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Abstract—Through empirical comparison of classical Job Shop
Problems (JSP) with multi-machine consideration, we find that
the objective to minimize the sum of weighted tardiness has a
better wait property compared with the objective to minimize the
makespan. Further, we test the proposed Iterative Minimization
Micro-model (IMM) heuristic method with the Mixed Integer
Programming (MIP) solution by CPLEX. For multi-machine
problems, the IMM heuristic method is faster and achieves a
better solution. Finally, for a large problem instance with 409 jobs
and 30 types of machines, IMM-heuristic method is compared
with ProModel and we find that the heuristic method is slightly
better.

Index Terms—Job Shop Scheduling, Multiple Machine, infinite
in-process wait buffer

I. INTRODUCTION

Multi-machine shop scheduling problems (job-shop, flow-
shop and etc.) receive more and more attention ever since 10
years ago, as it can greatly improve the production rate and
reliability. Its application can be found in logistics, semicon-
ductor manufacturing, robotics, and etc.

In [3], there is a broad classification for classical one-
machine problem. In [6], the same notation follows and further,
an extensive review for multi-machine problems is given.
Multi-machine problems are usually studied in one of the
following cases:

Case1:There are multiple exchangeable and renewable ma-
chines Ck for each machine type k, and each specific
machine could perform no more than one operation
at any time;

Case2:There is exactly one machine for each type k, which
can perform as many as Ck operations at any time,
and Ck ≥ 1;

Case3:There are cases with combination of Case 1 and Case
2.
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From Formulation’s point of view, the Differences between
one-machine problem and multi-machine problem are noted as
following:

FD-1: One-machine problem can be formulated as disjunc-
tive graph [2], which could be easily mapped to MIP
model and the processing time can be non-integers.

FD-2: For multi-machine problem, it is so far not yet nicely
formulated in our opinion especially when processing
time is non-integer. In [8], a model is proposed with
δ() function, which can only be solved by heuristic
methods and the optimality is not guaranteed for
all cases. For integer processing time, in [4], the
Pritsker’s formulation [7] was applied and a 0-1
Integer Problem (IP) is solved.

With respect to the Solutions, there are following Differ-
ences, which will be further explained later.

SD-1: One-machine problem has a solution as the task
schedule, while the multi-machine problem’s solution
includes task schedule and machine dispatching.

SD-2: The solution of task schedule for both one-machine
problem and multi-machine problem is unique, while
solution for machine dispatching in multi-machine
problem is not unique.

In this paper, our work is focused on the multi-machine
JSP under Case 1. In order to make benchmark with optimal
solutions, we use Pritsker’s 0-1 formulation and all processing
time are integers. Although we assume infinite wait buffer in
the problem formulation, we can see that the wait-in-process
is reduced when machine capacity is increased. An iterative
minimization micro-model is implemented to solve the overall
problem iteratively. The solution performance is bench-marked
with the CPLEX solution for small-size problems and com-
pared with ProModel solution for large-size problems. The
notation of this paper is summarized in Table I.

II. SAMPLE PROBLEM: MT6, Ck = 2,∀k

For a clear demonstration, we use the MT6 problem [5],
where totally there are 6 jobs and each job has 6 tasks on
6 different types of machines. The original MT6 problem in
[5] is one-machine problem Ck = 1, k ∈ {1, 2, ..., 6}, while
our sample problem differs in Ck = 2, k ∈ {1, 2, ..., 6}. The
solution Gantt chart is shown in Fig. 1 where Fig. 1(a) is repre-
sented by job-grouping and Fig. 1(b) is by machine-grouping.
Both Fig. 1(a) and Fig. 1(b) are actually from the same
solution. Y-axis in Fig. 1(a) is job-id, while in Fig. 1(b), integer
represents machine type and fraction represents machine-id of
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TABLE I
NOTATION FOR JOBS, PROCESSES MACHINES

Notation for Jobs and Processes
N Total number of jobs
oi Total number of operations (i.e. processes) for job i
pij processing time of job i process j

i ∈ {1, ..., N} and j ∈ {1, ..., oi}
di Due time of job i
Wi Delay penalty per unit time

if job i is completed after its due time
Notation for Machines

K Total number of machine types
k Machine type index, k ∈ {1, ..., K}
T̃ Total time slot in discrete time formulation
Ck Capacity of machine k, i.e. number of operations

that can be executed at anytime
on machine type k

Mij Mapping from job i and process j to machine type
Variables in Process Scheduling

Xijt discrete decision variable for
ith job, jth process at time slot t

T s
ij start time of process j in job i

T e
ij completion time of process j in job i

Mk(t) Machine utilization function in continuous time
Each k indicates a specific machine type
Notation in the IMM heuristic method

