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Abstract— A new immune algorithm inspired from danger
model is proposed. The algorithm adopts two novel mechanisms,
namely variable danger zone and danger signal, which provide
the algorithm with self adaptive learning in such a way that
the antibodies and antigens mutual interact through a defense-
offense-like manner. Several experiments are carried out to
valuate the proposed algorithm. Results show that our algorithm
exhibits high accuracy in solving online classification problems.

I. INTRODUCTION

It has long been accepted among immunologists that the
immune system works by discriminating self and nonself,
which is called SNS (Self-NonSelf) model. Recently, however,
a different theory referred to as danger model has been
proposed and attracts interesting in theoretical immunology
communities [1], [2]. General speaking, the danger model not
only offers answers to immunological questions, it also covers
many details that had not been incorporated into SNS model
[2]. Although to what degree does the danger model reflect
the principles of immune system is still controversial [3], what
we mainly interesting in is the metaphors behind it, especially
those which SNS model can not offers us, and the method of
applying them in design of novel immune algorithms.

Unlike the SNS model, the danger model assumes that the
recognition of danger signal rather than nonself signal is the
key factor in triggering immune response. It also assumes
that cells that undergoing unnatural deaths may release danger
signal which covers a small area around that cell, which
is called “danger zone” [4]; on the other hand, the danger
signal should not be sent by healthy cells [2]. The APCs
(Antigen-Presenting Cells) which receive danger signal within
the danger zone are activated and co-stimulate the B-cells or
helper T-cells which already have captured the antigen, i.e.
received the nonself signal. Even if a B-cell or helper T-cell out
of the danger zone captures the antigen, it can not be stimulated
since it do not receives danger signal from any APC.

This paper present a novel immune algorithm inspired from
danger theory. The concept of “danger zone” is incorporated
into our model to develop and train antibody population. As
its biological counterpart, the danger zone is caused by anti-
genic stimulation. Its radius is decreased along with immune
response. The danger zone establishes a way to localize the
training of antibody population, avoid the interference from
distant antigens. This strategy, as far as we know, is the first
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attempt of introducing variable antigen activity into design of
immune algorithm. In addition, two kinds of signal, i.e. antigen
detection(nonself signal) and co-stimulation(danger signal) are
adopted. The condition for triggering the immune response of
an antibody is that it receives nonself signal and danger signal
simultaneously. A suppression mechanism is adopted to con-
trol the growing of antibody population. Furthermore, clonal
selection based on historical performance is used to ensure the
proliferation of outstanding antibodies as well as deterioration
of inferior antibodies. Based on these mechanisms a defense-
offense-like manner is imposed on mutual interaction between
antibody population and antigen population, which provides
the algorithm with self adaptive learning capability.

II. FRAMEWORK OF THE PROPOSED ALGORITHM

We start the discussion with a summarization of the nota-
tions and operators in our algorithm. (see Tab. I)

TABLE I

NOTATIONS AND OPERATORS USED IN THE ALGORITHM

B Antibody population, B = {b1, b2, · · · , b|B|} ⊆ RL

M Memory antibodies, M = {m1, m2, · · · , m|M|}
G General antibodies, G = {g1, g2, · · · , g|G|}

M ∩ G = ∅,M∪G = B
S Stimulated antibodies, S = {s1, s2, · · · , s|S|} ⊆ G
A Antigen population, A = {a1, a2, · · · , a|A|} ⊆ RL

us(bi) Update the status of antibody bi

cs(bi) Clonal selection of antibody bi

sp(B) Suppression within antibody population B
re(bi, aj) Antibody bi react to antigen aj

ud(ai) Update the danger value of antigen ai

Now we draw a overall framework for our proposed algo-
rithm. (see Algorithm 1)

III. LEARNING PROCESS OF THE ALGORITHM

Before detailing the learning process of our proposed al-
gorithm, it’s necessary to introduce the inner data structure of
the antigen and antibody. Each antigen or antibody has a class
label l indicating the class it belongs to. Since this paper is
mainly focused on two class classification for simplicity, the
value of l is then taken from {0, 1}. The label of an antigen is
remain constant, whereas the label of an antibody is variable.
Each antigen has a danger value indicating its activity, which
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1: Randomly generate G, M← ∅;
2: while Stop criterion not satisfied do
3: for i← 0 to |A| do
4: G receives signal 0 and 1 from ai;
5: Generate S which made up of antibodies receive

signal 0 and signal 1 simultaneously;
6: for j ← 0 to |S| do
7: us(sj);
8: re(sj , ai);
9: end for

10: sp(B);
11: ud(ai);
12: for k ← 0 to |S| do
13: if sk satisfies the clonal selection condition then
14: cs(sk);
15: end if
16: end for
17: end for
18: end while
19: Output M;

