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Abstract—The importance of the Electronic Health Record
(EHR), which stores all healthcare-related data belonging to a
patient, has been recognized in recent years by governments,
institutions, and industry. Initiatives like Integrating the Health-
care Enterprise (IHE) have been developed for the definition
of standard methodologies for secure and interoperable EHR
exchanges among clinics and hospitals. Using the requisites
specified by these initiatives, many large-scale projects have been
set up to enable healthcare professionals to handle patients’
EHRs. Applications deployed in these settings are often con-
sidered safety-critical, thus ensuring such security properties
as confidentiality, authentication, and authorization is crucial
for their success. In this paper, we propose a communication
protocol, based on the IHE specifications, for authenticating
healthcare professionals and assuring patients’ safety in settings
where no network connection is available, such as in rural areas
of some developing countries. We define a specific threat model,
driven by the experience of use cases covered by international
projects, and prove that an intruder cannot cause damages to the
safety of patients and their data by performing any of the attacks
falling within this threat model. To demonstrate the feasibility
and effectiveness of our protocol, we have fully implemented it.

I. INTRODUCTION

In recent years, many eHealth projects have started, with the
aim of providing optimum patient care. Many governments are
now switching from a paper-based healthcare management to
an Electronic Health Record (EHR) based solution. An EHR is
a set of sensitive data written in a machine readable format (i.e.
Hl7’s CDA [1]) containing the healthcare history of a patient,
including, e.g., the patient summary, the prescriptions, and
the dispensations of specific medicines. Software components
deployed in these settings need to transmit EHRs among
clinics and hospitals for millions of patients (for example, the
EU project epSOS [2] potentially serves 500 million patients).
These components must protect the healthcare data against
malicious attacks. Indeed, tampering or intrusions during the
exchange of an EHR may have a direct impact on the life of the
patients. Thus, initiatives like [3] and [1] have been promoted
for the development and definition of standard methodologies
for the secure and interoperable EHR exchange among clin-
ics and hospitals. Using the requirements specified by these
initiatives, many projects have been set up, such as [2], [4],
[5], [6], [7]. This is not surprising if we also consider that
the EU commission has issued a mandate [8] for enforcing
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the adoption of EHR systems and the US government has
published the Health Insurance Portability and Accountability
Act (HIPAA) [9] with a similar aim. However using the state-
of-the-art international standards, as required by most of the
above projects has a significant drawback: some proposed
methodologies have not been sufficiently analyzed from a
security point of view (as we show in [10]).

In this paper we tackle the problem of sharing patients’
healthcare data among clinics without any connection to the
Internet1. This is a frequent problem in rural areas of devel-
oping countries where no network infrastructure is provided
by the institutions. Some examples are clinics located in sub-
Saharan regions (e.g. Malawi, Namibia) or South African
provinces (e.g. Limpopo, Mpumalanga) that can be reached
only by means of hundreds of kilometers of sand tracks, or
a caravan that travels along townships with first-aid equip-
ment. By relying on the Service Oriented Computing (SOC)
paradigm, the Integrating the Healthcare Enterprise (IHE) [3]
initiative2, promotes standards for the definition of services
supporting the exchange of healthcare data and the manage-
ment of patient identifiers. For such a critical scenario, the IHE
board proposes the usage of the Cross Enterprise Document
Sharing using Portable Media (XDM) [3]. This specification
enables the use of different types of electronic support, like
CDs, DVDs, and USB drivers, for the transmission of EHRs.
The documents stored in such a way can then be delivered by
using a car-transportation system.

Specifically, we focus on authentication of healthcare pro-
fessionals. User authentication is a basic but crucial task for
security in general, and healthcare applications in particular.
It is required by almost all healthcare projects to enforce
authorization of resources (e.g., to prevent unauthorized access
to specific medicines or patient summaries) based on attributes
related to the professional’s identity (e.g. role and department).

As a first contribution of this paper, we propose a protocol
based on XDM that guarantees the correct propagation of
an authentication process performed remotely while ensuring
safety properties in the treatment of patients’ healthcare data.
Then we define a threat model where a hypothetical attacker
(e.g., [11], [12]) can seriously damage the health of patients

1The solution to this problem in presence of Internet connection is shown
in [3] and formally studied in [10].

