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Abstract— This paper presents a novel means of collecting and 

analyzing personal social network data, using 3G Smartphone 

that support Bluetooth connectivity. The application discovers 

and logs other close-proximity Bluetooth-discoverable devices, 

and this can be used to infer individuals’ proximity, contact 

duration, as well as geographical location information.  The 

contact data are presented in terms of distributions and 

visualization tools for evolving contact graphs.  Finally, contact 

data are then demonstrated to be of utility in estimating the 

potential of the spread of a contact-based infectious disease, 

where a vector of transmission is proximity to infected agents. 
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I.  INTRODUCTION 

Social network analysis is the field devoted to the study 

of the systems of human interaction, including patterns of 

individual interactions (who interacts with whom and for 

how long), networks that emerge among individuals, and 

patterns of interaction within and between networks.  The 

emergence of personal mobile communications has opened 

up new possibilities in collecting interaction data from 

larger populations, over continuous periods of time, and 

with higher accuracy than self-reported data.   

The objective of this study is to automate the acquisition 

of individuals’ contact (interaction) data using personal 

mobile devices (i.e. Smartphones).  The follow-on 

objectives are to develop computational techniques that 

generate and visually display meaningful social contact 

graphs from the data, and to investigate simulated disease 

spread models (SIR and variants) on the data, in the interest 

of understanding disease spread through a population.   
Personal contact is the primary means of transmission of 

influenza-like illness (ILI) and many other respiratory 
infections between people.  There have been substantial 
efforts to model this type of infection spread at the scale of 
an entire population, using mathematical models in an 
attempt to understand the spread dynamics and to evaluate 
various infection control measures [1][2].   

This work introduces 3G Smartphone application 
technologies to generate contact data within a given 
workplace or organization in an automated fashion. The 
objective of the application is to obtain statistical properties 
of person-person contacts and to subsequently demonstrate 

the data utility in the application of infection spread models. 
The infection spread models are stochastic phase-type 
models, and the primary means of analysis is that of an 
individual based SEIR (Susceptible, Exposed, Infectious, 
Recovered) model, as a derivative of an SIR model [3][4].  

II. CONTACT DATA GENERATION/ANALYSIS  

A. Contact Data Generation 

There have been a number of research efforts oriented at 
estimating personal social contacts [5]. In this work, we 
developed an application that could be used by a relatively 
small number of participants as probes, allowing them to 
“vampire” proximity data from a variety of consumer 
electronic devices inclusive of other 3G Smartphones; this is 
a distinct difference from the work in [6]. These ideas are 
well entrenched in the wired world and used by system 
administrators as a means of monitoring their networks.  The 
probes are capable of monitoring a user’s social network as 
well as their sub-social network (proximity contacts that a 
person has not explicitly made but that the probe device has 
detected).  

The 3G Smartphone application was run on five probe 
devices that maintain explicit location data when available 
(device GPS-enabled), augmented with connection attempts 
to close-proximity devices that are discoverable via 
Bluetooth (or equipped with a Bluetooth transceiver that is 
on and/or discoverable). These connection attempts to close-
proximity, Bluetooth-enabled devices log information 
including: date and time; MAC address (BD_ADDR); any 
user information or device meta-information a person may 
have provided (inadvertently or not); and, (4) geographic 
location if the probe device is GPS-enabled.  MAC address 
and meta-information are logged for both the probe device 
and the close-proximity (discovered) device. Meta-
information refers to factory-programmed or user-
programmed device IDs, e.g. “BlackBerry 5660” or “Jay’s 
iPhone”, respectively. The data collected is then logged to a 
database where it can be mined for contact durations, 
distributions and associations.  

Figure 1 presents a “use case” more clearly illustrating 
the role of the probe agents among other Bluetooth devices. 
In this scenario, Agent 1 is the probe device interrogating a 
number of other mobile devices within Bluetooth transceiver 
range. 
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Figure 1: A “use case” scenario for data collection from probe agents. 

 
The use case also illustrates issues with ranging. At the 

time of writing, the API for the Bluetooth radios is not as 
complete as that for WiFi for example, with the latter having 
more monitoring and control over parameters such as 
received signal strength indication (RSSI). As such, actual 
distances of subjects are difficult to quantify.   

