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Abstract—In this paper, we present preliminary results towards
the development of the Virtual Dermatologist: A 3D image and
tactile database for virtual examination of dermatology patients.
This system, which can be installed and operated by non-
dermatologists in remotes areas where access to a dermatologist
is difficult, will enhance and broaden the application of tele-
healthcare, and it will greatly facilitate the surveillance and
consequent diagnosis of various skin diseases. Unlike other sys-
tems that monitor the progress of skin diseases using qualitative
data on simple baseline (2D) photography, the proposed system
will also allow for the quantitative assessment of the progress
of the disease over time (e.g. thickness, size, roughness, etc).
In fact, the 3D model created by the proposed system will let
the dermatologist perform dermatoscopic-like examinations over
specially annotated areas of the 3D model of the patient’s body
(i.e. higher definition areas of the 3D model). As part of its
future development, the system will also allow the dermatologist
to virtually touch and feel the lesion through a haptic interface.
In its current form, the system can detect skin lesions smaller
than 1mm, as we demonstrate in the result section.

I. INTRODUCTION

When it comes to skin illnesses, the role of the dermatol-
ogist vis-à-vis general practitioners is undeniable. According
to an Australian study by Marks et. al, [1], dermatologists
are equipped to diagnose skin cancer more effectively, specif-
ically melanoma, and the ratio of benign to malignant lesions
removed is 11.7:1 for dermatologists vs. 29.9:1 for general
practitioners. Unfortunately, 40% of the population in the USA
has no access to dermatological care. This number is even
higher in other countries and even though the higher density
of dermatologist is associated with better prognosis in patients
diagnosed with malignant melanoma [2], the effectiveness in
the diagnostic and treatment still relies on non-dermatologists.
In fact, the diagnosis of melanoma by a non-dermatologist
has been associated with an increased breslow thickness and
with more late stage melanomas at time of diagnosis than the
diagnostic by dermatologists [3]. In the same study, median
breslow thickness in melanomas diagnosed by dermatologists
has been found to be significantly less (0.5mm) than by other
providers.

This effectiveness in the diagnostic by dermatologists relies,
amongst other things, on constant examinations [4]. That is,
periodic surveillance for new or changing nevi in patients
who have potential precursors of melanoma (including atypical
nevi), prominent numbers of nevi, a previous melanoma, or a
family history of cutaneous melanoma, is fundamental for the

correct diagnostic and to improve patient outcomes [5]. In that
sense, the periodic visits by a patient to a dermatologist is also
very important, since the sensitivity of the visual examination
by a dermatologist is 89% to 95%, with a positive predictive
value of 35% to 75% for the diagnosis of melanoma [6].

Fortunately, the difficulty in access to health care and
specifically to dermatologists can be minimized by the use of
technology. One such example is the teledermatology system
proposed in [7]. This system enables dermatology services to
the patients at remote areas via distant and specialized medical
sites. It uses one of the most common types of tele-healcare
called store-and-forward, which is based on the concept
of sharing information asynchronous and place-independent.
Also, it relies on transmitting baseline photography and patient
information to a distant expert who provides the consultation
[8], [7].

Here, we propose a 3D modeling system that will allow for
the development of the Virtual Dermatologist: A 3D image
database for virtual examination of dermatology patients.
This system, which can be installed and operated by non-
dermatologists at remotes areas of the state and the country
can provide more than just total cutaneous photography and
it will greatly facilitate the surveillance and consequent diag-
nosis of malignant melanoma as well as other skin diseases.
Unlike other systems [9], [4], that monitor the progress of
such diseases using qualitative data on simple baseline (2D)
photography, the proposed system will also allow for the
quantitative assessment of the progress of the disease. In fact,
the 3D model created by our system will let the dermatologist
perform dermatoscopic-like examinations over specially anno-
tated areas of the 3D model of the patient’s body (i.e. higher
definition areas of the 3D model)

II. BACKGROUND

A. Teledermatology and Baseline Photography

The prospective surveillance of high risk patients with the
aid of baseline photography can help identify early, thin
melanomas [4] because it helps detect subtle changes, while
it is non-invasive; it minimizes unnecessary surgery; it is
efficient; and it is cost effective. That is, by simply being able
to compare the images of the patient over a period of time, one
can improve early diagnostic even for the strongest risk factor
for the development of melanoma, which is the presence of a
large number of benign nevi [10], [11], [12], [13]. Moreover,
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total cutaneous photography can guide the physician in the
examination, while it can aid in the detection of clinically
subtle, early malignant melanoma. Also, the use of baseline
photography along with dermatoscopy is associated with low
biopsy rates and early detection of melanoma [14]. In a study
by Feit et al [9], 74% (20 out of 27) of newly diagnosed
melanomas could be biopsied because of changes detected
using simple baseline photography. In patients with dysplastic
nevus syndrome, photographic surveillance has been shown to
increase early diagnosis of melanoma and is much more cost-
effective than prophylactic excision of atypical nevi [12]. Not
to mention that total cutaneous photography can also reduce
the excision of benign lesions and alleviate patient anxiety,
reducing medical costs. In a study by Banky [14], it was
found that less than 1% of new or changed nevus detected by
total cutaneous photography were indeed melanoma in patients
younger than 50 yrs and 30% were melanomas in patients
above 50 yrs.

