
 

978-1-4244-1676-9/08 /$25.00 ©2008 IEEE                             RAM 2008 

Application of the Optimal Input Design in Shaking 
Table Experimental System  

 

Jianqiu Chen1,2   Xinzheng Zhang1 

1. Department of Automation 
University of Guangdong Technology 

Guangzhou 510006, P. R. China 
cjq_72@126.com 

Ping Tan2  Fulin Zhou2 

2. Guangdong Key Laboratory of Earthquake Engineering 
& Applied Technique 

University of Guangzhou 
Guangzhou 510006, P. R. China

 
 

Abstract—This paper focuses on the optimal input design 
question of white noise drive signal for the simulated earthquake 
shaking table experimental system. The input sequence is white 
processed by doubly stochastic interchange optimized algorithm 
which has been improved in this paper, and the operating speed 
has obviously been expedited. Thus the white noise drive signal  
can satisfy conditions of the optimal input to a certain extent, and 
the experimental time won’t be so longer. 
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I.  INTRODUCTION 
It is desirable to have an accurate process model for the 

design of a controller. The input signal for the identification 
experiment determines the nature and accuracy of the system 
characteristics that are identified and used for control design, 
which must satisfy PE (Persistence Excitation) conditions. 
Therefore, the choice of this signal is crucial for the quality and 
performance of the designed controller. However, there are 
often constraints on the length of observation time or on the 
magnitude of disturbance to the system produced by the input 
signal, which limits the choice of available inputs and makes a 
careful selection necessary, focusing on the demands 
prescribed by the intended application of the controller. 

Input design problems first arose in statistics and became 
relevant for engineering in the 1960s. A survey of early work in 
this area is given in Mehra (1974) [1]. This work focussed 
mainly on determination of parameters and prediction, while 
control design was let aside. The design criteria are scalar 
measures of the information matrix M-1, or the average per data 
sample information matrix M-1, which were chosen rather ad 
hoc. Some of these cost functions are: 

A-optimality: 1−Mtr (and as a more general case 
)( 1−MWtr ), where 0≥W is a positive semidefinite weighting 

matrix; this is called L-optimality). This measure minimizes the 
average variance of the parameters.  

E-optimality: λmax( 1−M ) where λmax denotes the maximum 
eigenvalue.  

D-optimality: log| 1−M |. This measure minimizes the 
volume of the confidence ellipsoid defined by the covariance 
matrix of the parameters. An important advantage of D-

optimality is that it is invariant under linear transformations of 
the parameter vector, whereas A- and E-optimality are variable. 

The limitation to these and comparably simple cost 
functions were dictated by a lack of efficient optimization 
algorithms. All mentioned functions depend analytically on the 
entries of M  and may be efficiently minimized using, e.g. 
Kiefer–Wolfowitz theory (Kiefer, 1974) [2], which was already 
available in the early 1970s. 

In practical applications the number of input data is often 
sufficiently large, but the assumption of the model order 
tending to infinity is not very realistic. Therefore it is advisable 
to use a covariance formula which is asymptotic only in the 
number of data, but valid for finite model order. Such formulas 
were known for decades (Ljung, 1999) [3], but input design 
problems with cost functions involving them were too difficult 
to solve. This changed with the appearance of powerful convex 
optimization methods. In Hildebrand and Gevers (2003) [4], a 
more complicated input design criterion based on the more 
exact covariance formula was treated whose minimization was 
conducted by the ellipsoid method (Boyd, El Ghaoui, Feron, & 
Balakrishnan, 1994) [5]. This is a particularly robust method 
which requires only information about the gradient of the cost 
function and supporting hyperplanes to the feasible set of 
search parameters, and can hence minimize a large variety of 
cost functions. Sometimes input design problems or their 
relaxed versions can be solved by semidefinite programming 
(see e.g. Bombois, Scorletti, Gevers, Hildebrand, & van den 
Hof, 2004) [6]. A summary of such methods is given in 
Jansson (2004) [7]. 

This paper introduces adaptive parameter identification 
technique, and then the optimal input design problem is 
generally defined. The procedure of obtaining the approximate 
white noise is expressed, and finally, the further albinism 
approximate white noise to the shaking table experimental 
system  is implemented.  

II. ADAPTIVE PARAMETER IDENTIFICATION TECHNIQUE 
The presented study considers the parameter identification 

of the following dynamic system: 
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where n
n RxxX ∈= ],,[ 1  is the state vector; pRU ∈  is 

the excitation signal (or input); in
i R∈θ , 0≥in , is the 

unknown parameter vector; and Rfi ∈⋅)(  and in
i Rg ∈⋅)(  are 

the known scalar and vector functions, respectively. 