Initially we did not have a good estimate of the 
effectiveness of the proposed technique in terms of collecting 
proximity data. There are a number of issues related to radio 
control and Bluetooth pairing that were in question. As 
mentioned, the devices used were BlackBerry Storm 3G 
Smartphones and the HTC Hero (Android).  These devices 
support Bluetooth v2.0 with consumer applications primarily 
being hands free operation and wireless stereo headsets.  As 
most people now are prohibited from using a cell phone 
while driving, the Bluetooth headset is most often 
discoverable.  Thus, even if the handset is not discoverable, 
the probe applications are able to discover a user’s 
accessories. There is really no means of circumventing or 
preventing someone from being able to attempt a Bluetooth 
connection once the device is discoverable. In all cases, at 
some level of a standard protocol some information is 
necessarily sent in plain sight. In many cases even if the 
device is not discoverable, it can still be found as long as its 
Bluetooth radio is on. In terms of identifying the device there 
are look-up engines and repositories that are readily available 
to help infer the device type [7].  

In the case of the BlackBerry Storm devices used here, a 
phone can only be detected if the Bluetooth option is set to 
discoverable.  With just over three months of data collection 
and with just five probe devices, approximately 500,000 
contact / connection records were collected.   

One final aspect associated with the automated means of 
contact data collection is that contact with non-mobile 
objects can also be collected and analyzed. For example, 
devices that are somewhat stationary such as desk top 
workstations are often discoverable without being able to 
infer that a person is associated with the object. These 

however allow for landmarks to be identified that are useful 
in localization of the probe devices.  

B. Location Based Extensions 

Incorporating actual location based services considerably 
enhances aspects of the probe application. The Smartphones 
we are using support GPS as well as assisted GPS services. 
Within this context, wherever and whenever possible, 
location based data is appended to the proximity records. An 
immediate benefit to a user then is to be able to obtain a 
graphical record of one’s proximity contacts as they traverse 
a campus or city. This is illustrated as a XML mash-up 
overlaid on GoogleMaps. The data for Figure 3 was 
collected using the HTC Hero probe device that is 
represented by one of the authors.  Figure 2 illustrates a mash 
up of proximity contact data incorporating spatial as well as 
temporal data collection.  

 

 
 

Figure 2: Proximity contacts collected from Smartphone probes 
incorporating location based GPS information. 

 

C. Contact distributions 

Contact data is conjectured to fall under types of data 

that can be described by empirical laws and/or distributions. 

In this sub-section, several aspects associated with contact 

data are presented. The web based database allows for 

queries and data retrieval for all probe devices. In one 

instance, the data generates the probe device and a rank 

ordering of contact durations. For illustration purposes, 

Agent 3 was selected for demonstration as it had recorded 

the largest number of contacts (147,000). The most straight-

forward distribution is that associated with Zipf’s law, 

which refers to the size of an event relative to its rank order 

as expressed below: 

 

D(r) ~ r
-z
 

 

Here D(r) refers to the cumulative duration of contact 

with r
th

 entity. Figure 3 illustrates this relationship in a 

graphical manner.  
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Figure 3: Proximity contacts duration plotted in rank order (Zipf). 

 

A closely related distribution follows Pareto law. 

Pareto's law is given in terms of the cumulative distribution 

function (CDF), i.e. in this case, the number of contacts (Nc) 

with duration larger than or equal to the duration is an 

inverse power of the duration as expressed below: 

 

P[Nc > D] ~ D
-p

 

 

In general, p should be inversely related to z. This is not 

precisely the case here, as there are a considerable number 

of unit durations that tend to skew the rank ordering in a 

somewhat artificial manner. Figure 4 illustrates the Pareto 

relationship in a graphical manner. 

 
Figure 4: Contact cumulative distribution function (Pareto). 

 

The associated power law distribution is derived from 

the probability distribution function (PDF) associated with 

the CDF given by Pareto's Law. This is essentially a 

distribution of the number of contact durations of precisely 

duration D. As such, the power law exponent k = 1 + p.  

A power law exponent less than two implies that there is 

no first moment or mean associated with the distribution.  

However, as the data obtained from the probe devices is 

finite, a mean can be calculated. An interesting (albeit not 

surprising) parameter that can be extracted from the Pareto 

principle is the 80-20 rule. From the data collected, the 80-

20 rule indicates the number of contacts with which the 

probe is in contact for 80% of the total contact durations. 

For Agent 3 this was calculated to be 14 contacts upon 2417 

or approximately 0.58% of the total contacts. Table I 

illustrates a number of parameters and estimates associated 

with the four most significant probe devices. 

