
Adding Security to Mobile Data Collection
F. Mancini and K. A. Mughal

University of Bergen, Dept. of Informatics
Bergen, Norway

Emails: {federico.mancini,khalid.mughal}@ii.uib.no

S. H. Gejibo and J. Klungsøyr
Center for International Health

Bergen, Norway
Email: {samson.gejibo,jorn.klungsoyr}@cih.uib.no

Abstract— mHealth is having a profound and increasing
impact on the delivery of medical and health services using
mobile devices. However, many existing mHealth systems do not
systematically address the security issues involved. As sensitive
information is stored, exchanged and processed in these systems,
issues like privacy, authentication, secure storage, accountability
and permissions must be given top priority. In this paper we
propose a protocol that provides end-to-end security, encrypted
data storage and recovery mechanisms on mobile devices. We
use openXdata as our reference mHealth system.

I. INTRODUCTION

A number of systems already exist that allow data collection
through mobile devices, especially in the health sector (an
overview can be found at [10]). In order to establish a set of
security requirements that should be fulfilled by such mHealth
systems, we use openXdata [12] as reference application.

The openXdata system can be used to set up studies con-
cerning virtually any type of data that can be collected through
predefined forms (currently it is used especially in third world
countries for collecting data in clinical trials, tracing the
progress of large scale vaccinations or just monitoring student
and teacher participation in schools). It consists of a server
component that provides the tools to set up the studies, design
the related forms, manage the users involved in the study
and store and analyze the collected data. In the field, the
data is collected by collectors which are entrusted with a
mobile phone having the openXdata client installed on it.
These collectors are given some area of responsibility and
are in charge of downloading the forms for the current study,
filling them with the required data, and uploading the data to
the server.

It is easy to understand why effective security solutions
are necessary when using such a system. The data that is
collected can be extremely sensitive, and it should at all
times be protected, both on the mobile devices and during
its transmission to the server. At the same time, security
should not compromise the usability of the application or
the availability of the data that is collected. At the moment
only rudimentary user authentication, but no real security,
is in place in the openXdata mobile client. Even though
HTTPS is supported, some project might not be able to use it
because of practical constraints such as low budget, technical
specifications, connectivity and usage of mobile devices, might
require. This is why in this paper we propose a high level
protocol that takes into account all these limitations, but still

manages to provide basic security aspects like: authentication,
secure data storage, confidentiality, data integrity, emergency
data and password recovery and some degree of accountability.

The final goal is to develop a generic Secure API which can
be easily integrated with existing mobile clients dealing with
data collection. The idea is that developers can use the secure
methods provided by the API to implement a secure layer
on top of the existing application layer, both on the mobile
and the server side. Furthermore, once the security layer has
been implemented on the client, it should also be possible
to externally configure the security level of the application
to fit the particular needs of the specific projects deploying
openXdata (or other similar systems). This extensibility would
allow choosing which security provider to use, the strength of
the cryptographic keys and which security aspects are required
(only storage, both storage and communication, and so on).

The rest of the paper is organized as follows: first we explain
in detail what security aspects we want to address and how
the various limitations we mentioned influence our choices;
we then describe the protocol in detail; and finally we discuss
some related work and conclude with some topics for future
work.

II. WORKING ASSUMPTIONS

A series of constraints need to be taken into consideration
when designing a security solution for mHealth systems such
as openXdata:

A. Low Budget Projects

Projects running on low budget could benefit from minimiz-
ing the cost of using certificate based security solutions. Such
projects would out of necessity also deploy mobile phones
with low-end specifications, that have low computational
power and comparatively little memory. This needs to be taken
into account in order to keep the computational burden of the
cryptographic operations as low as possible.

B. Remote Working Locations

Many of the projects using openXdata are deployed in
low-income countries like Uganda and Pakistan, where the
infrastructure for mobile communication and Internet access
may not yet be fully developed. Furthermore, much of the
data collection might take place in remote locations or isolated
villages, where the possibility of transmitting data through a
mobile phone might be very intermittent and location specific.

2011 IEEE 13th International Conference on e-Health Networking, Applications and Services

978-1-61284-696-5/11/$26.00 ©2011 IEEE 90

This means that most of the data collection is done offline,
and collectors must be able to authenticate themselves on
the mobile phones without connecting to the server. Besides,
even when some connectivity is available, the overhead due
to the use of cryptography should be minimal in order to
minimize both the cost of the data transfer and the possibility
of transmission failure.

C. HTTPS Drawbacks

The HTTPS protocol is commonly used for secure client-
server communication. However, the limitations described
above excludes HTTPS.

HTTPS on mobile phones relies on a list of preinstalled
root certificates from Certificate Authorities (CA). Such a
list is not standardized across vendors or phone models and
even the certificate format used may differ. A project might
therefore require several CA issued certificates to guarantee
compatibility, which translates into both a significant yearly
cost and several distribution and management issues. Using
free self-signed certificates is problematic as many phones do
not accept them, and they do not guarantee the same security
as those issued by a recognized CA.

