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Abstract— The paper describes a robust method to extract 3D 
lines from stereo point clouds. This method combines 2D image 
information with 3D point clouds from a stereo camera. 2D lines 
are first extracted from the image in the stereo pair, followed by 
3D line regression from the back-projected 3D point set of the 
images points in the detected 2D lines. In this paper, RANdom 
SAmple Consensus (RANSAC) is used to estimate 3D line from 
the 3D point set, the Mahalanobis distance from each 3D point to 
the 3D line is derived, and the statistically motivated distance 
measure is used to compute the support for the detected 3D line. 
Experimental results on real environment with high level of 
clutter, occlusion, and noise demonstrate the robustness of the 
algorithm.  
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I.  INTRODUCTION  
Many applications in home service robotics require robust 

line features by stereo vision. The paper presents an algorithm 
for robust 3D line extraction from stereo point clouds. 3D Line 
feature is one of the most important features for 3D object 
recognition in computer vision area. 3D object recognition has 
been one of the major problems in robotics field and studied 
intensively recently. Many researchers have proposed various 
3D object recognition approaches [1], among them, the model-
based recognition method is the most popular one for dealing 
with the recognition and pose estimation, In home service robot 
applications, a home working environment exhibits a different 
spectral signatures that naturally are occurring phenomena. The 
fact that in-site environment and man made objects (e.g. 
building, furniture, refrigerator, etc.) display most straight 
edges bring line features to critical important features in object 
recognition. 

Computer stereo vision is popular used in mobile robotics, 
and two cameras take pictures of the same scene, but they are 
separated by a distance - exactly like our eyes. Compared with 
laser rangefinder, stereo systems are inherently inexpensive, 
have small dimensions, and may provide 3D information at full 
frame rate and simultaneous acquisition of range data and 
images which can find visual features while measuring the 
distance to object. A lot of stereo devices have been 
commercialized, such as Videre, Bumble Bee, etc., a popular 
product, the Videre camera has been used in our work.  

Unfortunately, the quality of stereo data is not accurate and 
each stereo point cloud has uncertainty, due to the modeling 
process from perspective images that uncertainty of an object 

point depends on heavily on its location in object space with 
respect to the cameras [6]. Correlation-based technique has 
been adopted by the Videre system. An analysis of errors 
associated with searching for disparities using a correlation 
window was presented in [2]. As we know that stereo system 
can not work well with poor textured scene, and another 
disadvantage of stereo system is that the disparities (differences 
between corresponding points in the two images) are, mainly, 
parallel with the baseline of the system (the line that joins the 
optical centers of the two cameras), the search for 
corresponding points thus needs to be done along lines parallel 
with this baseline.  

Due to the poor accuracy of stereo data, using stereo range 
data alone would not get acceptable 3D lines. Our strategy is 
that to combine the information both from 2D image and stereo 
point clouds (indeed, this is an additional advantage of stereo 
system). All lines are firstly extracted from 2D image and then 
back-project these 2D lines to the 3D point clouds to get the 
subset of 3D points.  RANdom SAmple Consensus (RANSAC) 
which is an algorithm to estimate parameters of a mathematical 
model from a set of observed data which contains outliers. Its 
principle is well explained in [3][4], RANSAC algorithm has 
been used in our work for line detection from point set which 
corresponds to the specific 2D line segment, the main 
advantage of RANSAC is its ability to do robust estimation of 
the model parameters with a high degree of accuracy even 
when outliers are present in the data set. RANSAC algorithm is 
based on sampling strategies: Hypotheses are generated and 
their support is measured in the point clouds, which requires 
computing the support of each point for a given hypothesis, i.e. 
the probability that the point is explained by the hypothesis. 
The simplest way is to assign the probability 1 to all points 
within a certain threshold distance and assign 0 to all other 
points, as we know that in stereo point clouds, the individual 
uncertainties of each point are different, so the distance 
measure must take into account the individual uncertainty, 
because they are highly inhomogeneous in stereo point clouds. 
In this paper we analyzed uncertainty of each point according 
to the range resolution of the Videre stereo camera, and 
Mahalanobis distance [5] is used here for measuring the 
unbiased distance from point to hypothesized 3D line,   
Mahalanobis distance differs from Euclidean distance in that it 
takes into account the individual uncertainties of each 3D point 
and is scale-invariant. So the statistically correct way is to use 
the value of probability density function(pdf) at the given 
Mahalanobis distance to compute the support of the hypothesis, 



         

Gaussian pdf has been adopted in our work, The main 
contribution of this paper is to develop a statistic approach to 
extract 3D line robustly from stereo point clouds.  