B. 3D Modeling

Object modeling has a wide range of applications in several
areas such as: robotics [15], [16], virtual reality [17], [18],
medicine and health care [19], [20]. In the latter case, creating
3D models of the human body can pose a great challenge
due to the lack of texture in the human skin. This problem
forces the use of unconventional methods, that is, methods
that are not based only on intensity correlation. Hence, many
approaches involving constrained global optimizations of pho-
tometric discrepancy functions have appeared in the literature
recently. Some of these works were surveyed, evaluated, and
can be found in [21]. In [22], for example, the authors reported
a successful reconstruction of the human body using multi-
view. However, the method, which was based on the detection
of boundary motion extracted from the level set, still required
specialized parallel PC hardware and software for efficient use
of computation resources (e.g. load balancing). Other methods,
such as [23], proposed a deformable model for 3D recon-
struction of the human face. In this work, while the use of a
reference face did away with the intensity correlation problem
by aligning and warping the reference model with the observed
face, their approach could only capture geometric properties
of the face. So, additional post-processing for texture mapping
was required in order to achieve a realistic representation of
the face. Other more traditional approaches required active
sensors, like range scanners, structured-light scanners, and
similar techniques [24], [25], [26]. Those methods produced
high quality models through the use of a controlled light
source, such as a laser. However, the trade off was usually
the high computational cost and the long time required for
image acquisition.

III. DESIGN OBJECTIVE

In this work, we propose a new method for 3D modeling
that uses multiple virtual views from a single stereo pair. Our
approach, while it is multi-view based, does not require a large
number of calibrated cameras positioned around the object.

Instead, our method only requires a single pair of calibrated
cameras and a motion detection algorithm that estimates the
position of virtual cameras as the object moves with respect
to such cameras. Besides the much lower cost and despite
the much simpler setup, the 3D models created using this
approach is highly comparable to the original Patch-based
Multiview Stereo (PMVS) algorithm, while maintaining the
same computational efficiency. Also, as the original PMVS,
our method works well on various objects, including human
faces, as we demonstrate in the results section. Another great
advantage of our method is in the simplicity to obtain denser
models if necessary: by only increasing the number of sampled
images during that object-camera motion.

Figure 1: Proposed Framework for Virtual Multi-View 3D
Modeling

IV. SYSTEM DESCRIPTION

The proposed framework takes a hybrid approach to the
reconstruction of the human body. On one hand, the motion
of the virtual stereo cameras have to be computed using
structure from motion (SfM) algorithms. Once the location
of the virtual stereo cameras is known, PMVS is used to
reconstruct the complete model of the human body with both
geometry and texture information. The proposed framework
for a virtual dermatologist can be decomposed into 6 steps:
1) Multiple pairs of images are captured by two calibrated
cameras while the human rotates with respect to the cameras
and the background is eliminated by the algorithm describe in
[27]; 2) A SIFT-based feature extraction and matching algo-
rithm ([28]) establishes the correspondences between images
at two consecutive positions; 3) The intersection between the
sets of corresponding points from two consecutive pairs of
images is determined. That is, the algorithms finds identical
feature points seen by the stereo cameras at two consecutive
positions and create an intersection set; 4) The 3D coordinates
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of every point in the intersection set above is calculated; 5)
The transformation between cameras (i.e. object poses) are
estimated using the 3D coordinates above; and 6) The previous
transformations are used to create virtual poses of the camera
and fed into a Patched-base Multi-view Stereo software ([29])
to reconstruct a 3D model of the human body.

A. Real vs. Virtual Cameras

As we explained earlier, the input images are captured by
a single pair of 640x480 stereo cameras and a PC, which
can be installed at any physician clinic office. The cameras
are mounted on a tripod and are calibrated off-line using the
CalTech Calibration Toolbox [30].