2IHE is an initiative by healthcare professionals and industry that strictly
follows such international guidelines as HIPAA and EU commission reports.
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Fig. 1. The XDS workflow

or obtain unauthorized resources by carrying out different
types of attacks. As a second contribution, we analyze the
protocol to prove that, in our threat model, the attacker cannot
perform any action that can compromise the patients’ safety.
To carry out our investigation, we use a general methodology
(see, e.g., [13]) based on formal methods that have been
widely used for the verification of complex computer systems
(applications to communication protocols are surveyed in, e.g.,
[14], [15]). In particular, we formally specify the protocol
using the process calculus COWS [16] so that the obtained
model contains enough details about the involved technologies
(this is reflected, e.g., by letting the exchanged messages travel
along communication channels with different properties). Then
we analyze the obtained model by formulating the protocol’s
properties as logic formulae and demonstrating their validity
through the model checker CMC [17].

It is worth noticing that our protocol has been expressly
designed with the aim of guaranteeing implementability and
at the same time avoiding requiring changes in the scenario
under consideration that may have an important impact on the
everyday lives of patients or professionals, since most of the
projects are already in a production stage.

The rest of the paper is organized as follows. In Section II
we provide an account of the scenario with disconnected
clinics and introduce our protocol for the authentication of
healthcare professionals. In Section III we sketch the formal
specification of the protocol and present its analysis. Finally,
in Section IV we touch upon comparisons with related work
and directions for future work.

II. A SCENARIO WITH DISCONNECTED CLINICS

Modern healthcare applications rely on the use of inter-
national standards for exchanging patients’ healthcare data.
The setting which is used the most for exchanging patient
documents within healthcare organizations is based on the IHE
Cross Enterprise Document Sharing (XDS) [3] model depicted
in Figure 1.

The model uses a central document registry that acts as a
catalog for the data. The document source (e.g., a medical

device) produces healthcare data for a patient and stores them
in one or more document repositories (e.g., databases). The
repositories extract the metadata from the documents and
update the registry. The document consumer (e.g., a doctor’s
workstation) queries the registry and obtains the links to the
repositories where the data can be downloaded. In a real
scenario, dozens of consumers and dozens of sources belong
to the same registry.

Each communication in the model is performed by exploit-
ing the SOC paradigm. Each actor (i.e., registry, repository,
consumer, source) is a service exchanging SOAP messages
with other actors. To provide access control to patients’ data,
the human requester must be exactly identified. The IHE
model defines the use of an authentication assertion, encoded
using the Security Assertion Markup Language (SAML) [18],
containing the identity of the user sitting behind the client
actors. A SAML assertion is a signed security token encoded
using the XML format issued by a trusted third party service,
the Security Token Service (STS)3, that contains statements
about an authentication procedure performed by an underlying
authentication mechanism (such as Kerberos [19]) for a sub-
ject. The SAML token is then used by the service requester (in
our case, the document consumer) to interact with the services
listed in the assertion. The contacted service provider (in our
case, the document registry) uses the assertion to authenticate
the requester by verifying the digital signature of the trusted
issuer.

We consider here a healthcare scenario where the clinics
involved need to communicate with hospitals and points of
care but network connectivity is missing. This is a common
scenario for developing countries where the institutions do
not provide access to the Internet in all the regions. IHE
addresses this scenario by defining the XDM integration
profile. Basically this profile is an XDS model where some
communications among document consumers, sources, reg-
istries, and repositories are made by writing data to portable
media (e.g., CDs, DVDs, USB mass storage) and sending them
through a car-transportation system.

The outlined scenario presents severe security problems. For
example, a patient could forge his own portable media and
include new prescriptions for drugs or an intruder could easily
gain access to the data by hijacking the carrier on its way (or
the carrier itself could act as an intruder).

In Section II-A we present our XDM-based communication
protocol which is specifically devised for the setting sketched
above. Then, in Section II-B we define a threat model4 and
in Section II-C we explain the need of an extra actor in the
protocol to deal with a specific kind of attack considered by
our threat model. In the next section we will prove that an
intruder cannot endanger patients by performing any of the
attacks falling within our threat model.

