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Abstract— this paper proposes a novel method based on
multiple adaptive neuro-fuzzy in combination of statistic method
to detect and diagnose the faults occurring in complex dynamical
systems. The basic idea is to use PCA to extract the features for
reducing the complexity of the data achieved from a process. The
most superior features are fed into multiple ANFIS to identify
different faulty conditions in order to prevent the system from
serious system failure and possible shutdowns. Each ANFIS has
employed to diagnose one of the faults in order to make a decision
about the abnormal cases. Ability, and at the same time simplicity
and rapidity has significantly enhanced. Moreover, there’s no
need to have information about the model or the structure, which
is the best advantage of using this approach. Using multiple
ANFIS units significantly reduces the scale and complexity of the
system, speeds up the diagnosis, and simplifies the training of the
network. As an example, the proposed algorithm has applied to
fault diagnosis of a simulated nonlinear MIMO distillation
column. Results confirm the effectiveness of this method
comparing to single ANFIS. The presented procedure is
applicable to a variety of industrial applications in which
continuous on-line monitoring and diagnosis is needed.

Keywords— fault detection, fault diagnosis, multiple ANFIS,
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L INTRODUCTION

Increasing complexity of modern industrial systems and the
high process quality, reliability and safety requirements, arise
the vital need to automation of diagnostics in order to make it
possible to determine the place, reason and time of the possible
faults accurately [1]. Different methods of fault diagnosis have
been developed and used effectively to detect the complex
chemical process faults at an early stage [2]. Early detection of
faults can be achieved by model-based fault detection, in which
a prompt fault detection requires an accurate model of the
process which itself leads directly to system identification
problem. Real processes are usually dynamic, non-linear and
stochastic, meaning that analytical approaches of identification
are rarely suitable.

In the presented method, statistical characteristics of
different domains are extracted to acquire rich faulty
information and enhance the competence of the diagnosis
systems, but this large number of feature-sets contains
irrelevant or redundant features as well as superior ones.
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Classification using all of the features in the feature-set would
result in a slower and less accurate process. Thus, to increase
the accuracy and reduce the computational burden of the
classifier, some of the features with obvious characterizing
ability to the machine conditions, need to be selected from the
original feature-set. There are many feature selection methods
such as Conditional Entropy, Genetic Algorithms and Distance
Evaluation Technique [1]. This article enhances a Principle
Component Analysis Technique for feature selection. Typical
applications of PCA in chemical and process engineering can
be found in multivariate statistical process monitoring, fault
diagnostics, gross error identification, instrument validation
and etc [4]. The number of principal components (PC) is the
essential parameter of PCA and ultimately determines the
performance of this useful statistical method [8].

In this PCA-based study, four salient feature-sets are
obtained and fed to classifier to diagnose the faults. Our
classifier is based on Adaptive Neuro-Fuzzy Inference System
(ANFIS) for training and testing fault diagnosis system. ANFIS
architecture is an integration of fuzzy logic and neural network
algorithm [9] which utilizes the learning abilities of neural
networks and human knowledge representation abilities of
fuzzy systems. In other words, ANFIS is a hybrid model which
combines the ANNs adaptive capability and the fuzzy logic
qualitative approach, and overcomes their own shortcomings
simultaneously. ANFIS is in fuzzy rule-based systems that
approximate the way human process information. Successful
implementations of ANFIS have been reported in the medical
[10], chemical [11] and fault diagnosis fields [12].

The proposed method is applied to fault diagnosis of
theoretical distillation column. The fault signals were measured
through the distillation top and bottom product feed rate, feed
composition rate, boil up flow and flux flow, under various
operating input, output, fault, and different immeasurable
disturbances including different fault categories and severities.
The results show the effectiveness of the approach. The
targeted distillation column wused in this study, has 20
theoretical stages plus a reboiler at stage one and a total
condenser. Moreover, assume binary component separation
(with constant relative volatility and negligible vapor hold up)
and also perfect level control (using distillation top and bottom
product flow rate in LV configuration). One feed and two
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products have been considered. The proposed technique uses
Statistical Method for feature extraction and ANFIS for
classifying features, which lead to fault diagnosis process. This
is a computationally simple, fast and accurate expert system for
fault diagnosis of distillation column. This approach may
contribute to minimizing process shutdowns and production
losses due to unexpected faults, in any process control system
component or sub-system.