R Iterative number
Lk(R) total number of executable tasks

on machine type k at iteration R;
executable in the sense of precedence constraints

ta
l arrive time for task l, 1 ≤ l ≤ Lk(R)

tr
m release time for machine-id m of type k

1 ≤ m ≤ Ck

mi(l) a 1-to-1 mapping from task-id l ∈ {1, 2, ..., Lk(R)}
to machine-id mi ∈ {1, 2, ..., Ck}
mi(l) ∈ Π(Lk(R) → Ck)
Mean Release Time of all machines

RTAM after scheduling
CTAJ Mean Completion Time of all jobs
T M Makespan of scheduling
TW Total Wait count
WT Mean Wait Time
WT M Max Wait Time

Mean percentage of
AMU Machine Utilization of all

that type. For the multiple solutions in machine dispatching,
which is mentioned previously in SD-2, it can be explained
that in Fig. 1(b), exchanging the machine-id (fractional part of
machine scheduling) will not affect the task scheduling.

We further group the Gantt chart in colors, for the detailed
readers to verify that Fig. 1(a) and Fig. 1(b) are actually the
same solution. In Fig. 1(a), the same color represents the same
machine type, while in Fig. 1(b), the same color represents the
same job-id.

III. A 0-1 FORMULATION

A 0-1 formulation is proposed by [7], which might be the
only solvable model for rigorous multi-machine problems.
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Fig. 1. Sample Schedule

A. Decision variable

Before formulating the problem in discrete time domain,
one has to estimate a proper time unit UT ∈ R, with which
the continuous time domain is discretized to T̃ ∈ N time slots
in total. This estimation is introduced [4] [8], and the total
time period UT T̃ could be available by heuristic solution. In
discrete time domain, t ∈ {1, 2, ..., T̃} is used to represent
each time slot. A binary decision variable is Xijt, where

Xijt =




1
if process j in job i starts
by time t inclusively;

0
if process j in job i
has not yet started time at t

.

There are following constraints by assumption:

Xijt − Xi,j,t+1 ≤ 0, ∀i, j, t ∈ {1, 2, ..., T̃ − 1}. (1)

Xijt ∈ {0, 1} ∀i, j, t ∈ {1, 2, ..., T̃}. (2)

Inequality (1) assumes that every task is non-preemptive.



{
Xi,j,t − Xi,j−1,t−pi,j−1 if t > pi,j−1

Xi,j,t if t ≤ pi,j−1

}
≤ 0,∀i, j ∈ {2, ..., oi}. (3)

∑
i,j:Mij=k

{
if t > pij (Xijt − Xi,j,t−pij

)
if t ≤ pij Xijt

}
− Ck ≤ 0,∀k ∈ {1, 2, ...,K} (4)

B. Constraints on task precedence and machine capacity

Task precedence constraint is specified as inequality (3),
which means that in-process wait is allowed. We name it to
be an Infinite Wait Buffer because the model does not specify
on:

• wait buffer capacity, which is usually related with ma-
chine settings,

• upper and lower bounds on wait time, which is usually
from specifications of task schedule.

Machine capacity constraint is stated as the inequality (4),
which is well studied in [8].

C. Objective functions

There are usually two types of criterions CRI-1 and CRI-2:

CRI-1:The objective is to minimize the makespan, which
by nature, is to minimize the time length from the
starting time of very first task to completion time of
the very last task.

CRI-2:The objective is to minimize the sum of weighted
tardiness, which actually, is to minimize some areas.

Their formulations are following:

CRI-1:For a general job-shop problem, two types of dummy
variables {XS,t,XE,t : t = 1, 2, ..., T̃} are intro-
duced to formulate the Start time of very first task,
and the End time of the very last task. See (5) and
the inequality constraints (6) and (7).

minimize
∑

t

(1 − XE,t) −
∑

t

(1 − XS,t) (5)

Xi,j,t − XS,t ≤ 0,∀i, j, t (6)

XE,t − Xi,j,t ≤ 0,∀i, j, t (7)

CRI-2:The most generalized formulation introduces two lists
of parameters, Wi : i = 1, 2, ..., N for each job’s
weight (or importance) and di : i = 1, 2, ..., N
for each job’s due time. For a special kind of flow
shop with some sequencing constraints like [8], by
adjusting the parameter Wi, (8) represents either
minimizing the makespan or minimizing the sum of
weighted tardiness.

minimize
∑

i

(Wi

∑
t>di−pi,oi

(1 − Xi,oi,t)) (8)

D. An empirical comparison of above two criterions

Classical jobshop problems are usually to minimize the
makespan [1] [2]. However, we observe that the overall final
machine release time, which is more important in our opinion

especially for multi-machine problems and it is related with the
sum of weighted completion time. Some experiments are given
to compare the two criterions, the sample problems are chosen
to be {MT6,MT10} at machine capacity Ck ∈ {1, 2, 3, ...}.