The remainder of this paper is organized as follows: In 
Section 2, we briefly review related works. Section 3 presents 
the uncertainty analysis of stereo point clouds. In Section 4 
details of robust regression of stereo point clouds are explained, 
which includes derivation of Mahalanobis distance from a 3D 
point to a 3D line, together with the implementation detail of 
RANSAC algorithm. Experimental results and discussions are 
presented in Section 5. Our conclusions follow in Section 6. 

II. RELATED WORKS 
Stereo vision provides real time, full-field distance 

information, and is useful in many applications in a wide 
variety of fields, including robotics, people-tracking [10], 
environment modeling[11], obstacle avoidance[12], mapping 
and navigation[8][9]. Instead of working directly with raw 
stereo point clouds, feature-based applications firstly transform 
the raw stereo points into geometric features. Among many 
geometric primitives, line segments is the simplest one, 
especially it is easy to describe most of the man-made indoor 
environment for home service robot. In 3D line extraction, 
ranges images sensed by laser range finders are frequently used, 
because dense and accurate 3D points can be obtained, and so 
many line extraction methods have been proposed based on 2D 
laser range finder [13]. In general, the handling and analysis of 
3D data obtained from range finders require expensive 
computational costs, because the 3D data is a huge collection 
of unstructured 3D points. In addition, the range finder itself is 
still costly and complicated to operate and maintain compared 
with stereo camera. These are significant factors for using 
stereo vision system instead of range finder. The stereo 
matching is of two general types: area based and feature based. 
Our commercial stereo camera is area based for real time 
application. Two types of feature based are point-like local 
features such as corners, SIFT and line segments. Line segment 
based stereo matching is a choice for 3D line extraction directly 
[13]. But after extraction of line segments from the left and 
right images, the procedure for line matching is very 
complicated. Since we have stereo point clouds from 
commercial stereo camera, combine the 2D image information 
and stereo point clouds together, 3D line can be extracted in a 
robust and fast way. In the vision area, RANSAC algorithm is 
used to detect mathematical features like straight lines and 
circles. In the field of automatic buildings modeling based on 
range information, many authors suggest its use for achieving 
different tasks. For example, Ameri and Fritsch [7] use 
RANSAC algorithm for detecting the building roof planes. 
Forlani [15] apply RANSAC algorithm in order to correct the 
building roof segmentation result which are obtained using a 
partition in 8 classes of the gradient orientation. In our case, 
RANSAC algorithm is used to detect 3D lines. 

K. Schindler [6] introduced a new approach for robust 
regression in photogrammetric point clouds. They described the 
local object point precision and the Mahalanobis distance to 
plane is derived to allow unbiased regression statistically by 
taking into account the individual uncertainties of the points.   
Our work is developed based on Konrad and Horst’s work, 

significant difference between the two approaches is that ours 
application is real 3D line extraction from real stereo point 
clouds instead of plane regression by synthetic data. 

III. UNCERTAINTY ANALYSIS OF STEREO POINT CLOUDS  
A brief introduction of stereo model and uncertainty 

propagation in the stereo reconstruction process will be 
presented in this section. Stereo analysis is the process of 
measuring range to an object based on a comparison of the 
object projection on two or more images. The fundamental 
problem is finding corresponding elements between the images. 
Once the match is made, the range to the object can be 
computed using the image geometry. 

A. Stereo Model and Disparity 
For a good understanding of stereo processing, it is 

necessary to understand what is the stereo geometry as 
illustrated in Fig.1.  

 
Figure 1.    (a) Basic stereo geometry, (b) Definition of Disparity: offset of 
the image location of an object. 

Fig.1 (a) shows the relationship of two ideal stereo cameras. 
The global coordinate system is centered on the focal point 
(camera center) of the left camera. It is a right-handed system, 
with positive Z in front of the camera, and positive X to the 
right. The camera principal ray pierces the image plane at Cx,Cy, 
which is the same in both cameras. The focal length is also the 
same. The images are lined up, with v=v’ for the coordinates of 
any scene point projected into the images. The distance 
between the focal points is aligned with the X axis. Fig.1 (b) 
displays a simplified view of stereo disparity. Two images of 
the same object are taken from different viewpoints. The 
distance between the viewpoints is called the baseline b. The 
focal length of the lenses is f. The horizontal distance from the 
image center to the object image is dl for the left image, and dr 
for the right image. The relationship of above parameters is:  
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It is easy to see that the range resolution is a function of the 
range itself (1). At closer ranges, the resolution is much better 
than farther. Range resolution is governed by the equation (2), 
the range resolution ∆r, is the smallest change in range that is 
discernable by the stereo geometry, given a change in disparity 
of ∆d. 