3For the sake of simplicity, we assume an STS that is directly able to
authenticate users; i.e., it also plays the role of the identity provider.

4It is worth noticing that the major healthcare initiatives are in the way of
identifying some specific threat models (see e.g. [20]). We define our threat
model using their experience as a basis.
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Fig. 2. A typical healthcare scenario with disconnected clinics

A. The abstract model

In the XDS model depicted in Figure 1 (steps 1, 3 and 4) the
actors are typically required to establish a secure connection
by means of TLS using the Internet. Since we suppose that no
Internet connection is available between the consumer/source
and the registry/repository, we integrate XDS with XDM, a
profile specifically devised for dealing with such settings. In
this way, the requirement for having strong authentication in
XDS transactions (i.e., a matching X509 certificate between
the TLS handshake and the key inside the token, as in [10])
can be relaxed. Indeed, the channel representing the car-
transportation system is able to transport only one message
in only one direction, hence the TLS handshake cannot be
performed.

We abstract the scenario from a logical point of view as
depicted in Figure 2. We identify two systems running an XDS
suite: clinic A acting as the creator and clinic B acting as the
receiver. The creator runs an instance of a document consumer
or a document source, while the receiver runs an instance of
a document registry or a document repository. The creator
queries or submits documents using the car-transportation
system. Each clinic owns an STS that is responsible for issuing
and validating SAML tokens. It is worth noting that we make
explicit another actor defined by IHE, the ATNA Audit Record
Repository (ARR), a tamperproof storage that contains the
audit trails (i.e., log entries) for each transaction performed by
the creator/receiver. We suppose that clinics have local clocks,
but do not synchronise.

The model does not abstract away the kind of commu-
nication channels used, in order to take into account the
different guarantees they provide. Hence, we use here three
different kinds of channels. The first one, denoted by →,
is a plain TCP/IP channel. The second one, →TLS, is a
TCP/IP channel where TLSv1 is available. This means that
the confidentiality and integrity of TCP packets are guaranteed.
The third one,→VAN, represents the car-transportation system
conveying patients’ healthcare documents. Since this channel
only permits sending one message per protocol run, it does
not satisfy any mutual authentication properties [21].

0.



A� STSA : . . . obtains a SAML assertion

for B at ts1 with context ctx . . .

STSA →TLS ARRA : ts1 , ctx ,A,B

A� STSA : . . . obtains the

token(K+
A , user , {ctx}

K+
B
) . . .

1. A →TLS ARRA : ts1 , ctx ,A,B , ts2 , {[K+
A , user , ‘doc’]}

K−
A

2. A →VAN B : A,B ,msgId1 , ts2 , {[K+
A , user , ‘doc’]}

K−
A
,

token(K+
A , user , {ctx}

K+
B
)

3. B →TLS ARRB : ts2 , ts3 ,A, ctx , {[K+
A , user , ‘doc’]}

K−
A

TABLE I
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Fig. 3. The scenario with disconnected clinics

The protocol that we propose, written in a notation com-
monly used to describe security protocols, is shown in Table I
and is graphically depicted in Figure 3. The arrow −→I
represents a normal TCP/IP channel, while •−→I• represents
the TCP/IP channel where the communication is protected by
means of a mutual authenticated TLSv1 implementation. The
notation {M}K+

B
stands for the encryption of M using the B’s

public key and {[M]}K−
A

stands for the signature of M using
A’s private key (where [M] is the hash code of M). Each
message M represents a SOAP 1.2 message strictly defined
by international standards [1], [3], [22]. ts1 , ts2 and ts3 are
timestamps.