 
TABLE I: 

Exponents of the Probe Devices 

Agent 

(All data) 

Zipf 

Exponent 

Pareto 

Exponent 

Power 

Law 

Expone

nt 

(calcula

ted) 

PDF 

Duratio

n 

“mode” 

“mean” 

80/20 

rule 

Agent0 

(student) 

2.01 

R2=0.95 

0.41  

R2=0.95 

1.41 1 

68.3 

7/399 

Agent1 
(faculty) 

1.58 
R2=0.97 

0.74  
R2=0.97 

1.74 1 
63.4 

19/182
6 

Agent2 

(faculty) 

1.39 

R2=0.97 

0.63 

R2=0.98 

1.63 1 

45.5 

11/123

4 

Agent3 
(student) 

1.33 
R2=0.96 

0.73 
R2=0.98 

1.73 1 
41.8 

14/241
7 

 

The knowledge of these parameters lends insights into 

contact and interaction patterns used in models and 

simulations associated with the spread of contact based 

infectious disease.  As expected, the distributions associated 

with personal proximity contact display a heavy tail, and 

exponents can be extracted and used in larger scale 

modeling.  Other notions that can be mined from the data 

can also be inferences to mobility. A probe with a large 

number of unit durations is arguably more mobile than one 

with relatively fewer unit durations.  

III. CONTACT DATA APPLICATION  

While interesting, personal contact data generation 
methods alone do not directly provide insight into the 
ramifications of social contacts as a predictive tool in the 
event of disease outbreak, beyond a cautionary indication of 
the anticipated connectivity between people.  The value of 
contact network data is extended when they are used as input 
to additional modeling tools that can be used in decision 
support systems.  In our case, we adapted the contact data as 
an input to an individual- or agent-based methodology that 
models the spread of influenza-like illness, or ILI within a 
population.  In this case, a simple mathematical model 
represents the health state of individuals. The model is a 
stochastic process where the individual’s health is 
represented by their state:  Susceptible, Exposed, Infectious, 
and Recovered (SEIR), as a variant of more common SIR 
models of disease spread.  In the SEIR model, infected 
persons are not able to transmit the infection until a certain 
incubation period had elapsed.  As such the Exposed state 
represents the time in an incubation period. The basic SEIR 
model is shown in Figure 5 with the values explained in 
Table II.  The values are illustrative, and can be tuned to 
specific types of infections.   
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Figure 5: The stochastic process governing an individual’s health state. 

 
 

TABLE II 
SEIR model health state transition diagram parameters 

Parameter Value 

E Duration of Incubation Period (e.g. 24 hours) 

I Duration of Infectious Period (e.g. 7 days) 

R Duration of Recovered (immune) Period (e.g. 200 days) 

i Contact graph edge weight to an another ContactNode 

 Contact graph transmission probability 

 
The stochastic process model of Figure 5 can be refined 

and extended, depending upon the characteristics of the 
infection. As epidemiologists better characterize a disease 
and its infection and transmission vectors, the state diagram 
representing individuals’ different states and durations can 
be modified accordingly.  

Figure 5 illustrates the stochastic process representing the 
states of an individual. The most significant departure from a 
compartmental or differential equation based analysis comes 
from the input extracted from the contact data. 

Although the probe data at present is limited, data 
collected with a larger set of devices and used as input to 
individual SEIR models could shed light on an infection 
surge as would be anticipated from an underlying contact-
transmitted infectious disease.   Modeling the impact of 
interventions such as quarantine, vaccination, or promoting 
absenteeism upon first symptoms can be easily implemented 
within this type of predictive framework.  Data that could 
immediately be mined actually would include inferencing of 
state. That is, once a probe becomes inactive during an 
outbreak it may be inferred that the individual has become ill 
and their mobility concomitantly reduced.  

IV. SUMMARY 

This paper presents a novel means of collecting person-
to-person contact data via 3G Smartphones running simple 
network application services. Data collected was analyzed 
visually, as well as through estimates of distribution 
governing exponents and parameters. The utility of the 
contact data was illustrated within an individual-based model 
to provide insight into how disease spread may be influenced 
through personal contact within a specific organization. The 
individual-based predictive disease spread model is a 

stochastic process model with transitions influenced by the 
degree of contact people have with one another.  The degree 
of contact (extent and duration for each person) is generated 
to be organization-specific and collected via the technologies 
outlined.   

The models also shed considerable light on the 
uncertainty and error that can be expected in mining this type 
of data.  Errors are introduced in the data collection methods 
are largely a consequence of the inherent uncertainty of the 
radio signaling and the configuration of Bluetooth devices. 
In each case, the data is at best statistical and should be 
evaluated in that context. 

Methods of visualizing this type of data are primitive and 
are an underdeveloped area of research in terms of effective 
visualization. The networks are inherently stochastic and non 
planar, making the problem even more difficult. However, it 
should be noted that visualization is only one means of using 
the data, and it is far from obvious how to show best to use 
this type of data when it comes to extracting utility. The 
SEIR model is only one means of further analyzing contact 
data. 
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