The present study presents a parameter estimator of the 
following form: 
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where in
i R∈θ  is the estimated parameter vector, iλ is a 

positive number to be specified, and iii xxe −≡ ˆ is the state 

error. The adaptive law for adjusting iθ̂  (or iφ ) is given by 

 0),,(ˆ >−== iiiiii UXge γγφθ . (3) 

The stability of the parameter estimator can be achieved by 
defining the parameter error iφ  as follows: 

 iii θθφ −= ˆ . (4) 

and then a quadratic Lyapunov function is chosen by 
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Differentiating the above function along the trajectory of  (1)-
(3) is given by 
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which implies that 
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However, the asymptotic stability of the point ),( iie φ , cannot 
be concluded directly since V  is only negative-semidefinite. In 
practice, the convergence of )(tiφ  to zero is dependent on the 
characteristic of the excitation signal ig  (excited by U), which 
is referred to as persistent excitation (PE), highly important to 
the issue of parameter identification [11–16]. According to one 
of the several equivalent conditions given in Theorem 2.16 in 
Ref. [12]: 0=iφ in Eq. (3) is uniformly asymptotically stable 
if, and only if, the piecewise-continuous uniformly bounded 
function ig  satisfies the inequality: 
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for positive constants 0t , 0T , and iα . However, the PE 
condition on ig  is not a verifiable condition since the signal 

ig  is generated inside the adaptive system and is unknown a 
priori; so there is no way for us to check whether or not it is 
persistently exciting. The literature [13] points out that the 
ultimate result of such investigation is that the input )(tU  
should be “sufficiently rich” to guarantee that ig  is persistently 
exciting. For example, if Rtu ∈)( is the sum of distinct 
sinusoids, then it should have at least in  distinct frequencies. 
Therefore, the intuition behind the PE condition is that the 
input should be rich enough to excite all modes of the system 
[13]. 

III. THE OPTIMAL INPUT 
In the system identification, for comparing with different 

experiment, an unification measurement of evaluating 
experiment “the quality”, which should concern with the input - 
output signal fitting parameter precision. Rao and Cramer 
proved that the covariance of parameter estimation satisfies the 
inequality with some conditions: 

 1ˆcov −≥ θθ M . (9) 

Where, θM  is called Fisher information matrix. When the 
inequality takes the equal sign, called the parameter estimation 
achieving the smallest variance bound (Rao_Cramer low 
bound), and the parameter estimation precision achieves the 
highest. During an experiment, one always takes 

 ))log(det( θMJ −= . (10) 

or 

 )( 1−= θMtrJ . (11) 

as the optimal design criterion. 
Considers MA model: 

 tntnttt ubububy ε++++= −−− 2211 . (12) 

and supposes the noise tε  obedience normal distribution N (0, 
σ2), with 
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Its Fisher information matrix is [8]: 
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In which the input signal obey  power constraint: 
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According to the known result, minimizing J is equivalent to 
seek the sequence { }1,,1, −−= Nntut , which causes 
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If input signal satisfies this request, then parameter estimation 
achieves minimum value of the smallest variance with effective 
algorithm: 

 I
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When N be large enough, the input signal can be replaced 
approximately by white noise sequence. 

IV. CREATION OF WHITE NOISE 
As stated previously, once a mathematical model and a 

suitable parameter identification technique have been 
determined, the result of the parameter identification process is 
contingent upon the particular choice of excitation signal. In 
order to guarantee the convergence of the estimated 
parameters, it may be necessary to ensure that the excitation 
signal satisfies the PE conditions. In practical applications, it is 
more useful to analyze the characteristic of the excitation 
signals in their frequency domain. This method is commonly 
employed in practice since decomposing a signal into a set of 
harmonic signals is a well-established principle among 
scientists and engineers. In theory, the optimal excitation signal 
will be uncorrelated, or white, i.e. its spectrum will be 
broadband over all frequencies. Therefore, the output contains 
maximum information about the dynamic modes of the system. 
Ideally, the optimal excitation signal would be in the form of an 
impulse signal, which has a flat power spectrum. However, 
generating this signal is difficult, and hence engineers generally 
specify random sequences, PRBS, or swept-frequency 
sinusoidal signals as excitation signals. Especially for shaking 
table experimental system, white noise is the most fitting input 
excitation signal for this system. 

The white noise process is a simple stochastic process. 
Strictly saying, it is a constant stationary random process with 
average value zero and the spectral density non-zero, or it is an 
idealized stochastic process which is composed by a series of 
non-correlated random variables. The white noise process does 
not have “the memory”, in other words, the t-time value had 

nothing to do with the past value at t-time beforehand, and will 
not affect future value of the t-time later. 

Defining White noise process: If average value of the 
stochastic process )(tw  is zero, the autocorrelation function is 

 )()( 2 ttRw δσ= . (19) 

Where )(tδ  is Dirac function, namely 
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and 
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Thus this stochastic process is called as white noise process. 

White noise which conforms to the above definition strictly 
is only a theoretically abstract, and is impossible to implement 
in practical applications. The stochastic process can be 
regarded as a white noise approximately when its average 
power is in uniformly distribution over the useful frequency 
band. 