According to the XDM specification, the creator starts
by obtaining a token through its local STS . In our setting
the token, which for the sake of readability is denoted by
token(K+

A , user , {ctx}K+
B
), is a SAML assertion. This nota-

tion stands for the signed tuple

{[K+
A ,STSname, samlTs, user ,B , {ctx}K+

B
]}K−

STSA

containing the name user of the user that is performing the
action and where it comes from (indicated by A’s public key),
the name STSName of the issuer, the timestamp samlTs of
the assertion, the receiver B where the assertion can be used,
and the encrypted context. Notably, a token permits only one
operation via the portable media. The token issuance process is
assumed to be performed according to [10] and is not detailed
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here for the sake of simplicity (for this reason, it is indicated
as step 0 in the protocol). It is, however, worth noticing that
a one-to-one correspondence exists between the token issued
during the process and the WS-Trust [23] context ctx, that
is a unique identifier computed by the STS . The issuance
process is also recorded in ARRA by storing the quadruple
ts1 , ctx ,A,B . This quadruple records that a token was issued
with context ctx at timestamp ts1 for a message sent from A
to B . We assume that this message is sent over →TLS .

In message 1, clinic A updates the log in ARRA by adding a
new timestamp ts2 , representing the instant when the portable
medium is created (e.g. the CD is burned), and a signed tuple,
representing the username of the physical person sitting in
front of the workstation, which is the same as the subject of the
SAML assertion, and the document, here abstracted as ‘doc’.
Notably, we are not deviating from the standards. In fact,
the username value is part of the metadata accompanying the
document itself; the interested reader is referred to the XDS.b
documentation (XCN values, [3]) for the other metadata.

In message 2, clinic A sends the portable medium through
the car-transportation system that travels to B. The message
contains a unique identifier, msgId1, the signed document and
the SAML token.

When clinic B receives the message, it checks if the
value user equals the subject of the assertion and if the
key contained in the signed document matches the holder-
of-key data inside the token. If both tests succeed, clinic
B validates the assertion to its STSB through message 3,,
as in [10], and writes in its local ARRB the following
knowledge: “someone, probably A, at time ts2 , sent a message
with identifier ctx for a document represented by the signed
tuple {[K+

A , user, ‘doc’]}K−
A

; now is ts3 ”. The document also
contains the certificate that corresponds to the signer’s public
key.

B. The threat model

By taking the features of the different kinds of communica-
tion channels into account, we consider a standard intruder à
la Dolev-Yao acting only along channel →VAN . The intruder
can see all the messages passing through the channel (i.e.,
he can read the documents delivered via van), he or she is a
legitimate user of the network (in our setting this means that
he or she is able to sign documents) and has the opportunity
to be a receiver for any user. We also assume that encryption
and hashing functions cannot be broken.

Our assumption that channels of type→TLS are not subject
to the intruder is supported by the fact that, in the real world,
each clinics’ information system usually runs on a single
and audited, machine. Therefore the problem of intercepting
messages can be solved better by using intrusion detection
techniques.

We thus identify four different types of attacks the intruder
I can perform:

1) I suppresses a message. For instance, I could suppress
a submission for a new rare form of allergy or a
query for crucial healthcare data and, in both cases,

the suppression may lead to the death of the patient
if the patient travels among clinics. It is thus crucial
for patients’ safety to consider suppressed messages as
attacks, as these messages could bear data necessary for
the patients’ lives. Moreover, since messages traveling
along →VAN may have unbounded delays, to stay on
the safe side, we also consider these delayed messages
to be attacks. To appropriately deal with these attacks
we introduce a new actor, called Security Officer (see
Figure 2) in the scenario. This actor’s role will be
detailed in the next section.

2) I acts as a healthcare professional sitting at A wanting to
access restricted resources by reusing a previously issued
SAML token. For instance, suppose that nurse (a valid
user at A) wants to obtain a large amount of drugs for
the illegal market. He or she could reuse an assertion,
which was issued for another purpose and has already
been used to create a new illicit prescription. nurse then
steals the assertion from the portable medium, attaches
it to his or her new prescription and sends:

A→VAN B : A,B,msgId , ts2 ,
{[K+

A ,nurse, ‘prescr ’]}K−
A
,

token(K+
A , user, {ctx}K+

B
)

(1)

This attack is discovered by the Receiver because the
user of the token is different from the creating user
embedded in the document.

3) I obtains the message by listening on→VAN , suppresses
it, and sends:

I →VAN B : I,B,msgId , ts2 ,
{[K+

A , user , ‘prescr ’]}K−
I
,

token(K+
A , user, {ctx}K+

B
)

(2)

The difference between this attack and attack number 2
is that there nurse is sitting at clinic A, while here the
intruder is intercepting the van. This attack is discovered
by the Receiver because the public part of the intruder’s
signing key K−I is different from the key associated with
the document and inside the token.