Algorithm 1: The framework of the proposed algorithm

will be decreased along with the response from antibodies.
The status of an antibody is indicated by three integers: v1,
v2, and v3. The v1 indicates the accumulated stimulation
the antibody receives from antigens. The v2 indicates the
antibody’s accumulated classification reliability. The last value
v3 indicates whether the antibody has the same label with
current antigen. Several learning processes such as antibody
suppression, clonal selection, and antibody reaction are both
based on this three values. When an antigen is presented
and stimulate antibodies, the status of each antibody may
change according to their spatial locations and classification
results on current antigen. Moreover, the antibody population
is divided into general antibodies and memory antibodies.
Any general antibody accumulates sufficient stimulation may
converted to memory antibody. Memory antibodies serve as
formed memory to antigen population and can be used in future
classification.

The following sub-sections cover several key steps of the
proposed algorithm.

A. Initialization

The algorithm starts with initializing G by randomly gener-
ate general antibodies. The label l of each antibody is randomly
assigned. The status value v1, v2, and v3 of each antibody are
set to zero. The M is initialized as ∅.
B. Two Kinds of Signal

As mentioned above, the danger model assumes that the
immune system does not react to foreigner but to danger maker.
However, “no reaction” does not means “no detection”. In
fact, the danger serves as a co-stimulation signal, which we
call ”signal 1”; and the perceiving of the foreign antigens
is called ”signal 0”. Antibodies receive both signal 0 and

Fig. 1. The two kinds of signal. Every general antibody receives signal 0.
But only those within danger zone can receive signal 1, which are said to be
stimulated by current antigen.

signal 1 are said to be stimulated (see Fig.1). When an
antigen is presented, all general antibodies receive signal 0
from it. Precisely speaking, general antibodies can perceive
the appearance of current antigen ag by calculating the affinity
between them and that antigen:

affinity(bi, ag) = ‖bi − ag‖ (1)

Unlike the signal 0, signal 1 only received by antibodies within
the danger zone created by ag, which is defined as:

D = {p|affinity(p, ag) ≤ ag.danger} (2)

The antibodies receives signal 0 and signal 1 are stimulated
and allowed to change their status values (see Algorithm 2).

1: gi.v1 ← gi.s1 + 1;
2: if gi.l = antigen.l then
3: gi.v3 = 1;
4: else
5: gi.v3 = −1;
6: end if
7: gi.v2 ← gi.v2 + gi.v3;

Algorithm 2: us(gi) used to update the status of antibody

C. Antibody Reaction and Antigen Defense

In addition to updating status, stimulated antibodies also
react to current antigen. The intensity of such reaction is
inversely proportional to the affinity between the antibody and
current antigen ag:

reactivity(si, ag) = 1− affinity(si, ag)/ag.danger (3)

That is, the antibodies which closer to ag have stronger reactiv-
ity against it. Stimulated antibodies react to ag independently
according to their reactivity:

si = si + si.v3 × reactivity × (ag − si) (4)

From equation 4 we can find that the stimulated antibodies
which have same label with ag(i.e. v3 = 1) will run forward
it; whereas those which have different label with ag(v3 = −1)
will run backward it (see Fig. 2). Equation 3 and 4 form the
reaction operator re(bi,antigen).

In our model, we adopt variable antigen danger value.
Such strategy , like natural immune system, can be seen as
both result of reaction of antibody against antigen and result
of defense of antigen against antibody (see Fig. 2). In fact,



Fig. 2. Antibody reaction. Left: before stimulation; Right: after stimulation.
The stimulated antibodies with v3 = 1 run forward the antigen; those with
(v3 = −1) run backward the antigen. The danger value of antigen ag2
decreases more than that of ag1 since it stimulates more antibodies.

considering that the danger value represents the activity of
an antigen, it’s reasonable to assume that the more antibody
stimulated by an antigen, the more its activity decreased due to
immune reaction. On the other hand, the decreasing of danger
value can be seen as an antigen’s self-protection strategy since
there will be less antibodies stimulated and response to it in the
future due to the decreasing of danger value (note again that
only general antibodies within danger zone can be stimulated
by current antigen). Based on these considerations, we design
algorithm 3 to update the danger value of antigen ag.

1: var ← (|S|+ 1)k1 ;
2: ag.danger← ag.danger/var;

Algorithm 3: ud(ag) used to update the danger of antigen

D. Suppression Between Antibodies

We control the growing of antibody population through
suppression mechansim. The suppression is divided into two
independent processes. One is the suppression between stimu-
lated antibodies in S; the other is suppression between memory
antibodies inM. The intensity of suppression between any two
antibodies is inversely proportional to their mutual affinity.

