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Abstract─The US Government has called for a Universal 

Exchange Language for healthcare. This may be an 
opportunity to start from fundamental principles to deliver 
medical information in a uniform way that many 
stakeholders in the use of the system, not just 
programmers, IT architects, and standards organizations, 
but physicians, public health analysts, epidemiologists, and 
clinical decision support system designers, would like. To 
be truly universal, several aspects of a consistent 
formalism need to be considered. Some of these with 
examples are provided here. 
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I. INTRODUCTION 

The Office of the National Coordinator (ONC) for Health 
IT in the US is developing the technical guidance for a 
Universal Exchange Language (UEL), in response to the report 
by the President's Council of Advisors on Science and 
Technology (PCAST) [1]. Patient data is not to be confined to 
“home base” archives but rather, should be widely available 
for the patient in emergencies, and to facilitate extraction of 
knowledge for Comparative Effectiveness Research (CER), 
Evidence Based Medicine (EBM), epidemiological and public 
health analysis, and Clinical Decision Support Systems 
(CDSS).  

The general requirements for UEL as framed by PCAST 
have been controversial for several reasons. For added 
protection and selective access to parts of the record only on a 
need-to-know basis, patient data is to travel in chunks, which 
then requires re-aggregation to once again render an intact full 
version when required. Primary care providers, long-used to 
ready access of patient's record, contest the worthiness of this, 
but an appropriate system can assign an adjustable scope of 
authority, and a system that is data segregated can be treated as 
aggregated, while the converse is not true. Ideally the 
architecture should avoid a unique identifier for a patient not 
only for added security, but also because attempts to 
implement such have caused much controversy, especially in 
the US Healthcare System [2]. Furthermore, such a UEL 
should overcome or meaningfully reconcile a plethora of 
standards such as HL7 [3], ISO [4], IHE [5], DICOM

 
[6], and 

CDISC [7]. The UEL appears to be a “green field” opportunity 
for an architecture based on a self-consistent set of language 

principles in a unifying theoretical formalism. Here we discuss 
what this might look like.  

II. UNIFORMITY 

We describe our approaches within an XML-based format, 
which does not appear to be a controversial issue. It makes 
sense that any kind of “universal exchange language” should 
be applied in a way that is as uniform as possible, whether it is 
used for conveying patient data or for generating the measures 
intrinsic to CER, etc. In XML terms, this means that emphasis 
is on a grammar of markup relating to attributes in XML tags. 
Content wrapped by tags we consider as more arbitrary and not 
necessarily structured information, comprising supporting 
textual comments less crucial to rapid medical use and 
analysis. Uniformity more crucially implies as few attributes as 
possible that can serve in a reusable and consistent fashion for 
the vast number of extant data types, with the added feature of 
allowing for omitted attributes, owing to default meaning. We 
seek a UEL with the same tags and grammar that applies to (a) 
individual patient data, (b) statistical summaries and metrics of 
medicine drawn from data analysis of many patients, (c) 
semantic triples for the Semantic Web, and (d) probabilistic 
rules for inference.  

To achieve this we think of XML tags or analogous objects 
as being rules, and of tags that relate to an individual patient as 
being incidence rules that portray that patient as the limit-case 
of a population of one, with this conveyed by an attribute 
patients= ‘1’. Rules from many patients are summary rules.  

Elsewhere we shall describe a prototype implementing all 
the features described in this report, and others. Briefly, the 
prototype considers attributes subj, verb, obj on the under-
standing that the attribute verb means any predication or 
relator. An example is subj=‘systolic_BP:=140+/-10’, which 
is in metadata:= orthodata format with an optional confidence 
interval.  

For simplicity, consider first the categorical relationship: 
verb=’are’ or ‘all are’. Probabilistic quantification is by three 
key attributes p or optionally pfwd (P-forward) with value of 
P(“All A are B”) = P(B|A), and pbwd (P-backward) with the 
value of P(“All B are A”) = P(A|B), plus assoc (association) 

with the value of K(A; B) = P(A & B) / P(A) x P(B)]. Section 

III describes the formalism of inverse relationships. Note that, 
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P(“All pregnant patients are females”) and P(“All females are 
pregnant patients”) depends on the fraction that are pregnant. 
Pfwd, pbwd and assoc are sufficient for the general categorical 
case in medicine on the understanding that A and B can also be 
joint or compound events or coincidences, such as (V & W) 
and (X & Y & Z), respectively. All required probabilities can 
be generated from pfwd, pbwd, and assoc by P(A) = 
P(A|B)/K(A; B), P(A & ~B) = P(A) – P(A & B) and so on. 
From these we may obtain all familiar medical odds and odds 
ratios, and number needed to treat/harm of form 1/[P(A|B) – 
P(A|~B)].  