4) I sends the same (intercepted) message multiple times,
for example to obtain the same resource multiple times.
This attack is similar to attacks 2 and 3, and is a
form of replay attack. It is discovered by the Receiver
because multiple ctx are present in the database (only
the message which is received first is left).

C. The role of the officer

Let us now suppose there are several clinics A1, . . . , An,
such that each Ai has its own ARRi and acts as a creator
for the clinic B. The officer polls the clinics in a round-robin
fashion to detect if attack 1 has been performed, in which case
he or she establishes which actions must be performed by the
clinics as countermeasures. To this aim, every quantum of time
t the officer checks the logs of every ARRi by appropriately
comparing them with the logs stored in the clinic B.
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When the officer visits clinic Ai, he or she obtains the
set Alog

i of all the audit trails from his or her last visit.
Let mi be the maximum among the timestamps of the au-
dits (the officer saves the previous value of mi as oldmi).
When the officer visits clinic B, he or she obtains the
set Blog of all the audits trails. Let’s recall what an audit
located in ARRB looks like. It can be defined as a tuple
a = 〈creation ts, arrival ts, sender , ctx ,Signature〉, where
creation ts is the creation time at sender , arrival ts is the
arrival time at B, ctx is the context, and Signature is the
signature of the document. We use a(1) to denote creation ts
and a(3) to denote sender . The officer can then partition Blog
by defining:

Blog |Ai,mi
=

{
a | a(3) = Ai ∧ oldmi < a(1) ≤ mi

}
Each element Blog |Ai,mi

of the partition contains the audits
coming from clinic Ai with a timestamp greater than the old
reading oldmi taken by the officer and not greater than the
last timestamp mi read at Ai.

The officer can now tell the different situations apart. If
Alog

i = Blog |Ai,mi then all messages produced at clinic
Ai arrived safely at clinic B. If this holds for all clinics,
then we have

⋃n
i=1A

log
i = Blog which means that every

message from any clinics has safely arrived at B. If instead
Alog

i \(Blog |Ai,mi
) 6= ∅ then there are messages in Ai that

have not yet arrived at B. The messages are suppressed
or are late (attack 1). In the opposite situation, i.e., when
Blog |Ai,mi

\Alog
i 6= ∅, then there are more messages at B

than those produced by the clinics, thus some messages have
been introduced into the channels by the intruder (attacks 2,
3 and 4).

III. SPECIFICATION AND ANALYSIS

Our formal analysis is based on the use of the process cal-
culus COWS [16] to specify the protocol and the transactions
involved, while reflecting many real-world implementation
details (e.g. algorithms, field names and message exchanges
are taken from OASIS standards). Due to their rich repertoire
of elegant meta-theories, proof techniques and analytical tools,
process calculi currently play a central role in laying rigorous
methodological foundations for specification and validation of
SOC applications. Our preference for COWS is motivated
by its mechanisms and primitives that have proven to be
particularly expressive for modeling the behavior of service-
oriented applications (see, e.g., [24], [25]). Moreover, the
calculus is equipped with tools for formulating properties of
COWS specifications and demonstrating their validity, like the
temporal logic SocL and its model checker CMC [17] that
we use in our investigation. In fact, process calculi together
with modal and temporal logic, possibly supported by efficient
software tools, have long been proved suitable to reason about
the design of complex computing systems (see, e.g., [26], [27],
[28]).

For the sake of simplicity, we present here just a sketch of
the COWS specification of the protocol. We refer the inter-
ested reader to [29] for a complete account of the specification,

and to [16], [25] for the presentation of COWS and of many
examples illustrating its peculiarities and expressiveness.

