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Abstract— this paper proposes a novel method based on 
multiple adaptive neuro-fuzzy in combination of statistic method 
to detect and diagnose the faults occurring in complex dynamical 
systems. The basic idea is to use PCA to extract the features for 
reducing the complexity of the data achieved from a process. The 
most superior features are fed into multiple ANFIS to identify 
different faulty conditions in order to prevent the system from 
serious system failure and possible shutdowns. Each ANFIS has 
employed to diagnose one of the faults in order to make a decision 
about the abnormal cases. Ability, and at the same time simplicity 
and rapidity has significantly enhanced. Moreover, there’s no 
need to have information about the model or the structure, which 
is the best advantage of using this approach. Using multiple 
ANFIS units significantly reduces the scale and complexity of the 
system, speeds up the diagnosis, and simplifies the training of the 
network. As an example, the proposed algorithm has applied to 
fault diagnosis of a simulated nonlinear MIMO distillation 
column. Results confirm the effectiveness of this method 
comparing to single ANFIS. The presented procedure is 
applicable to a variety of industrial applications in which 
continuous on-line monitoring and diagnosis is needed. 

Keywords— fault detection, fault diagnosis, multiple ANFIS, 
principal components analysis, PCA, distillation columns 

I.  INTRODUCTION 
Increasing complexity of modern industrial systems and the 

high process quality, reliability and safety requirements, arise 
the vital need to automation of diagnostics in order to make it 
possible to determine the place, reason and time of the possible 
faults accurately [1]. Different methods of fault diagnosis have 
been developed and used effectively to detect the complex 
chemical process faults at an early stage [2]. Early detection of 
faults can be achieved by model-based fault detection, in which 
a prompt fault detection requires an accurate model of the 
process which itself leads directly to system identification 
problem. Real processes are usually dynamic, non-linear and 
stochastic, meaning that analytical approaches of identification 
are rarely suitable.   

In the presented method, statistical characteristics of 
different domains are extracted to acquire rich faulty 
information and enhance the competence of the diagnosis 
systems, but this large number of feature-sets contains 
irrelevant or redundant features as well as superior ones. 

Classification using all of the features in the feature-set would 
result in a slower and less accurate process. Thus, to increase 
the accuracy and reduce the computational burden of the 
classifier, some of the features with obvious characterizing 
ability to the machine conditions, need to be selected from the 
original feature-set. There are many feature selection methods 
such as Conditional Entropy, Genetic Algorithms and Distance 
Evaluation Technique [1]. This article enhances a Principle 
Component Analysis Technique for feature selection. Typical 
applications of PCA in chemical and process engineering can 
be found in multivariate statistical process monitoring, fault 
diagnostics, gross error identification, instrument validation 
and etc [4]. The number of principal components (PC) is the 
essential parameter of PCA and ultimately determines the 
performance of this useful statistical method [8]. 

 In this PCA-based study, four salient feature-sets are 
obtained and fed to classifier to diagnose the faults. Our 
classifier is based on Adaptive Neuro-Fuzzy Inference System 
(ANFIS) for training and testing fault diagnosis system. ANFIS 
architecture is an integration of fuzzy logic and neural network 
algorithm [9] which utilizes the learning abilities of neural 
networks and human knowledge representation abilities of 
fuzzy systems. In other words, ANFIS is a hybrid model which 
combines the ANNs adaptive capability and the fuzzy logic 
qualitative approach, and overcomes their own shortcomings 
simultaneously. ANFIS is in fuzzy rule-based systems that 
approximate the way human process information. Successful 
implementations of ANFIS have been reported in the medical 
[10], chemical [11] and fault diagnosis fields [12]. 

The proposed method is applied to fault diagnosis of 
theoretical distillation column. The fault signals were measured 
through the distillation top and bottom product feed rate, feed 
composition rate, boil up flow and flux flow, under various 
operating input, output, fault, and different immeasurable 
disturbances including different fault categories and severities. 
The results show the effectiveness of the approach. The 
targeted distillation column used in this study, has 20 
theoretical stages plus a reboiler at stage one and a total 
condenser. Moreover, assume binary component separation 
(with constant relative volatility and negligible vapor hold up) 
and also perfect level control (using distillation top and bottom 
product flow rate in LV configuration). One feed and two 
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approaches, because it is often difficult to develop detailed 
physical models for large scale chemical processes. Adaptive 
Neuro-Fuzzy Inference System (ANFIS) is applied and 
discussed in detail. Instead of using single fault identifier for 
all fault, separate fault identifiers were developed which is 
more effective during the transient and also the period of 
monitoring. Note that the developed fault diagnosis system is 
able to provide discrete and unambiguous indication of faults 
such as transient feed rate failure and composition boil up flow 
within the distillation column that lead to simplicity in 
monitoring and maintenance. ANFIS based control can be 
easily combined with the ANFIS based fault identifier to form 
integrated fault tolerant system, which can improve dynamic 
response of the distillation column system. This approach may 
contribute to minimizing process shut-down and production 
losses due to unexpected faults on any process control system 
component or sub-system. This method may contribute to 
achieving incipient fault detection and appropriate fault 
identification to support and improve troubleshooting, decision 
making and maintenance tasks (preventive maintenance). 

 Further works and studies such as using Particle 
Optimization method to minimizing the number of rules 
generated by ANFIS is suggested. Currently, we are designing 
a multiple ANFIS fault diagnosis model using cause and effect 
tree of process to predict upcoming fault in abnormal condition 
of operation. 
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