B. Uncertainty Propagation of Stereo Points 
Many problems in computer vision can be couched in terms 

of parameter estimation from image-based measurements. Such 
problems arise in stereo vision, with the estimation of the 
fundamental matrix and in many other areas. Because such 
problems are typically very sensitive to noise, this uncertainty 
noise information is usually expressed in terms of covariance 
matrices. A measured image point is described by its 
coordinates and covariance matrix: 
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A 3D point q is reconstructed by image points from the left 
image and right image of the stereo system. The 3D point 
coordinates and covariance matrix describe the point position 
in 3D space with a 3D probability distribution. The q is given 
as (4): 
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In our case, stereo point clouds are generated from Videre 
stereo camera with short baselines in order to enable automatic 
matching with area-based correlation. In such a recording setup 
the depth information has high uncertainty. 

 
Figure 2.   Uncertainty propagation  (a) Top view of stereo camera and object, 
(b) Reconstructed 3D points, given by ellipsoid error bound. 

From Fig.2 we can see that the uncertainty of point depends 
on the camera positions. If the point is close to the cameras, the 
uncertainty is low; otherwise uncertainty is high.  

IV. MAHALANOBIS DISTANCE TO A 3D LINE AND         
RANSAC ALGORITHM  FOR 3D LINE DETECTION 

A. Mahalanobis Distance to A 3D Line 
In statistics, Mahalanobis distance is a distance measure 

introduced by P. C. Mahalanobis [5]. It is based on correlations 
between variables by which different patterns can be identified 
and analyzed. It is a useful way of determining similarity of an 

unknown sample set to a known one. It differs from Euclidean 
distance in that it takes into account the correlations of the data 
set and is scale-invariant, i.e. not dependent on the scale of 
measurements. 

The parametric equation for a 3D line is: 
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Where Tzyxm ),,( 0000 = is some point on the line and 
Tcbal ),,(= is a vector defining the direction of the line, t is 

the parameter whose value is varied to define points on the line. 
Since the distance measure is to determine the probability that a 
point belong the 3D line, the distance measure must take into 
account the uncertainty of an each individual point. 
Mahalanobis distance can be used here, and the Mahalanobis 
distance from an uncertain 3D point x  to a given point x is 
defined as: 
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To get the Mahalanobis distance to a 3D line, we have to 
apply a whitening transform and normalization to the 
covariance matrix qΣ and the 3D line (geometrically means 
transform the ellipsoid to a unit sphere). We transform the 
observed point q linearly so that we obtain a new vector 

'q which is white, i.e., its components are uncorrelated and 
their variances equal unity. In other words, the covariance 
matrix of  'q  equals the identity matrix, the centering is simply 

a shift from q  to the origin T)0,0,0( of the coordinate. Since 

covariance matrix qΣ is symmetric, one popular method for 
whitening is to use the Singular Value Decomposition (SVD) 
given the rotation matrix R and the scale matrix V.  
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R aligns the coordinate system with the ellipsoid axes, while 
the element a, b, c of V compensate the non-uniform scale 
along different axes. Then the whitening transform of the point 

0m on the line is (8):  
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And the whitening transform of the direction vector l of the 
line can be derived by (9):  
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So the Mahalanobis distance )(qDM  from the transformed 

line ( ','0 lm ) to the center of the unit sphere can be computed 
by (10), and the center of the unit sphere lies in the origin of the 
new coordinate system (see Fig.3)  
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Figure 3.  Mahalanobis Distance  (a) The distance from a point to a 3D line, 
(b) ,(c)  Comparing distance in the presence of uncertainty of individual point. 
The probability of belong to the 3D line is higher for point q1than the point q2 
although D1>D2. After transforming the error ellipsoids to the unit sphere the 
distance measures the probability correctly. 

 
Figure 4.  Probability analysis of Mahalanobis distance, below figure has 
higher probability than the above figure based on the Mahalanobis distance. 