The COWS term representing the overall scenario is

let . . . in
[hashReq]] [hashResp]] . . .
( Sha(hashReq,hashResp)
| Cipher(. . .)
| Signer(. . .)
| ClinicA(hashReq,hashResp,. . .)
| ClinicB(hashReq,hashResp,. . .)
| Officer(. . .) )

| . . . intruders . . .
end

where to make the reading easier, we have omitted irrelevant
details. The protocol has three main participants, ClinicA,
ClinicB and Officer. They are composed by using the
parallel composition operator | that allows them to be
concurrently executed and to interact with each other. Since
COWS does not offer primitives for, e.g., encryption and
hashing, these and other useful security-related features are
provided to each participant through a library of functions,
implemented as a set of shared services. We have implemen-
tations of such algorithms as SHA for hashing (Sha), RSA
for public-key cryptography (Cipher), and digital signatures
(Signer), that are necessary to properly manage the data to
be exchanged during protocol runs. These COWS services
play a role similar to that of functions in the applied π-
calculus [13]. The delimitation operator [ ] is used here
to restrict access to services Sha, Cipher, and Signer
by declaring that hashReq, hashResp, . . . are private
operation names known only to the three participants (other
than, of course, the services that provide them). As usual,
the let construct permits the definition of specifications in a
modular style.

Within the above let construct, the COWS service defini-
tion of the creator clinic is:
ClinicA(hashReq,hashResp,. . .) =

[clockA#][write#][getToken#] . . .
( Clock(clockA,. . .) | ARR(write,. . .) | STS(getToken,,. . .)
| Creator(clockA,write,getToken,. . .) )

The term ClinicB representing the receiving clinic is similar
to ClinicA, but for the term Receiver in place of Creator.
Each clinic has its own local Clock, ARR and STS, with which
it shares private partner and operation names (e.g., clockA,
write and getToken). These names permit defining private
endpoints to simulate internal interaction with Clock, secure
connections with ARR along channels of the type →TLS , and
authenticated connections with the STS along channels of the
type → (as dealt with in [10]). The local clock ticks along
a private endpoint and, when prompted, returns the current
value to the requester. If the STS receives a request from the
associated participant instead, then it generates and returns
a SAML token containing a unique context. Finally, ARR

instantiates a stack, i.e., a LIFO data structure used to store
audit trails, and provides different functionalities depending
on the role of the participant. In the case of a creator role,
ARR waits the first message from the STS stating that an audit
trail with a given context will arrive from the clinic. When
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the audit is received, it is pushed onto the stack. In the case
of a receiver role, ARR simply pushes the received audit trail
onto the stack, unless the audit trail contains a context already
stored (attack 4).

The security Officer is in charge of revealing attack 1,
which occurs when the intruder suppresses messages. Only
one instance of Officer can run at a given time (in order
to reduce the model state space). Once activated, Officer

first gets the values stored by Creator’s ARR and saves the
maximum timestamp of the audits in the Creator’s stack in a
variable MaxT1. Then, Officer gets the audits, which have
timestamp not greater than MaxT1, stored by Receiver’s
ARR. After collecting the audits from the two repositories,
Officer compares them to detect an attack 1, as defined in
Section II-C.

Each of the four attacks described in Section II-B is modeled
as a COWS term running in parallel with the protocol’s partic-
ipants. As expected, the intruder can freely suppress/forge/read
messages along the →VAN channel. Each attack is revealed
by evaluating a SocL formula that exploits actions signaling
that specific data tuples are sent along some given endpoints.

For instance, the COWS term modeling the intruder con-
ducting attack 1 is

[A][MsgId1][Ts2][SignedDoc] . . .
b.van?<A,b,MsgId1,Ts2,SignedDoc,. . .>.
(sys.attack1!<messageSuppressed,SignedDoc>
| sys.attack1?<messageSuppressed,SignedDoc>.

officer.activate!<> )

The intruder starts with a receive activity of the form
b.van? < A, b, MsgId1, Ts2,SignedDoc, . . . > corresponding
to the reception of a message for B over the channel
→VAN (here rendered as the public endpoint b.van).
The receive activity initializes the variables A, MsgId1,
Ts2, SignedDoc,. . . , declared local to the term by the
delimitation operator, with the message data. When the
intruder intercepts a message, communication along the
endpoint sys.attack1 takes place (i.e., the invoke activity
sys.attack1! < messageSuppressed, SignedDoc > and
the receive activity sys.attack1? < messageSuppressed,
SignedDoc > synchronise); this is used during the analysis
to signal that the system is under attack. Only at this
point Officer is activated (by means of a signal over
officer.activate), after which it can go to clinic A and B
at any time.