Some terms are defined at first. There is wait between
ith job’s jth process and its precedence process iff. there is
T e

i,j−1 �= T s
ij ; i = 1, ..., N, j = 2, ..., oi.

• Total Wait: TW - the total element count in
{(i, j)|T e

i,j−1 �= T s
ij , i = 1, ..., N, j = 2, ..., oi};

• Max Wait Time: WTM = max{T s
ij − T e

i,j−1|i =
1, ..., N ; j = 2, ..., oi};

• Mean Wait Time: WT = TotalWaitT ime
TotalWait =∑

i,j
{T s

ij−T e
i,j−1|i=1,...,N ;j=2,...,oi}

TW .

Relation of continuous variable T s
ij and discrete variable Xijt

are studied in [8] and listed as follows:

Xi,j,t∗−1 == 0 ∩ Xi,j,t∗ == 1
�

T s
ij = t∗ − 1, ith job’s jth process starts at the time slot t∗.

For the terms related with the machine utilizations, our
definition is based on previous work [8] w.r.t. the construction
of machine utilization function Mk(t). Their definitions are
shown as following.

• Mean Machine Utilization for type k:

∫
t

Mk(t)dt

Ck
;

• Mean Utilization All Machines: AMU =
∑

k

∫
t

Mk(t)dt∑
k

Ck
,

where the integration is from the very first time when the
machine type k is put to use to the very last time when the
machine type k stops using.

• Mean Complete Time is defined as CTAJ =
T e

i,oi

N .
For the discrete formulation under assumption that all
jobs’ first process is arrived at time 0, it is equivalent

to

∑
i

∑
t>0

(1−Xi,oi,t)

N .
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(a) To minimize sum of completion
time (by CRI-2)
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(b) To minimize the makespan (by
CRI-1)

Fig. 2. Criterion Comparison: One-machine MT6 problem, grouping by
machine



Fig. 2 demonstrates a one-machine MT6 optimal solution by
CPLEX. Fig. 2(a) is to minimize the sum of completion time
(or criterion-2 with di = 0,Wi = 1,∀i), while Fig. 2(b) is
to minimize the makespan as criterion-1. The authors suggest
to focus on only comparison of the length (makespan) and the
area of last task with x-axis (sum of weighted tardiness). Here,
we use gray figure because it is a 1-machine MT6 problem,
in contrast with Fig. 1 which is 2-machine MT6 problem.
It should be noticed that Fig. 1 is for two representation of
the same problem (actually criterion-2) while Fig. 2 is for 2
different problems (criterion-2 in Fig. 2(a) and criterion-1 in
Fig. 2(b)).

Precisely, Table IV is used to compare {1, 2}-machine by
CRI-{1, 2} on the MT6 and the MT10 problems. All schedule
solutions are done by CPLEX.

From Table IV, we have following observations:

• When the total number of machines is increasing, both the
makespan and the sum of weighted tardiness are dropping.
When it reaches some level, both will keep the same
value. This is similar to the Infinite Resource Model in
[8].

• The sum of weighted tardiness (criterion-2) model is
consistently better in the wait property ( i.e. less in total
wait count and the wait time) and the mean complete time
than makespan model (criterion-2)

• For the mean machine release time, the 1-machine prob-
lem and the multi-machine problem are contrary to each
other, while for the makespan and the machine utilization,
there is no consistency.

E. Complete model for comparison with heuristic method

Based on above observation, we will further study our
heuristic method for multi-machine job-shop with CRI-2 as
objective to minimize. For simplicity without loss of generality,
di = 0,Wi = 1,∀i. The complete model to benchmark our
IMM heuristic method is shown as follows.

JSP MultiMach − InfWait

minimize SumCompleteTime(8)
subject to: Inequality(1)

Inequality(3)
Inequality(4)
0-1 Variable as(2)

This is the formulation for CPLEX solution of a 2-machine
MT6 problem and shown in Fig. 1.

IV. HEURISTIC SOLUTION: ITERATIVE MINIMIZATION OF

A MICRO-MODEL

The micro-model is defined for one particular machine type
k with capacity Ck, on which, totally Lk(R) processes are to
be done. This model is solved and updated iteratively for the
overall multi-machine JSP. R is a counter for iterations, and
Lk(R) is the total number of executable tasks on machine type
k. ”Executable” means satisfying sequencing constraints.