In the original PMVS method, the reconstruction algorithm
also relies on a small number of calibrated cameras: in that
case of [29], three cameras. However, differently from our
system, their approach expands the number of views by
employing a carefully-positioned turn table. That is, each
camera acquires multi images of the object, while the turn
table is carefully rotated at pre-defined angles. In our method,
we achieve an accuracy as good as that of the original PMVS,
but we rely only on two cameras and no turn table. Instead, in
order to obtain an arbitrary number of multiple views of the
object, we resort to the idea of virtual cameras.

In our proposed framework, our stereo cameras take images
of the object as it moves freely about the camera. This motion
of the object is interpreted by the algorithm as if it was the
motion of the cameras. Better yet, as if the image sequence
acquired by the cameras were taken by different cameras at
slightly different poses: that is what we refer to as virtual
cameras. In that sense, as the object moves in one direction,
the algorithm computes the motion as if it was made by the
cameras in the opposite direction. In fact, since the cameras are
firmly mounted on the same tripod, there is mathematically no
difference whether it is the camera or object that is actually
moving. The problem becomes “simply” that of finding the
pose of the virtual camera, as it is described in detail in Section
IV-B

B. Motion Estimation of Virtual Camera

The most important component of the proposed frame work
is how to estimate the motion, i.e. translation and rotation,
of the virtual camera. Because the virtual cameras in the
framework are stereo, only motion of the left virtual camera
has to be estimated. Also, rather than estimating the motion
of all cameras at once, we take an incremental approach in
which we find the motion of the cameras from one position
to the next position in the chain of acquired images. That is,
once the first motion is estimated, a new position is taken into
account until the chain is completed.

At each position, due to the use of a stereo system, 3D
locations of feature points in the images can be estimated by
triangulation, as described in [31]. For any two consecutive
camera positions, identical features observed by both stereo
cameras are collected into two sets of 3D points. Ideally,

Figure 2: L,R are the real cameras, while L′,R′ are the
estimated virtual cameras due to the motion of the object O
(from solid to dotted lines).

these two sets of points contain exactly the same points of
the target object, but with different coordinates due to the
fact that they are being seen at different camera positions.
The camera motion can be estimated by first assuming one
coordinate frame fixed; then translating and rotating the second
coordinate frame until the two sets of 3D points coincide.
By doing so, the problem of motion estimation becomes a
minimization problem, where the objective function is the sum
of the distances between 3D points in one coordinate frame
and its corresponding points in the transformed coordinate
frame with regard to the translation and rotation of the latter
coordinate frame.

C. Algorithm for Proposed Framework

The complete algorithm of the proposed framework (Figure
1) actually begins with a background subtraction using the
method presented in [27]. This step is necessary because we
are only interested in the human, not the background. After
that, the framework finds matching points between all pairs of
stereo images using the SIFT algorithm [28], [32] implemented
as a Matlab toolbox [33]. Next, the framework uses two left
images corresponding to two consecutive positions of the
virtual cameras to establish correspondences between these
positions. That is, it runs again the SIFT algorithm, but this
time using the left image at position i and the left image at
position i+1. By examining these three sets of points – that is,
left-right at i, left-right at i+1, and left-left at i and i+1 – the
framework can establish the correspondence between features
in space.

To compute the motion of the virtual camera, we make an
assumption that the motion is rigid. That is, in this work, we
assume that a simple translation and rotation can describe the
movement of the feature points from position i and position
i+1. From the identical features found in the previous step,
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corresponding 3D sets are reconstructed. Since a motion is
known to have 6 degrees of freedom, each of the 3D sets must
have at least three points in order for the algorithm to be able
to uniquely compute the motion. In practice, this minimization
problem is solved by the iteration over a set of noisy points
and therefore many more points must be obtained for better
performance. The optimization used in our framework relies
on the Levenberg-Marquardt approach to minimize the sum
of distances between the two sets of 3D points as explained
earlier.

The above procedure is repeated one pair of positions at a
time until we find all the transformations between any pair
of consecutive positions of the virtual cameras – i.e. two
consecutive pairs of images in the acquired image chain. Since
we define the first positions of the left camera to be the
world reference frame, the position of any virtual left camera
can be obtained by pre-multiplying the transformations of the
previous virtual cameras in the chain all the way to the first
position. Also, since the stereo cameras are mounted on the
same tripod, their relative pose never changes in the chain
and therefore, the virtual positions of the right camera can be
easily derived from the positions of the left camera.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we present qualitative results from our virtual
multi-view 3D framework when modeling the human body.
Since accuracy is an important aspect of the proposed systems
for diagnostic of dermatological diseases, we also compared
the accuracy in 3D reconstruction by applying the algorithm to
other objects whose groundtruths are known: a bunny and an
angel. That is, we compare the accuracy of the model created
by our method against the 3D ground truth obtained with the
laser scanner presented in our previous work, [34], [26].