How are these probabilities obtained? Associative data 

mining can be used to obtain K(A; B) or its logarithm as 
(Fano) mutual information I(A; B). Mining I(A), I(A; B), and 
generally I(A; B; C;…) = ln(A, B, C, ..) − ln(A) − ln(B) − 
ln(C)… allows all required probabilities to be generated from 
a list of such, e.g. P(A|B) = e

I(A; B) − I(A)
 = P(A)e

I(A; B)
,
 
this being 

also an analogue of the Bayes relationship. Simple Bayes-
style inference for diagnosis and best therapy may use I(A: ~A 
| B, C,….) = I(A | B) + I(B | A, C) + … − I(~A | B) − I(B | ~A, 
C)…, or mutual information I(A: ~A; B, C, ….) in absence of 
prior information. Our expansion terms are in practice Bayes 
expected information estimates using all the data available for 
terms with different numbers of arguments A, B, C... 
Probabilistic UEL objects could be derived from these terms, 
and conversely used to reconstruct them for inference in 
CDSS. Note that pbwd allows an inverse form of inference 
using, for example I(B, C | A: ~A) to study etiology of disease. 

For non-categorical (“action verbs”, etc.), the situation is a 
more complicated when probabilities are assigned by data 
analytics. It best uses the considerations of Section III for a 
formal treatment of a verb as operator that is less familiar in 
probabilistic semantics. In interpreting it as an extension to the 
categorical case, there is a need to include further (but 
calculable) probabilities. But subjective assignments by an 
expert seem natural and self-evident. We have simply to assign 
intuitive analogues of conditional probabilities to pfwd and 
pbwd to represent as e.g. P(“overeating causes obesity”) and 
P(“obesity causes overeating”).  

What meaning can be attached to patients=‘1’, the case of 
the single patient? Nothing can be certain. The loophole is that 
probabilities in medicine may relate to the reliability of clinical 
measure methods determined by repeated measurements on 
one sample, or repeated measurements on one patient, or 
measurements on different patients in a cohort or population, 
or (in systematic reviews, in principal at least) a mix of these. 
The simplest case for one patient is possible because attributes 
are optional although their absence may imply defaults: for 
subj and obj the default is a probability of one. In that case 
subj=‘systolic_BP:= 140+/-10’ and p= ‘0.95’ means the 95% 
confidence interval, i.e. 95% of repeated measurements will lie 
in that range. The presence of several subj’s implies a joint 
probability with the confidence interval applying to a two 

dimensional distribution. At least one obj implies a conditional 
probability, so subj=‘systolic_ BP:=140+/-10’, 
obj=’BMI:=30+/-5’ implies that 95% of systolic BP 
measurement lie in the 130 to 150 range conditional on the 

BMI being on its specified range 25 to 35 range. Such 
measures are much rarer, but meaningful. 

This begs the question of what such measures mean when 
patients=‘2’ or some other low number. Even putting aside the 
intrinsic uncertainty in one measurement, a proper treatment 
really requires the notion of patient-observations analogous to 
person-hours; say that 3 observations were made of 5 patients 
and 7 observations on two patients. Within a UEL formalism 
we could have multiple attributes for a patient each with 
different values (number of patients), and strictly speaking the 
recurrence of these attributes in a tag relates to further 
observations on each group of patients. Note, for Section IV, 
that this implies an aggregation of data for each patient and an 
aggregation of data for many patients. 

Again formally, at least, there can be many subj and many 
obj attributes duplicated by having the same value for an event, 
state, or measurement, in the same UEL tag, and for repeated 
measurements under uncertainty, many with the same metadata 
but different orthodata. If, for example, in evaluating P(A|B) 
and P(B|A) it is found that these are equal then P(A) = P(B) 
and K(A; B) = P(A)

−1
 = P(B)

−1
 > 1, and this is basically the 

same as stating that A and B are indistinguishable. But 
counting implies, as is normally required, that observations are 
probabilistically independent, which means that K(A; B) = 1. 
In the other extreme, A and B are completely distinguishable, 
if so they are necessarily mutually exclusive and K(A; B) = 0. 
These are consistent with Section III. 