A. Minimization of a micro-model

In the Micro-model, there are Ck exchangeable and re-
newable machines, serving Lk(R) tasks. Each machine has
a release time trm : m ∈ {1, 2, ..., Ck} while each task has
an arrival time tal : l ∈ {1, 2, ..., Lk(R)} and processing time
pl : l ∈ {1, 2, ..., Lk(R)}.

• trm is a time for a particular machine m to be ready to
start a new task.

• tal is a time for task l to be ready to start. It is the
completion time of task l’s precedence task which is
specified in sequencing constraint.

• pl, 1 ≤ l ≤ Lk(R), processing time for task l.
The problem is to minimize the sum of completion (or end)

time. The summation is done for min{Ck, Lk(R)} tasks.

Minimize: mi(l)

∑
mi(l)∈{1,...,Ck},l∈{1,2,...,Lk(R)}

tel (9)

subject to: tsl = max{tal , trmi(l)}∀l (10)

tel = tsl + pl,∀l (11)

decision variable: mi(l) ∈ Π(Lk(R) → Ck) (12)

tsl , t
e
l ∈ R,∀l = 1, 2, ..., Lk(R) (13)

This micro-model is to minimize the sum of end time in
schedulable and executable task schedule as in (9) under the
constraints of (10) and (11) with variable mapping (12), and
the time variable lists (13).

From (9), total number of items in the summation is
min{Ck, Lk(R)} where Ck is for scheduleable constraints
by the machine availability and Lk(R) is for executable
constraints of precedence. In (9), mi(l) is a 1-to-1 mapping
from the task-id l ∈ {1, 2, ..., Lk(R)} to the machine-id
m = mi(l) ∈ {1, 2, ..., Ck}

There is a post-process after solving above minimization
micro-model, which is to update the machine release time for
next group of tasks, as shown in (14).

trmi(l) = tel ,∀l executable & schedulable (14)

B. Three scenarios and computational complexity

According to the relative value of Ck and Lk(R), there are
totally 3 scenarios for consideration:

IMM1:Lk(R) ≥ Ck = 1, this is actually a one-machine
problem. This can be solved optimally by enumera-
tion, which is shown in Proposition-1.

IMM2:Ck ≥ Lk(R) ≥ 1, the total number of machines is
not less than the total number of tasks. The optimal
solution for this case is following in Proposition-2.

IMM3:Lk(R) > Ck > 1, the total number of machines is
less than the total number of tasks.

Proposition-1: For IMM1, the single machine is m1 and
the task list is l ∈ {1, 2, ..., Lk(R)}. The optimal objective
value is following:

min

(
min

l:ta
l
≤tr

m1

{pl + trm1
}, min

l:ta
l
>tr

m1

{pl + tal }
)

Proof: Done by enumeration.



Proposition-2: For IMM2, the optimal solution is to assign
earliest available Lk(R) machines for tasks by first come first
serve rule.

Proof: We begin with 2 tasks l1, l2 on 2 parallel machines
m1,m2. The processing time and arrival time of the 2 tasks
are {pl1 , t

a
l1
} and {pl2 , t

a
l2
}, while the machine release time of

the 2 machines are trm1
, trm2

. Without loss of generality, we
assume that tal1 ≤ tal2 and trm1

≤ trm2
. The optimal objective

value is pl1 + max{tal1 , trm1
}+ pl2 + max{tal2 , trm2

} because it
can be verified by all the possible cases as following:

tal1 ≤ tal2 ≤ trm1
≤ trm2

tal1 ≤ trm1
≤ tal2 ≤ trm2
...

trm1
≤ tal1 ≤ trm2

≤ tal2
trm1

≤ trm2
≤ tal1 ≤ tal2

The first come first serve rule will result as following mapping
mi(l1) = m1,mi(l2) = m2, so it is true for 2-task-2-machine
case.

For general cases, Ck ≥ 2, Lk(R) ≥ 2, for any mapping so-
lution mi(l), if ∃{l1, l2,m1,m2}, s.t. mi(l1) = m1,mi(l2) =
m2, and (tal1 − tal2)(t

r
m1

− trm2
) < 0. By swapping the mapping

to first come first serve order will always achieve a better
solution.

For IMM3, one solution strategy is to schedule one machine
id after another and repeatedly apply Proposition-1 to be
solved. This is not an optimal solution, but a fast feasible
solution. The optimality depends on machine id sequencing.