II. THE FAULT DIAGNOSIS ALGORITHM

The fault detection system provides the ability to detect
symptoms of faults occurring in transient conditions. The fault
detection system includes a feature extractor that measures
sensors data during transient conditions and extracts salient
features from this data. The extracted salient features are fed to
a classifier that analyzes these features to determine if a fault
has been occurred during the transient conditions. Detected
faults can then be passed to a supervisory diagnostic system
where they can be used by maintenance personnel. This fault
diagnosis system is designed to monitor the various states of
the distillation column system to detect potential faults. This
system aimed to detect and diagnose the potential faults so that
these potential faults can be addressed before leading to serious
system failure.

Process Signals

v

Feature extraction

Y

Feature Selection

v

Adaptive Neuro-Fuzzy Inference Classifier

v

Fault Diagnosis

Figure 1. Proposed System for Fault Diagnosis

III. PRINCIPAL COMPONENT ANALYSIS

PCA methods have been recently extended to perform
fault detection and diagnosis. They can be excessively suitable
for fault diagnosis of complex plants because of low
computation load [16] and ability to be applied without a need
to model of the process. It performs a dimensionality reduction
of the process variables by generating new non-correlated
variables called Principal Components (PCs). PCs and some
related statistics can be used online as part of a classification
algorithm or an expert system to perform fault diagnosis.

A chemical process under normal operating condition has
a correlation among variables due to mass balance, energy
balance, operational restrictions and etc. This correlation can
be described in a data-driven manner because of its simplicity
and practicability, e.g., PCA statistical model. Generally, PCA
can be considered as a subspace decomposition technique by
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which the process measurement space is divided into two
orthogonal subspaces, that is, the principal component (PC)
subspace and residual subspace. Consider a process data
matrix X,.,, composed of m sample instants with n
measurements collected when the process is in control, and
assuming the data matrix X, without loss of generality, has
been normalized before PCA modeling. Its corresponding
correlation matrix is denoted as (R = XTX / m —). Performing
singular value decomposition (SVD) to the matrix R would
lead to
R =UDUT (1)

Where U, is a unitary matrix and D = diag(4;), i=1,...,n is
a diagonal one.

The column vectors in the matrix U = [uq, Uy, -+ u,] form
a new orthonormal base of space R"by which the data matrix X
is optimally described in a sense that its variances under the
new coordinate directions is in descending order:
A >2A; > > A, (where {A;};=1.., is corresponding
diagonal elements of the matrix D;). The first k£ (< n) linear
independence vectors P = [U4q, Uz, - Uy] Of U span the
principal component subspace S, and the retained n-k vectors
P = [Up41, Uk, - Up] of U span the residual subspace S. The
number of principal components (PCs) can be selected as its
corresponding Cumulative Percent Variance (CPV) larger than
a prescribed threshold (here 98.93%) by convention .The data
vector x € pn at every sampling instant can be decomposed as

¥=%+%=Cux+Cex )
where £ € §, and ¥ € Sare projections of x on the principal
component subspace S and residue subspace S, respectively.
The matrix C, = PPl and C, = PPl =1—C, are the
corresponding projection operators. Here, the subscript ‘&’
means the corresponding quantity is a mathematical function
of the number of PCs.

Thus, the original »n dimensional data matrix X can be
Analyzed in the two lower dimensional subspaces, ie., S
and S, meanwhile linear dependant variables in X are
Decorrelated. Then the PCA statistical monitoring model is
built as two hypothesis tests in subspaces S and S.