Gaussian probability density function (pdf) will be used 
here for probability analysis of the Mahalanobis distance, and a 
point support for the 3D line is thus determined by the 
percentile rank of )'(qDM in the normalized Gaussian 
probability density function.  
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The total support for a 3D line in a stereo point set {q1,q2,...qn} 
is the sum of the support values S(qi) 
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B.  RANSAC Algorithm for 3D Line Detection 
The principle of RANSAC algorithm is to search the best 

3D Line among a 3D point cloud. It selects 2 points randomly 
and get the initial parameters of the corresponding 3D line. 
Then it detects all points of the point set support the 3D line by 
probability analysis through Mahalanobis distance instead of 
threshold in Euclidean distance. If the new result is better, then 
it replaces the saved result by the new one.  

Algorithm: RANSAC for 3D Line Detection 
Input data: 
- 3D point set (point_set) which is a matrix of  [X Y Z]; 
- Number of iteration N 

1. BestSupportProbability = 0; BestLine = NULL 
2. while( iteration <= N ) 
3.     pts = Choose 2 points randomly from (point_set) 
4.     Line = pts2Line(pts) 
5.     MahalanobisDistance = dist2Line(Line, point_set) 
6.     Probability = MDist2Prob(MahalanobisDistance) 
7.     SupportProbability = SumProb(Probability) 
8.     if ( BestSupportProbability < SupportProbability) 
9.        BestSupportProbability = SupportProbability 
10.        BestLine = Line 
11.     end 
12.     iteration = iteration + 1; 
13. endwhile 

In the above pseudo code, pts2Line calculates the Line 
parameter from 2 randomly chosen points, Dist2Line 
calculates the Mahalanobis distance between point set to the 
given 3D line, Mdist2Prob converts the Mahalanobis distance 
to support probability for a 3D line, and SumProb calculates 
the total support for a 3D line based on (12).  

V. EXPERIMENTAL RESULTS 
Due to the uncertainty of stereo point clouds, candidate 3D 

lines are selected starting from the 2D line segment which can 
be back-projected to the 3D point clouds. The data format of 
the stereo point clouds is (x, y, z, r, g, b, u, v), in which (x, y, z) 
is the 3D coordinate of the stereo point clouds, and (r, g, b) is 
the pixel value (RGB information) of the 2D image at the (u, v) 
coordinate in the 2D image. So from (x, y, z, r, g, b, u, v) data 
format, the relationship between the stereo point clouds and 2D 
image can be corresponded. First of all, the edgels(edge pixels) 
are detected by Canny algorithm, followed by a simple 
algorithm which inspired from David Lowe's Link.c function 
from the Vista image processing library [16] by linking the 
edge pixels together into chains, and then remerge the broken 
branches into line segments. Secondly, after extracting 2D line 
segments from the 2D image, and find the corresponding 3D 
point set along the same (u,v) coordinate as the 2D line 
segments. Then these sub-3D point sets will be regressed to a 
straight 3D lines based on RANSAC algorithm and probability 
analysis of Mahalanobis distance, which takes account of the 
uncertainty analysis of stereo point clouds. The Videre stereo 
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camera is used for this experiment, together with the mobile 
robot (Fig.5).  

 
Figure 5.  Equipments for experiments. 

 

Figure 6.  Experimental results:  (a) 2D Image, this image include a juice 
dispensor. (b) Edge image by Canny algorithm. (c) stereo point clouds . (d) 
stereo point clouds with the back-projected 3D point set which corresponding 
to the 2D lines. (e) 2D line segments. (f) 3D Lines from stereo point clouds.  

Fig.6 shows that most features of the juice dispenser have been 
extracted. Compared with 2D lines in Fig.6 (e), some 3D lines 
are missed in Fig.6 (f). The main reason is that there has no 
enough or accurate stereo point clouds along the 2D line 
Segments. From Fig.6(a) we can see that the left-bottom part 
has no much texture information, then the reconstruction of 
stereo images is very difficult since correspondences between 
the left and right image are not good enough, as shown in 
Fig.6(c) no enough point clouds from the left-bottom part of 
the scene.  

VI. CONCLUSIONS 
The paper proposes a new, robust algorithm for 3D line 
extraction from stereo point clouds. This approach combines 
2D image information with stereo point clouds together, which 
is a good additional advantage of stereo system. We analyzed 

the uncertainties of the point clouds and derived the 
Mahalanobis distance from a point to a 3D line, motivated from 
statistically distance measure, Gaussian pdf is used to compute 
the support probability for the 3D line of each individual point, 
RANSAC algorithm is used to detect the 3D line from point set. 
As shown in the experimental results, we extracted robust 3D 
lines by using the introduced approach.  
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