According to the white noise definition, the Fourier peak 
value spectrum can be obtained with the power spectrum root, 
and transform the Fourier transformation the real and the 
imaginary with defining willfully stochastic phase spectrum 
and the Fourier peak value spectrum, then makes the Fourier 
inverse transformation, the approximate white noise can be 
finally obtained. The generated white noise expression is given 
by 

 ])([)( )(1 ωφω ieSFFTtA −= . (22) 
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In which: A(t) is the approximate white noise signal; )(ωS  is 
the power spectrum of the frequency range ],[ 10 ωω ; )(ωφ  is 
the stochastic phase spectrum, random numbers between 

π2~0 ; i  is the imaginary number, namely 1− . 

As shown in Figure 1, x(n) is white noise sequence with the 
length 100 second, the sampling frequency 400Hz  which must 
be above 225Hz,and the frequency range Hz90~5.0 ; psd(f) 
expressed the power spectral density function, R(k) expressed 
autocorrelation function of the sequence x(n), or auto-
covariance function. This power spectral density function 
undulates along with the frequency change from figure 1, it 
corresponds to the R(k) which undulates with encompassment 
time axis, this explained the white noise “white” degree. 

Fig. 2 and Fig. 3 contrast the power spectral density and the 
autocorrelation function of the white noise with different data 



 

         

length. It can be observed that the undulation of power spectral 
density is smaller, and the autocorrelation function is closer to 

)(tδ  function with longer data length. 

 
Fig.1 the approximate white noise sequence with time interval, power spectral 

density and autocorrelation function 

 
Fig.2 power spectral densities and the autocorrelation function with the length 

200 second 

 

Fig.3 power spectral densities and the autocorrelation function with the length 
500 second 

V. APPROXIMATE WHITE NOISE FURTHER ALBINISM 
In shaking table experimental system, experimental time is 

impossible infinite with certain limitation, so the input signal 
also has time limitation. Along with increase in experimental 
length N, parameter estimation precision goes up, and error of 
estimation variance drops, therefore N should be chosen as 
longer as possible. But as a result of the actual condition limits, 
the probability with drifts and disturbance increases with longer 
N, and the computation load also enlarges, therefore the N is 
not suitably taken too longer. Thus, the choice of N should 
consider the specific identification situation, and follow a 
cardinal principle that experiment time should be 10 times 
greater than the identified system main time-constant at least, 
namely 

 aTNT 100 ≥ . (24) 

Where, T0 is the sample period, Ta is the main time-constant of 
the identified system. 

How to cause the approximate white noise to be closer to 
the ideal white noise with the same data length is to be solved 
in the next section. 

One may see by literature [9-10] that the best method white 
processing to the sequence is the double stochastic interchange 
optimal algorithm which is first used by Hunter and Kearney. 
The basic principle of this algorithm is to seek N-length data 
most superior arrangement of sequence x(n) with stochastic 
search optimization method,  and makes autocorrelation 
function r(k) of rearrangement sequence to approach )(tδ  
function. This algorithm looping execution step is as follows: 

1st step: Draws 2 data-points of random sequence 
),2,1)((1 =− inxi  and exchanges their position mutually, 

results in sequence )(nxi  (this is meaning of double stochastic 
interchange); 

2nd step: Computes autocorrelation function of sequence 
)(nxi  

 ∑
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 ( )()(0 nxnx = may be used to calculate the initial 
autocorrelation function )(0 kr ); 

3rd step: Calculates the sum of squares 

 ∑
−

=
==

1

1

2 ,2,1,0)]([
N

k
ii ikrS    ( 0S  is initial value). (26) 

4th step: If ε<iS , or ini = , then stop; 
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5th step: If 1−< ii SS , then returns 1st step; Otherwise, gives 
up the i-th stochastic double interchange in the 1st step, and 
returns the 1st step. 

Where, ε is the predetermined admissible error, iN  is the 
predetermined biggest cycle-index of execution operation. 

As Figure 3 shown, the white noise sequence is of the 
length 100 second, the sampling frequency 400Hz, and the 
frequency range 0.5~90Hz through albinism result of above 
algorithm. One may see that the undulation of white noise 
power spectral density function is smaller after the albinism 
process, and the autocorrelation function approaches )(tδ  
function. This can solve the question of the shaking table 
experimental system with the input signal length limitation. 

 
Fig.4 power spectral density and autocorrelation function with 

albinism processing 

VI. CONCLUSION 
This paper presents a good idea for the question of the 

shaking table experimental system with the input signal length 
limitation, and has made the input driving signal most greatly 
possibly satisfy the PE condition in the data length limitation. 
This can improve the doubly stochastic interchange optimized 
algorithm, by which the operation speed is expedited during a 
shaking table test. However, for the experimental system, it is 
worth studying how long the driving time need in test in the 
future. 
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