Computational complexity for Proposition-1 is O(Lk(R)),
and for Proposition-2 is O (Lk(R) · ln(Lk(R))), while the
fast feasible solution of IMM3 is O(Lk(R) · Ck)

V. REPORT FOR THE EXPERIMENTS

A. Benchmark on classical problems {MT6, MT10}– a multi-
machine version

There are 6 pairs of experiments to test our proposed
IMM-heuristic method with CPLEX solution. The job-process-
machine setting is exactly same as the MT6 and MT10
problems. First 3 pairs are the MT6 with {1, 2, 3}–machine(s)
for each type. Last 3 pairs are the MT10 with {1, 2, 3}-
machine(s) for each type. The results are shown in Table V.
There are following points for notice:

• CPLEX solver engine is stopped after one hour and return
the best feasible solution;

• both CPLEX and IMM-heuristics solver runs on Intel(R)
Xeon(R) CPU of X3220 2.4 GHz with 2.4GHz & 4.0 GB
RAM;

• IMM-heuristic method runs about 3 seconds for MT10
problems or 1 second for MT6 problems.

From the table, we can see that the optimality of IMM-
heuristic method becomes better when total number of ma-
chines are increased. Except for MT10 one-machine problem,
IMM-heuristic method achieves better solution than CPLEX
in other problems.

We observe that for one-machine MT10 problem, CPLEX
[1] failed to have a feasible solution within one hour. It is
because the 0-1 formulation results as a very large size problem
[8].

TABLE II
SAMPLE JOB LIST IN A SEMICONDUCTOR MANUFACTURING PROBLEM

Product Total Number of Daily Production
Processes Per Job Throughput (lots)

1 14 12
2 16 161
3 18 117
4 16 119

Subtotal 409

TABLE III
SOLUTION COMPARISON FOR ABOVE SAMPLE JOB LIST

Methods IMM Rules in ProModel
FIFO LIFO SPT

Makespan 1462 1575 1601 1592

B. Comparison with existing job dispatch rules for a semi-
conductor manufacturing scheduling problem

The model of multi-machine JSP with an infinite wait
buffer is just suitable for schedule application in back-end
semiconductor manufacturing which has following features:

• each job represents particular part (or one lot of chips),
whose volume is not so large and has standard size for
easy storing;

• the temperature of the parts does not need strict control.
A complex manufacturing floor shop in a semiconductor

industry is used as a further test bed in this study. Using
ProModel, which is an industrial manufacturing modeling
software, a simulation model of the floor shop is created. The
specifications of the shop floor are summarized in Fig. 3 and
Table III. There are 30 types of machines corresponding to 30
different processes and there are 4 product types, each with
its own process flow and planed daily production throughput.
Such problem is too hard to be solved by the 0-1 IP model
as in section III, while it can be solved by our IMM-heuristic
method by around 1 minute for all 409 jobs. IMM-heuristic
method achieves slightly better performance than the existing
dispatching rules (FIFO, SPT and etc.) used in ProModel.

The problem detailed instance and the solution are given
from ftp://imss2:@robotics.nus.edu.sg/Release/data/imss-
dram/CISRAM2008/.

VI. CONCLUSION AND FURTHER RESEARCH

SUGGESTIONS

We empirically evaluated the impact of multi-machine con-
sideration on solution of several classical JSPs with an infinite
wait buffer. Statistics show that the objective of sum weighted
tardiness is more suitable for multi-machine JSP. Furthermore,
an IMM heuristic method has been proposed for a fast feasible
solution and the performance is bench-marked with CPLEX
solutions. Especially, our IMM heuristic method has following
features:

• It supports fractional processing time;
• The micro-model considers the machine release time and

the task arrival time, which can be extended as an input
from the problem of multi-machine JSP;

• It outputs the machine dispatching solution and the ma-
chine release time, so the micro-model can be easily
applied to construct a huge multi-machine problems;
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Fig. 3. A Semiconductor Manufacturing Problem: Production Line with 4 Types of Products and 30 Types of Machines

• The overall computational complexity of
IMM-heuristic method is not more than
O((N · K · maxi=1,2,...,N{oi})2)

• It achieves local optimality for micro-model in 2 scenar-
ios, which are IMM1 and IMM2.

• The optimality of the overall solution is affected by the
sequencing in selection of machine type k at iteration
R for solving the Minimization Micro-model and the
sequencing of solving IMM3 during a specific iteration.
This, to our opinion, deserves further research.

In the future, multi-period consideration should come into
picture for better machine utilization and dynamics handler.
What’s more, a fast solution towards optimality of IMM3 also
deserves further study.

Intuitively, the classical model of traveling-salesman is well
and deep studied. Afterward, the problems of traveling group
with multi agents (or robots), and the case when some parts of
the group are ill (or not in best performance) will be further
studied.
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