According to large size of measured data acquired from
distillation column, we have lots of features from different
aspects, which have different importance degrees in identifying
different faults. For instance, some features are salient and
closely related to the fault. Moreover, PCA can improve the
capability and reliability of fault detection and diagnosis as
well as the accuracy of the sensor fault estimation.

Though PCA-based monitoring is very effective in detecting
abnormal process situations, it has been found inefficient when
it comes to pinpointing the root cause of the problem (fault
isolation and diagnosis). Contribution Chart, Multi-Block
Approach, Sensor Validity Index and Pattern Recognition
Technology [13] have been discussed to solve this problem,
but none of them could provide a complete solution.
Analytical Redundancy (AR) methods based on the
fundamental model could develop fault isolation utilizing a
structured or directional residual set, but such a model is not



easily obtained due to nonlinearity, complexity, and high
dimensionality of the process [14].

IV. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM

Training of multi-layer perception neural network is a time-
consuming task, and the performance of the neural network
depends on both quality and quantity of the training samples.
For the particular application proposed in this paper, such
drawbacks may become even more pronounced when multiple
faults are to be diagnosed. To remedy and improve the
performance of the neural network-based algorithm, use of
Adaptive Neuro-Fuzzy Inference is considered in this section.

A Fuzzy Logic System (FLS) can be viewed as a non-linear
mapping from the input space to the output space. The
mapping mechanism is based on the conversion of inputs from
crisp numerical domain to fuzzy domain with the use of fuzzy
sets and fuzzifiers, and then applying fuzzy rules and fuzzy
inference engine to perform the necessary operations in the
fuzzy domain. At the end, the result is converted back to the
numerical domain using defuzzifiers. As such any FLS can
contain five main components: fuzzy sets, fuzzifiers, fuzzy
rules, an inference engine and defuzzifiers [10]. Adaptive
neuro-fuzzy networks are enhanced FLSs with learning,
generalization and adaptively capabilities. These networks
encode the fuzzy if-then rules into a neural network-like
structure and then use appropriate learning algorithms to
minimize the output error based on the training/validation data
sets. In this paper, we use the Adaptive Neuro-fuzzy Inference
System (ANFIS) structure and optimization processes because
of their accuracy. The ANFIS is a fuzzy Sugeno model of
integration where the final fuzzy inference system is optimized
via the ANNs training. It maps inputs through input
membership functions and associated parameters, and then
through output membership functions to outputs To present
the ANFIS architecture, two fuzzy if-then rules based on a first
order Sugeno model are considered:

Rule 1: If (x is A4;) and (y is B)) then (z; =px + q;y + 1)),
Rule 2: If (x is 4,) and (y is B;) then (z2 = px + gy + 1),

where x and y are the inputs, 4; and B; are the fuzzy sets, z(i
= 1,2) are the outputs within the fuzzy region specified by the
fuzzy rules, p;, ¢; and r; are the design parameters ANFIS
architecture to implement these two rules is shown in Fig. 2, in
which a circle stands for a fixed node, whereas a square
indicates an adaptive node.

The ANFIS learning algorithm is then used to obtain these
parameters. This learning algorithm is a hybrid algorithm
consisting of the gradient descent and the least-squares
estimate. Using this hybrid algorithm, the rule parameters are
recursively updated until acceptable error is reached. In the
defuzzification layer, crisp output is produced from the output
of the inference layer. Maximum defuzzification and centroid
defuzzification were used as defuzzifiers. The centroid
defuzzifier determines the center of the gravity of the final
fuzzy space and uses this value as the output of the fuzzy
inference system. Therefore, the resulting output is related to
all the rules executed in the preceding layer. This is then
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compared with a threshold to determine whether or not a fault
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Figure 2. ANFIS structure used in proposed method

mode should be reported. The ANFIS used in this approach
used Gaussian functions for fuzzy sets, constant functions for
the outputs rules and Sugeno’s inference mechanism. The
parameters of the network are the mean and standard deviation
of the membership functions (antecedent parameters).