The analysis of the protocol is carried out by exploiting the
software tool CMC for model checking SocL formulae over
COWS specifications. SocL [17] is an action- and state-based,
branching time, temporal logic specifically designed to express
properties of service-oriented systems. We will not present all
the constructs of SocL (we refer the interested reader to [17]
for a detailed presentation of the logic and its applications),
but only explain the formula used to reveal an attack 1:

AG [attack1Performed(message,$doc)]
AF {attack1DetectedByOfficer(message,%doc)} true

The formula means that it holds globally (AG), i.e., in any state

of the model, that if (operator [. . .]5) an attack of type 1 is
performed by the intruder, then always (AF) this attack will be
detected by Officer.

The previous formula is stated in terms of abstract actions,
meaning that, e.g., an attack of type 1 has been performed,
while the COWS specification is stated in terms of concrete
actions, i.e. communication of data tuples along endpoints.
To verify an abstract property over a concrete specification,
CMC permits specification of a set of abstraction rules. For
example, rule

Action sys.attack1<messageSuppressed,$signedDoc>
-> attack1Performed(message,$signedDoc)

maps the concrete action corresponding to a communica-
tion along sys.attack1 to the abstract action attack1-
Performed. A similar rule is used for mapping a communi-
cation along sys.attack1Detected, performed by Officer

when it discovers that a message has been suppressed, to the
abstract action attack1DetectedByOfficer. Evaluation of
the above formula returns TRUE, which means that if a message
containing a certain document is suppressed, then the officer
will discover that B did not receive that specific message.

The use of abstraction rules to relate concrete actions of
specifications with abstract actions of formulae is a peculiarity
of CMC and of the verification methodology it enables. This
permits one to initially formalize the desired properties as
SocL formulae in a way that is independent from individual
specifications and then to verify them by tailoring the specifi-
cation under analysis by means of proper abstraction rules.

The remaining attacks are detected by following a similar
approach; for each attack we demonstrate that the intruder
cannot successfully perform it. We refer the interested reader
to [29] for the complete description of the analysis.

IV. CONCLUSIONS

We have presented a feasible and effective communication
protocol, based on international standards, for exchanging
patient healthcare information among disconnected clinics and
hospitals, while preserving the security of healthcare data and
the safety of patients.

We have considered the IHE standards based on the XDS
family [3] for authenticating healthcare professionals in trans-
actions related to exchange of patients’ data. In particular, to
deal with a scenario where clinics do not have an Internet
connection and exchange data by using a car-transportation
system, we rely on the IHE XDM integration profile. We
defined a specific threat model driven by the experience of use
cases covered by international projects. Then we formalized
our protocol using the process calculus COWS and analyzed
it through the model checker CMC to prove that it is robust
enough to hold out against the attacks described in Section II.
It is worth noting that our protocol is password-based in
order to comply with the standard WS-Security Username

5This is the modal logic operator box: [a]f states that, no matter how a
process performs action a, the state it reaches in doing so will necessarily
satisfy the property expressed by f.
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Token Profile. Therefore, the protocol is secure as long as
the passwords are kept secured.

Since our reference standards are well-understood and
implemented, we set ourselves the goal of only suggesting
changes that can be easily implemented by vendors. In-
deed, we have implemented the protocol using WS-Trust 1.3,
SAML 2.0, WS-Security and WS-Security Username Token
Profile 1.1. We have also used the Axis2 libraries6 and the
JBoss application server7. Our Java implementation consists
of four services: a Document Consumer, a Document Registry,
a Document Repository and a Security Token Service8. More-
over, according to the XDM standard, an application capable
of writing messages in the portable media is exploited. All
the XDS and XDM services are given as a courtesy of the
company Tiani “Spirit” GmbH9, located in Vienna, Austria.
An outline of the overall implementation of the protocol is
available online [29].