Precisely speaking, for any two stimulated antibodies si and
sj , the one with lower affinity to current antigen will be deleted
with probability p1 calculated by:

p1 =
(

1− affinity(si, sj)
2× antigen.danger

)k2

(5)

Where k2 is adjustable parameter controls the intensity of
suppression between stimulated antibodies. Similarly, For any
two memory antibodies mi and mj which are included in the
danger zone, the one with lower affinity to current antigen will
be deleted with probability p2 calculated by:

p2 =
(

1− affinity(mi, mj)
2× ag.danger

)k3

(6)

Where k3 is adjustable parameter controls the intensity of
suppression between memory antibodies. Algorithm 4 depicts
the whole suppression process(see also Fig. 3).

Fig. 3. Suppression between antibodies. Antibodies ab1 and ab2 are
randomly grouped into a pair; ab3 and ab4 are randomly grouped into another
pair. Since ab1 and ab3 have relative lower affinity against current antigen,
they are deleted with probability calculated according to formula 5 or 6.
Finally, ab3 is deleted, whereas ab1 survives.

1: randomly group S into pairs;
2: for all pairs do
3: calculate p1 according to equation 5;
4: if random < p1 then
5: delete the one with lower affinity to antigen;
6: end if
7: end for
8: randomly group M into pairs;
9: for all pairs do

10: calculate p2 according to equation 6;
11: if random < p2 then
12: delete the one with lower affinity to antigen;
13: end if
14: end for

Algorithm 4: The suppression operator sp(B)

Fig. 4. The clonal selection process

E. Clonal Selection

The clonal selection is adopted as aid for proliferation
of outstanding antibodies and deterioration of incapable an-
tibodies. So that we need first bring forward a measurement
to decide whether an antibody is outstanding or incapable.
We achieve this by introducing two positive threshold value,
namely T1 and T2(T2 ≤ T1). Only when the v1 of a general
antibody reaches T1 can it enter the clonal selection process.
Then, according to the v2 of that antibody, one out of three
operations will be implemented on it:

1) If s2 ≥ T2, convert it to memory antibody and clone it,
all clones go through mutation.

2) If rel ≤ −T2, invert its label, reset its status to zero.
3) If |rel| < T2, delete it with possibility p. Where p =



1− (|v2|/T2)2.

The adoption of clonal selection makes us measure the
potential of any antibody from the point of view of historical
performance. If the v1 reaches T1 but v2 still below T2,
that means the antibody alternately recognize(stimulated by)
antigens with different class label. In other word, the antibody
has low classification reliability, then it is reasonable to let it
release the chance of proliferation. Algorithm 5 depicts the
process of clonal selection(see also Fig. 4).

1: if |bi.v2| < T2 and random < 1− (|bi.v2|/T2) then
2: delete bi;
3: else if bi.v2 ≤ −T2 then
4: bi.l ← −bi.l;
5: bi.v1 ← 0;
6: bi.v2 ← 0;
7: else
8: Clone bi;
9: Mutate each clone of bi;

10: Convert bi to memory antibody;
11: end if

Algorithm 5: Clonal selection operator cs(bi)

The size of clones is calculated by following formula:

size = �(mc − 1)× bi.v2 − T2

T1 − T2
+ 1� (7)

Note that for bi that can takes part in cloning, T2 ≤ bi.v2 ≤
T1, then from equation 7 we have 0 ≤ size ≤ mc. So the
parameter mc represents the maximum size of clones.

IV. SIMULATIONS

In this section, we present experiments for illustrating
the learning process as well as evaluating the classification
accuracy of our proposed method.

A. Artificial Data

T1 T1 iniSize iniDV mc k1 k2 k3

6 4 10 0.02 4 1.5 0.5 1.5

TABLE II

PARAMETER SETTINGS OF THE EXPERIMENT BASED ON ARTIFICIAL DATA

The artificial data set contains 12000 antigens in 2-
dimensional unit square. The antigens are averagely divided
into two classes which are highly not linearly separable(see
Fig. 5). Our objective is to obtain an antibody population with
controlled size that can correctly classify and represent the
topology of original antigens in each class. The parameter
settings are listed in Table.II, where the iniSize indicates
the initial size of general antibody population; the iniDV
represents the initial danger value of antigens. The stop crite-
rion is defined as over 30000 generations(a quarter of antigen
population size) there is no antibody stimulated.
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Fig. 5. The antigen population. Left: class 1 antigens; right: class 2 antigens.
Each class contains 9000 antigens. The two classes are highly not linear
separable.
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Fig. 6. The final memory antibody population. The dots represent class 1
antibodies; the circles represent class 2 antibodies.

Fig. 6 shows the final memory antibody population. The
learning process lasts 486965 generations. The final memory
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Fig. 7. The memory antibody population in early phases. The dots represent
class 1 antibodies; the circles represent class 2 antibodies.

antibody population contains 1003 memory antibodies, among
which 479 antibodies belong to class 1 and 524 antibodies
belong to class 2; hence the compression ratio is 8.36%. From
Fig6 we can find that the evolved antibodies can well represent
the areas in which both class of original antigens reside, and
that the boundary of closer different classes is clear. In fact, in
terms of inner-class antigens, the proposed algorithm works
as ’data compressor’; in terms of inter-class, the proposed
algorithm plays role as a cluster.

