(5) maximum information gain 2 (method 2, iα =1).  

VI. RESULTS AND DISCUSSIONS 
The trajectory paths generated using the five methods are 

given in Fig. 4(a) through Fig. 4(e), respectively. The black 
lines represent the path and the arrows show the vehicle’s 
travel direction, while the cross marks represent viewpoints 
where the robot stopped to take a scan. Figure 4 shows that 
strategies considering only information gain have more overlap 
in their trajectory plots. However, the other three strategies, 
which considered the minimum energy cost or integrated both 
the energy cost and information gain, have less overlap in the 
path generated in the simulation.  

Figures 5(a) – 5(e) show the relationship of the fraction of 
the environment mapped and the energy requirement, distance 
traveled, time requirement (including planning time and 
navigation time), and scan number by the robot exploration of 
agricultural field 1 starting from location A for the five 
exploration strategies. As shown in Figs. 5(a) and 5(b), it is 
apparent that the energy requirement and path length of the 

methods that  considered energy consumption  were 
substantially smaller than those that considered only 

  
(a)     (b) 

 
(c)     (d) 

 
(e) 

Figure 4.  Trajectories generated in the simulation (arrows represent travel 
direction; cross marks represent viewpoints; started at S (starting point A) and 

ended at E): (a) minimum energy consumption; (b) considered both energy 
requirement and information gain 1; (c) maximum information gain 1; (d) 
consider both energy requirement and information gain 2, (e) maximum 

information gain 2. 

 

information gain, while the fraction of the terrain explored was 
greater in the former. The strategies using both information 
gain and energy consumption resulted in more efficient energy 
usage and shorter path length during the beginning of the 
exploration tasks, while the minimum energy requirement 
method required slightly more energy and traveled furtherin the 
earlier stages of the exploration task.  For the three methods 
that considered the energy consumption or both energy 
consumption and information gain, they resulted in almost the 
same path length and energy consumption for 90 percent of the 
exploration task. After that, the efficiency of the exploration 
policy using information gain method 1 decreased greatly in 
terms of energy usage and path length.  
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(d)                                                                     

Figure 5.  Result of the autonomous mapping of the agricultural field: (a) normalized accumulated energy requirement (the nominal energy is divided by the 
maximum energy) of the exploration as a function of fraction of explored terrain; (b) accumulated path length traveled by the robot as a function of fraction 
of explored terrain. (c) accumulated time required as a function of fraction of explored terrain; (d) accumulated number of scans as a function of fraction of 

explored terrain. 

Figure 5(c) shows that the minimum energy requirement 
method greatly outperformed other methods in terms of time 
requirement, although it required more energy and traveled 
further to complete the same tasks than the method that 
considered both energy requirement and information gain 2. 
This is because the information gain methods required much 
more time for planning the path. It also shows that the method 
using frustum culling and a ray casting algorithm required 
much more time than the method using the sensor footprint to 
estimate new information gain, because the ray casting 
algorithm needs a relatively large amount of time to do 
calculations.  

The method, considered both energy requirement and 
information gain 2 (method 2, iα  =0.5), performed the best 
among the 5 methods in terms of total energy requirement and 
path length for 90% of the exploration task. Because there is a 
coarse map available for this method to estimate the 
information gain method, the robot could plan a better next-
best viewpoint by maximizing both the information gain and 
minimizing the travel cost in each step; therefore, the 
information gain method 2 performed best in terms of total 

energy consumption and path length. These results demonstrate 
a great advantage of exploration with the ray tracing using a 
coarse map over other situations, and the advantages of the ray 
casting algorithm over the simple sensor footprint method to 
estimate the new terrain information are apparent.  

Figure 5(e) shows that the number of scans for the 
minimum energy cost method, which did not consider the 
information gain, was drastically larger than those methods that 
considered the information gain.   

VII. SUMMARY AND CONCLUSIONS 
Information-based exploration algorithms were presented to 

address the problem of the next-best viewpoint in modeling 
large rough unstructured environments. A triangular mesh map 
was used to represent a 3D rough environment. An energy cost 
function was proposed to represent the travel cost. Two 
methods of estimating new terrain information gain were 
developed. The first method of estimating information gain 
involved polygon clipping. A terrain visibility analysis based 
on a viewing frustum model and ray casting algorithm was 
proposed in the second method to address the information gain 



 

 

estimation for exploration with an a priori coarse map. 
Simulation results using a typical western Canadian 
agricultural field were presented.  

The exploration strategy, which incorporated the energy 
consumption and the information gain with a ray tracing 
algorithm using a coarse map, had an advantage over other 
policies in terms of the total energy consumption and the path 
length. However, the frustum culling and the ray casting 
algorithms required more planning time than the method that 
used the sensor footprint to estimate new information gain. 

Path length and energy requirement of the methods that 
considered energy consumption were substantially less than 
those for the methods that consider only information gain. The 
maximum-information-gain methods required more energy 
than the minimum energy and other two methods, considering 
both energy requirement and the information gain.  

The number of scans  for the greedy method that did not 
consider information gain was larger than for those methods 
that considered information gain. These results show the 
effectiveness of the algorithm considering both the energy 
consumption and travel cost. 

Future work will aim at implementing the algorithm on an 
experimental robot. Some practical problems need to be 
addressed in the future. First, the energy cost function 
developed in this paper assumed that the soil hardness is 
uniform in the whole filed. The soil hardness might be highly 
variable in one field. The soil hardness map should be 
integrated in the energy cost function if a soil strength map is 
available in future work. Second, it will require significant 
research effort to complete the whole robotic navigation 
system. A robotic platform equipped with a 3D image sensor 
and a position sensor should be developed. A map stitching 
algorithm which combines a variety of sensor readings into a 
triangular mesh map should also be developed.    
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