The features of the signals received from process must be
extracted to feed into multiple ANFIS to identify different
abnormal cases. Here feature extraction for input ANFIS is
achieved through statistical characteristics method in time-
domain. In the present work, each of the signals used by
ANFIS has processed to extract selected time-domain features
by PCA method in normal operation mode.
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Figure 3. Multiple ANFIS units for multiple fault diagnostics

Using multiple ANFIS prepare expandable platform for
further fault modes; moreover, based on specialized classifiers
it can perform more accurate and generalizable classification.

V. SIMULATION

To demonstrate the performance of ANFIS-based classifier
which fed in with PCA as salient feature, the detailed
nonlinear multivariable distillation column system developed
by Skogestad [5] in Simulink MATLAB® controlling in LV-
configuration shown in figure 4 used. The scheme was
developed as simulation. ANFIS based fault identifier were
developed using Matlab fuzzy logic toolbox.

In order to evaluate the proposed method, we conducted our
experiment over eight different operating conditions (normal
condition, increased and decreased in feed rate, feed
composition, reflux flow and boil up flow as fault scenarios)



with the fault defect size of 20% upper and under from steady
state in normal operation. The detailed description of the eight
faults is shown in Table 1. 900 samples for training and 450 for

Figure 4. Simple typical distillation column controlled with LV-
configuration

testing data were used during the experiment. The sample
training data consists of 100 samples for training each fault.
Each sample consists of a 42 vector output signal achieved
from 42 measurement sensors in 20 stages of the distillation
column.

These sensors report the mole fractions of light component,
x; and the liquid holdup in each tray called M; as well as

reboiler and condenser holdup calling Mp and M)
respectively, as process variables.
TABLE L FAULT SCENARIOS
F;:)l}t ]l;:umlz Description Unit (I;lljtll:alust

0 N Normal Operation 0

1 F Increasz((i) OFA) eed rate Kmol/min 4

2 F Decreasgg ;} eed rate Kmol/min 4

3 Zp Cg:];?;ﬁigzeg) " Mole fraction 3

4 Zp C?;f;ii?gg:;%g % Mole fraction -3

5 \Y% Incrg?;\idz}g;i)l up Kmol/min 2

6 \% Dec;?gf:dzBOf,zl up Kmol/min 2

7 L Inc;ele;s;dzl;;ﬂux Kmol/min 1

8 L Dec;?gf:‘; (li,zﬂ”" Kmol/min -1
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Figure 5 shows the output vector after occurring the startup
fault based on fault scenario at time 5. It is a nine-class
classification task corresponding to the eight different faulty
operating conditions plus the normal operation. For each fault
occurring during startup we extracted 4 salient features to feed
the related ANFIS. After training eight different types of faults
the resulting ANFIS set works as a classifier and diagnoses the
fault type. Because of burden of data including in signals
acquired from process it is very critical to select the best
features of sensor signals to detect and diagnose fault without
any ambiguity. If all of the features in each feature-set fed into
classifiers directly, they will make the classification process
slower and the classification accuracy lower.

80

Figure 5. Output vector signal cause by fault no. 1

The feature extractor performs a principal component
analysis on every output signal to extract salient feature. In this
case after using PCA we 4 selected to satisfy the Cumulative
Percent Variance (CPV) criterion on 89%, as it shown in figure
6 selected principle components for each fault from superior
ones out of 42 possible components are shown.

H i v g ¢
— » -
- : :

Output

Figure 6. Salient extracted features from fault no. 1

Figure 7 shows the classification results of diagnosing
different predefined faults using ANFIS (fed with these
extracted features). The trained ANFIS diagnosed the entire
sample fault based on the training data for each type of fault



during its transient time (until reaching steady state), and tested
with 50 testing data, training error and testing error. Results are
included in table II. In order to improve the training efficiency
and eliminate the possible trapping due to local minima, a
hybrid learning algorithm is employed to tune the parameters
of the membership functions [10].