While for brevity this leaves some loose ends, it is evident 
that a formal theory of observations and data analytics (and 
medical inference from these) can be forged from such 
considerations. All aspects notwithstanding, a simple practical 
recommendation is that patient= ‘1’ be a special case, albeit 
the grammar should remain the same, allowing for associated 
probabilities to be used in inference in exactly the same way as 
for tags representing many patients.  

III. THEORETICAL GUIDELINES 

In all the above, and in application to data mining for rules 
and inference from them, we use quantum mechanics (QM), 
e.g. [8], as a guideline (e.g. [9, 10]). Physicists regard QM as a 
universal Best Practice [8, 9], and the methodology of interest 
here takes ideas from a branch of QM. Everything discussed in 
this Section can be described without resorting to quantum 
mechanical descriptions. However, QM provides a set of 
mathematical formalisms and concepts that are already 
operationally rigorous and well validated.  Thus, a UEL could 
take advantage of these principles. 

The UEL tags, in regard to attributes subj, obj, verb, pfwd, 
pbkd, assoc, are not only useful and beneficial, but also the 
chosen for their fit with QM. These UEL tags are seen as 
relating directly to the Dirac’s notational bra-ket form <A | R 
|B> having a complex value [8] of form a + hb, where a and b 
are real and h is an imaginary number. A corresponds to our 
simple or compound subject (subj), and B to our simple or 

compound object (obj). R is the verb, specifically for 
probabilistic semantic purposes a verb is a Hermitian operator 
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such that <A | R | B>* = <B | R | A> [8]. But now the 
imaginary number in a + hb is h [9,10] not i as the square root 
of minus one. This branch of quantum mechanics describes 
relativistic, particle, and importantly classical phenomena 
under a Lorenz-Dirac transformation [8, 10]. This 
transformation is of i to h, the square root of plus one, i.e. the 
hyperbolic number commonly identified with the particle 

physicists’ γ5. It is a rotation of the reference frame as a 
generalization of the Wick rotation that renders quantum 
mechanics classical [8,10].  

Again for simplicity consider the categorical case, the 
relation with QM can clearly be seen in metadata:=orthodata 
format where in Dirac notation: 

 <momentum(kgm/s):=7654 | position(m):=273> 

With a value say 0.6 – h0.3, this becomes in UEL notation, 
for example,  

<uel subj =’position(m):=273’      
        obj=’momentum(kgm/s):=7654’   
        pfwd=0.6 pbwd=0.3> 

As hyperbolic or h-complex probabilities, these objects < >, 
coincidentally similar in Dirac QM notation and XML, satisfy 
all classical laws of probabilistic inference (such as the law of 
composition of probabilities and the chain rule) when applied 
to the values of pfwd and pbwd separately (see below). The 
relation between the probabilities and the h-complex value is 
that in the h-complex space the bra-ket value with empirical 

probabilities (as opposed to exponentials as statistical weights 
calculated ab initio from physical principles) can be expressed 
in a simple spinor form [9,10]: 

<A|B> = (1-h) P(A|B) + (1+h) P(B|A) 

            = [(1-h) P(A) + (1+h) P(B)] K(A; B) (1) 

The complex value, e.g. 0.6 – h0.3 corresponds to (pfwd + 
pbwd) + h(pbwd − pfwd) in UEL attribute notation. Square 
roots of P’s and K’s are used; this need not concern us here, 
but using square roots does have a semantic interpretation [9].  

There is an implicit finer structure, in the advocacy for bra-
ket notation, with associated empirical probabilities, and 
alluring analogies. In physics, the use of a Wick-like rotation 
necessarily imparts the need for scalar fields based upon a 
Euclidean functional integral. So, with such a field metric, 
increasing degrees of variability in φ(x) in any d-dimensional 
space result in diminishing component contributions to the 
overall Euclidean functional integral.  The proposed system 
has properties very similarly to well-formed statistical 
mechanical systems, which obey Boltzmann distributions. 
With the availability of a Boltzmann-like fine structure, it may 
be possible to extend the QM analogy of the UEL-tag encoded 
data into distinct NP-complete partition sets, defined by a well-
formed Hamiltonian that serves as the partition function for the 
quantum-like encoding system now possible.  The con-
sequence is that the resultant UEL spinors can be seen as a 
means of bridging the limit function of φ(x) to all the possible 
Bose fields implicit under the current encoding map, as 
derived by Zee [11]. In any event, it can be shown that the h-

complex counterpart of a wave function illus-trates the 
required properties of everyday probabilistic inference [9] and, 
expressed as distributions, shows the locality characteristic of 
particle behavior [10]. But what is also worth exploring is that 
the above equivalency implies that the UEL-encoded spinors 
of a common set, representing an orthogonal basis, and 
extracted from original un-encoded data, essentially guarantee 
reverse decodability in settings with continued availability of 
appropriate keys. 