A. Face and Human Body Modeling

In this experiment, the person to be modeled stands in front
of the cameras with his right side turned to the cameras. We
start the image acquisition at 30fps while the human rotates by
1800 in front of the cameras. Since the time to complete the
1800 rotation and the consequent number of images acquired
may vary, we sub-sampled the images by a variable factor that
led to a totally of 16 images – 8 images for each camera – or
one image roughly every 22.50.

Next, we ran the SIFT algorithm to find corresponding
feature points, as explained in section IV-B. Usually, the SIFT
algorithm returns about 150 matching points between left and
right images, and a few dozens of other matching points
between two consecutive left images. In the end, the algorithm
is capable of finding between 15 and 20 points in common
for each pair of consecutive positions. After running the
optimization and obtaining the virtual camera poses for each
of the 16 images, the same images and the calculated camera
poses were input to the patch-based multi-view program. The
outcome of the program for this 3D model of the human face
is shown in Figure 3.

Figure 3: Reconstructed 3D face using 16 images

Figure 4: Reconstructed 3D face using 70 images

As we mentioned earlier, one of the major advantages of
our method is in how easy it is to increase the density of a 3D
model. That is, if an application requires a denser 3D model,
all that one needs to do within our framework is to change
the sampling factor used in the above steps. There is no need
to add more calibrated cameras or to calibrate new positions
of a turn table [29]. Instead, the system can make use of the
images already collected in order to reduce, for example, the
number of gaps in the model. As Figure 3 shows, various gaps
(blue spots) are present in the 3D model, in special on the head
where the low-resolution cameras used and the hair makes it
harder to find feature correspondences. To reduce the number
of such gaps in the model, we can increase the number of
virtual poses of the cameras by simply increasing the number
of sampled images after image acquisition.

Figure 4 shows such a model when 70 images were sampled.
By comparing the 3D model obtained in Figure 3 and the
model in Figure 4, we can see that the second model is
qualitatively better than the first.

Many other similar tests were performed using the entire
human body. Figure 5 presents one of such tests by showing
three different views of the 3D model obtained with the
proposed framework. This 3D model was created using only
28 images and greater detail of texture and geometry can be
achieved with a higher number of images.

In the next section, we analyze the results in a more
quantitative manner.
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Figure 5: Reconstructed 3D Human Body

B. Analysis of Accuracy

In order to demonstrate the applicability of our framework in
the dermatology setting, the accuracy of the 3D model needs
to be very high. In that regard, we calculated the accuracy
of our method by comparing it with two datasets obtained
with a highly precise laser scanner ([34], [26]). Those datasets
include: the angel and the bunny, which are depicted in Figure
6.

The comparison was performed by first reconstructing the
3D model of each object using the proposed framework and
then using the Iterative Closest Point (ICP) [35] algorithm to
match the cloud of points obtained by our method against the
cloud of points from the laser scanner.

The criteria used for comparison follows the same format
described in[21], however, here we concentrate only on the
accuracy criterion.

Figures 6(a) and 6(b) show the real image of the two objects
used, while Figure 6(c) and 6(d) show the reconstructed model
using our method. The qualitative results from our algorithm
is summarized in Table I. As it can be inferred from this table,
our method achieves enough accuracy to detect skin lesions
as small as 1mm, with a success rate of 85-90%, and lesions
smaller than 1.5mm, with a rate of 93-96%.

VI. CONCLUSION AND FUTURE WORK

In this work, we propose a novel approach to telehealthcare
by building 3D models of the human body instead of more
traditional baseline photography. The system, dubbed Virtual
Dermatologist, uses off-the-shelf computer vision technology
and state-of-the-art algorithms, allowing for the system to be
installed and operated by non-dermatologists in any remote
area and at a very small cost. The proposed system provides
more than just total cutaneous photography and it will greatly
facilitate the surveillance and consequent diagnosis of malig-
nant melanoma as well as other skin diseases. In the future,
we intend to integrate the haptic features which allow the
dermatologist to virtually touch and feel the lesion.

In the future, we intend to perform a series of tests with
actual wounds/molds to fully demonstrate this paper’s appli-
cability to dermatology. Also, an analysis of the model quality

(a) (b)

(c) (d)

Figure 6: Quantitative Results (a) and (b) show the images of
the angel and bunny used for testing; (c) and (d) show the 3D
model created using high resolution cameras.

versus the number of input images would be very helpful to
guide the user in selecting the required number of images
for the desired model quality. As we already noted above,
improving the method in order to reduce the holes on the
model is also an important future work, which is already being
conducted.
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