Here we used 8 different ANFIS to diagnose 8 different
faults and every ANFIS trained in normal condition as well as
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Figure 7. The Fault Diagnosis Function when a fault occurs at feed rate

(a),(b) feed composition (c),(d) boil up flow (e),(f)and reflux flow (g),(h)

its corresponding fault. As the training and testing data are
shown in fig. 8, the result of diagnosing was satisfying. In the
process of evaluating the proposed method, we also tested the
way which relating 2 faults to one ANFIS; the accuracy of this
architecture was lower than previous structure. As it is clearly
shown in figure 7, the ANFIS output follows the fault for a
long period, until the variables reach their steady state which
demonstrates that this method can diagnose the transient fault
and follows the effects of every fault till system goes to its
steady state. This result can be achieved because of each
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ANFIS trained by the faults data from all abnormal condition
all over its transient time.

In this setup we use 4 membership function and constant
output. Note that accuracy increased by using Gaussian
membership function. Adding a new ANFIS block to existing
network has been also tested. The structure could easily
diagnose the new fault mode. Consequently, more ANFIS
blocks can be added to the system for diagnosing more fault
modes.

Unlike Artificial Neural Networks, the addition of extra
ANFIS units will neither affect the coefficient of the rest of the
network nor increase the complexity of it. By using multiple
ANFIS accuracy of the diagnosis system increases and the
process of training and testing is accelerated.

TABLE II. EFFICIENCY OF THE MULTIPLE ANFIS CLASSIFIER
DIAGNOSING DIFFERENT FAULTS
Table Column Head
Fault Triangular Gaussian Bell-shape
No. Training | Testing | Training | Testing | Training | Testing

Error Error Error Error Error Error
1 .0075 .0077 .0040 .0044 .0068 .0070
2 .0093 .0098 .0040 .0048 .0047 .0049
3 .0032 .0035 .0026 .0028 .0028 .0031
4 .0030 .0033 .0020 .0023 .0024 .0028
5 .0023 .0026 .0021 .0023 .0024 .0026
6 .0026 .0028 .0023 .0025 .0025 .0026
7 .0051 .0053 .0043 .0045 .0045 .0046
8 .0074 .0077 .0039 .0041 .0040 .0042

VI. CONCLUSION

Modern chemical processes are getting increasingly complex.
The complexities of these plants have led to an increasing
need for automated fault diagnosis systems. In this paper we
presented a computationally simple, fast and accurate expert
system for fault diagnosis of Distillation Column. The
proposed method is based on Principal Component Analysis
(PCA) that is much more suitable than model-based
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Figure 8. Classification result using multiple ANFIS



approaches, because it is often difficult to develop detailed
physical models for large scale chemical processes. Adaptive
Neuro-Fuzzy Inference System (ANFIS) is applied and
discussed in detail. Instead of using single fault identifier for
all fault, separate fault identifiers were developed which is
more effective during the transient and also the period of
monitoring. Note that the developed fault diagnosis system is
able to provide discrete and unambiguous indication of faults
such as transient feed rate failure and composition boil up flow
within the distillation column that lead to simplicity in
monitoring and maintenance. ANFIS based control can be
easily combined with the ANFIS based fault identifier to form
integrated fault tolerant system, which can improve dynamic
response of the distillation column system. This approach may
contribute to minimizing process shut-down and production
losses due to unexpected faults on any process control system
component or sub-system. This method may contribute to
achieving incipient fault detection and appropriate fault
identification to support and improve troubleshooting, decision
making and maintenance tasks (preventive maintenance).

Further works and studies such as using Particle
Optimization method to minimizing the number of rules
generated by ANFIS is suggested. Currently, we are designing
a multiple ANFIS fault diagnosis model using cause and effect
tree of process to predict upcoming fault in abnormal condition
of operation.
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