In general, UEL tags may be used in a broad formal system 
of probabilistic inference [9, 10] that can make use of data 
mined or of expert rules, wherever one imagines that a bra-ket 
or bra-relator-ket would play in an analogous quantum 
mechanical role. There is even a counterpart of confidence 

interval in both cases. For conjugate variables ∆A∆B = 

h/4π (where h, non-italicized, is Planck's constant), and 
literally translates as “standard deviation of…”  Usually, the 
states, events, or measurements of interest clinically are not 
conjugate variables. But, that said, it is not generally true that 
K(A; B) ≈ 1, implying a possible need to treat the confidence 
intervals as interdependent. 

More generally <A| and |B> are h-complex vectors and the 
dot product <A|B>·R when present is an h-complex Hermitian 
operator and R |B> is a vector. This is useful for handling 
probability distributions and in reducing order of computation 
(see N

2
 problem below). |B><A| is the probability interaction 

matrix. However, especially once values are assigned to pfwd 
and pbwd, we need only be concerned here with the final dot 
product. The difference between a categorical and non-cate-
gorical verb case can be thought of as formally analogous to 
the Dirac notational quantum mechanical structure <A|B> and 
<A| R |B> respectively, but noting that defining a verb “to be” 
as the canonical basis for verbs implies <A| R |B> = <B | A>. 

Recall that values of pfwd and pbwd considered separately 
satisfy classical probabilistic laws. For most purposes, 
therefore, it is sufficient to think of the complex value as a 
simple vector [pfwd, pbwd], and by only considering one 
element at a time, the calculation is purely classical (e.g. in the 
manner of a Bayes Net). This begs the question of why not, for 
example, use two Bayes Nets? One reason is having both 
directions of conditionality forces us to consider semantic 
repercussions that influence overall inference. For example, 
“All cats are mammals” implies “All non-cats are non-
mammals”, and the probabilities may be different (except in 
the case of certainty). Significant use is lost by breaking down 
hyperbolic inference into two independent classical systems if 
we do not constantly compare them. If P(A) = P(B), then 
<A|B> is real-valued, and this means that it has an existential 
rather than a universal categorical interpretation. The former 
lacks directional conditionality. Related to that, a cyclic path 
of bra-kets can be shown to be real-valued [8]. As an 
indication of how such guidelines may be useful [8,9], we note 
the generalization of Bayes Nets to quantum mechanical 
descriptions that can use all forms or probabilistic logic, and 
potential applications in the ease of treatment of cyclic paths in 
graphs representing inference networks. The real value of such 
paths lies in their freedom from requiring iteration. Also, there 
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is the important N
2
 problem. A priori, for any set of tags or 

equivalent objects that describe semantic triplets, memory and 
calculation demands rise proportionally to N

2
 for N “nouns” or 

nodes A, B, C etc. in the general knowledge network as in a 
graph. If tags describing triples are simply neglected on the 
grounds that a relationship is fairly close to random, there can 
be an accumulation of weak evidence from many tags as rules 
that dominate conclusions and recommendations reached by 
inference. One may avoid the N

2
 problem by instead making 

reference to at least locally universal quantum states <A|Ψ>. 
Again, many aspects can be considered in more familiar math-
ematical and algorithmic ways, but whether within a single 
framework is questionable. There is also a striking relationship 
with natural semantic structure. For example, though beyond 
present scope, the physicist’s twistor could be written in forms 
such as <<A|B> | <C|D>> which, with operators analogous to 
verbs and prepositions, provides guidelines to a probabilistic 
semantic grammar even closer to practical human language 
structure. 

IV. DISCUSSION AND CONCLUSIONS 

It is not at all evident that the grander vision of PCAST will 
be met, and one suspects that standards bodies will encourage 
extensive reuse of the work that has resulted from years of 
hard effort. To achieve uniformity it is important however, to 
know the theoretical framework, or at least have in mind some 
theoretical framework. At the very least, reference to a 
physically proven and well worked out formal framework such 
as QM is insightful for mathematical and algorithmic 
development of a UEL. Other considerations, such as secure 
aggregation, will be introduced in upcoming manuscripts. 
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