We use the original data set to test the classification
performance of our algorithm. The final correct classification
rate is 88.83%. considering that the data set is highly not linear
separable and the quantity of antigens which reside close to
overlapping areas is considerable(see Fig. 5), this performance
is acceptable.

Fig.7 shows the memory antibody population in former
225000 generations. The algorithm behaves as incremental
learning: gradually stimulated by different antigens, the ran-
domly initialized antibodies undergo clonal selection and sup-
pression, eventually grows into matured antibodies. As shown
in Fig.7 and Fig.8(a), the learning process can be divided
into two distinct phases: the shaping phase and the maturating
phase. At the former 250000 generations, the memory antibody
population is gradually shaped as the rough topology of origi-
nal antigens. The population increases fast in this phase. When
the shaping is finished, the population enters the maturating
phase. The maturating lasts 200000 generations in which the
population size is increases slowly. Fig.8(b) shows the number
of stimulated antibodies in different generations, from which
we can find that the stimulation of antigens to antibodies is
decreases along with the decreasing of danger value. At the
former shaping phase, the danger value of antigen is relative
large, there is more antibodies stimulated by danger zones,
both the clonal selection and antibody suppression are frequent.
The general topology of antibody population is formed in this
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Fig. 8. The size of memory antibody population and stimulated antibodies
during the learning process. The sampling frequency is 50 generations.

phase. At the maturating phase, the danger value of antigen is
small, there is less antibodies stimulated, so the clonal selection
and antibody suppression is sparse. The diversity of antibody
number in different areas is formed in this phase.

B. Real Problem

T1 T1 iniSize iniDV mc k1 k2 k3

6 4 100 1.5 3 0.08 3.6 5

TABLE III

PARAMETER SETTINGS USED IN EXPERIMENT BASED ON PIMA INDIANS

DIABETES DATA SET

The follow experiment is based on Wisconsin Breast
Cancer Database taken from the University of California at
Irvine(UCI) Machine Learning Repository [11]. The original



Method Reported accuracy(%)
C4.5 [5] 94.74
RIAC [6] 94.99
LDA [7] 96.80

NEFCLASS [8] 95.06
Optimized-LVQ [9] 96.70

Big-LVQ [9] 96.80
AIRS [9] 97.20

Supervised fuzzy clustering [10] 95.57

TABLE IV

PREVIOUS RESULTS ON BREAST CANCER DIAGNOSIS PROBLEM.

database contains 699 instances, each instance has 9 numeric-
valued attributes. Since there are 16 instances that contain
missing attribute values, we only use the rest 683 instances
for our experiment. The instances are divided into 2 classes:
class 0(tested benign) contains 444(65.0%) instances; class
1(tested malignant) contains 239(35.0%) instances. We apply
10-fold cross-validation for 20 times. In each time, the mean
classification accuracy on both training sets and validating sets
are calculated, then the final accuracy is obtained by averaging
all the 20 results. The attributes are normalized in the unitary
hypercube [0, 1]9 using the min-max normalization. Table III
lists the parameter settings used in this experiment.

The breast cancer diagnosis is a widely used benchmark
problem among machine learning community, and several pre-
vious results have been reported. Some well-known methods
and their results are listed in Table IV. These methods are all
use 10-fold cross-validation which is the same setting used in
our experiment. Although there are some other studys that also
attain well performance, they used different validation settings
and are ignored in Table IV.

Table V summarizes the result of our experiment. The
overall average accuracy on training set is 97.46%; and the
overall average accuracy on validation set is 96.84%. It turns
out from Table V that the obtained memory antibodies can well
represent the original antigens. Comparing with several previ-
ous results on this dataset, our algorithm exhibits compititive
classification capacity.

worst best mean std.
Training set 97.20% 98.10% 97.46% 6.1e-4

Validation set 96.49% 97.66% 96.84% 2.3e-3

TABLE V

CLASSIFICATION ACCURACY OF EXPERIMENT BASED ON WISCONSIN

BREAST CANCER DATABASE

V. CONCLUSION

An adaptive learning immune algorithm is proposed in this
paper. Our method is based on the essential elements of danger
theory, which is a newborn promising theoretical immunology
model. We evaluate our method through several experiments.
Primary results show that our method exhibits strong capacity
in online two class classification. Most of the work in this

paper is experimental, so the next step will be a thorough
theoretical study. We plan to analyze the correlation between
parameters and to what degree does each parameter affect the
classification performance, and to study the rules of how to
choose parameter settings to obtain an optimal performance.
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