A. Related work

Analysis of security protocols using formal methods is
not a novel research field (see, e.g., [14] and [15] for a
survey). For what concerns analysis of web services, Microsoft
Research proposes the specification languages TulaFale [30],
[31] and TLA+ [32]. TulaFale uses the model checking engine
CryptoVerif [33] and only considers SOAP message rewrite
attacks. Instead, our threat model covers other kinds of attacks
whose relevance in healthcare scenarios emerges from the
experience gained from international projects. We leave the
study of the interplay between rewrite attacks and the use of
the SAML specification for future investigation, since, to the
best of our knowledge, any SAML-based protocol could be
subject to rewrite attacks. In [30] the authors analyze WS-
Trust for a secure exchange of a Security Context Token while
we consider WS-Trust for issuing a SAML token. TLA+ is
a language based on the Temporal Logic of Actions whose
specifications can be analysed by using the model checker
TLC [34]. In [35] the authors analyze the Web Services
Atomic Transaction protocol, which however is a protocol
for distributed transactions among web services rather than
a security protocol.

The Casper tool [36] gives the possibility to define proper-
ties of the communication channel. However, Casper’s main
focus is in proving the hierarchy of Lowe’s authentication
properties [21] which do not hold in the case of our channel
representing the car-transportation system.

The SAML 1.0 and 2.0 specifications have been studied
in e.g. [37], [38], [39]. However, these works concentrate
on the SAML Protocol and Profiles [40] to obtain SAML
Authentication assertions, while we focus on WS-Trust. The
work closest to ours is [37] where the SAML-based Single
Sign-On for Google Apps is analyzed with the tool AVISPA

6Available at http://ws.apache.org/axis2.
7Available at http://www.jboss.org.
8Available as Axis2 service at http://178.188.229.34:41081/

SpiritIdentityProvider/services/STS09?wsdl.
9Web site: http://www.tiani-spirit.com

[41]. A flaw in the Google implementation is found, where a
fake service provider can potentially access a Google resource
without knowing the password of the user. The flaw discovered
is in the format of the SAML assertion, which lacks the
Audience list. In our scenario, however, this kind of attack
cannot occur since the Audience list must be contained in
the assertion and refer to the registry.

B. Future work

As the previously mentioned related work and ours witness,
designing communication protocols that simply adhere to IHE
specifications does not guarantee the absence of security flaws.
Due to the widespread diffusion of such standards, especially
for managing EHRs, it is thus worthwhile to pursue our formal
methods-based investigation of the security issues that can
arise in healthcare environments. An issue that needs to be
considered is mobility of healthcare professionals among clin-
ics and hospitals. In fact, differently from patients, healthcare
professionals need to authenticate themselves, possibly on
different clinics. Since IHE does not provide any standard
for regulating such mobility, to guarantee the coherence of
ARR’s audit trails some commonly used solutions can be
exploited, ranging from using different accounts for the same
professional to adopting a synchronized directory structure.
However, due to the lack of Internet connectivity in our set-
ting, feasibility of these solutions needs further investigation.
Moreover, we plan in the near future to study the application
of the least-privilege concept to the automated enforcement of
XACML-based access control policies.
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LIST OF ACRONYMS

ARR: Audit Record Repository
ATNA: Audit Trail and Node Authentication

AVISPA: Automated Validation of Internet Security
Protocols and Applications

CDA: Clinical Document Architecture
CMC: COWS model checker

COWS: Calculus for Orchestration of Web Services
EHR: Electronic Health Record

epSOS: European Patients Smart Open Services
HIPAA: Health Insurance Portability and

Accountability Act
Hl7: Health Level Seven International
IHE: Integrating the Healthcare Enterprise

IP: Internet Protocol
LIFO: Last In First Out

OASIS: Organization for the Advancement of
Structured Information Standards

SAML: Security Assertion Markup Language
SHA: Secure Hash Algorithm

SOAP: Simple Object Access Protocol
SOC: Service-Oriented Computing
SocL: Service-Oriented Computing Logic
STS: Security Token Service
TCP: Transmission Control Protocol

TLA+: Temporal Logic of Actions specification
language

TLC: TLA+ model Checker
TLS: Transport Layer Security

W3C: World Wide Web Consortium
XACML: eXtensible Access Control Markup Language

XCN: eXtended Composite ID Number and name
for persons

XDM: Cross Enterprise Document Sharing using
Portable Media

XDS: Cross Enterprise Document Sharing
XML: eXtensible Markup Language
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