Regardless of the costs and distribution problems, it is not
given that HTTPS is the right solution for a system like
openXdata. The HTTPS protocol is based on a long handshake
to agree on client-server communication. This is unnecessary
as it can be predefined and secure communication can be
achieved with a lighter and faster protocol, as the one we
propose in this paper.

D. Phone sharing

Another limitation is related to the fact that we cannot
assume that each mobile phone is only used by a specific
collector. One phone might be shared among collectors, each
with their own account, and the same collector might be
registered on more than one mobile phone. Phone sharing
raises problems regarding privacy and access control, since
most of the work is done offline and large amounts of sensitive
data can be stored on a phone. Communication using SMS
cannot be regarded as private with this constraint, making it
difficult to communicate sensitive information to a collector. If
email is not available either, it becomes problematic to issue,
for example, new passwords.

E. Technical specifications of the mobile client

The current openXdata mobile client is developed using
J2ME [13], in order to be compatible, in principle, with any
phone that has J2ME support. This means that any security
solution proposed must be compatible with any phone on
which the openXdata client can run. Unfortunately not all
J2ME specifications provide support for cryptographic APIs.
There exists a package called SATSA-CRYPTO [14] which
provides basic cryptographic primitives, but it is not supported
by many phones yet and it provides only a limited type of
cryptographic primitives. The most common alternative is to
use Bouncy Castle [9], which is well-tested and constantly

��������	
���

���������������������

����	
���
�	�������������

��� ��!���"�!����� �!����"�!�#��$����%�%

���&�!���� �'�����"�!����"�������!��%�&�($'�
'��(�����'�������������

��� ��!���"��'!!�"�'�����"��!�����"�!�!!����"�!�#��$����%

���&�!!���� ��!�����"��!����%�&�($'�
�!�������!��'��)�

�� ��!�����"��'!!�"���*��� !!���%�"�!�#��$����%

�)*��)'�����'�+)�$

���&���*��� �!��������+)�$!�%�&($'�

���&���*��� ��)*��)'��$����%�&�($'�

�� ��!�����"��'!!�"���*���� !!���%�"��)*��)'��)���"�!�#��$���%

���&�!�!!��� �!�����%��&�($'��

�'!!*)������)����

��� ��!���"� ��*%��'!!�"�'�����"��!�!!����"�!�#��$���%

���)'�����+)�$!

��� ��!�����"�!!��� ��*���%�"�!�#��$����%�

!�!!�)�,��

��-.&��*��� +)�$-.%&($'�-.�"������"��-�&��*��� +)�$-�%&($'�-�

���&���*��� ����)'�����)���%�&�($'�

�

�

�

�

�

�

Fig. 1. Overview of the protocol. The notation ”KEY(DATA)” is used to
represent DATA encrypted with a KEY. In particular PK stands for public key
and RSA encryption, while the others imply symmetric encryption.

updated, supporting a wide range of cryptographic tools.
However, the main drawback of Bouncy Castle is the large
memory footprint of its libraries. Our aim is to provide a
security solution that has an acceptable memory footprint
and is compatible with the SATSA-CRYPTO package for
compatibility with newer mobile phones.

A further challenge when using cryptography on a mobile
phone is the generation of good random keys [3]. In fact,
mobile phones do not have good sources of entropy, even
though some studies are trying to overcome this problem [1].

Finally, one must also find the best possible compromise
between key sizes and available computational power in order
to create a secure, but usable application. In this paper we
propose a solution that strikes a balance with regard to these
issues.

III. THE PROTOCOL

Conceptually we can think of the protocol as being divided
into three main parts: Authentication and Registration (Step
1, 2 and 3 in Figure 1), Secure Storage, Login and Password
Recovery (the first two are described together in the registra-
tion step, and the third is shown in Step 6 in Figure 1) and
Data Transfer (Step 4 and 5 in Figure 1).

The first part can be thought of as the initialization of the
application on a mobile phone before it can actually be used to
(securely) collect data. The second part deals with the security
while working offline, hence how to authenticate a user locally

91

on the mobile phone, and how to keep the stored data secured.
The last part deals with the data exchange between mobile and
server.

The general idea behind the protocol is that, even though
HTTPS might not be a viable option, we still want to use
public key cryptography for critical information exchange
(i.e. user credentials and symmetric keys), and symmetric
cryptography, which is more efficient, for the protection of the
data both on the mobile phone and during upload/download.
Also, we would like to optimize efficiency of the cryptographic
operations on the device, and minimize the communication
overhead. For this reason, the protocol is stateless, i.e., all
transactions consist of a single request and a single response.
Any other solution would require the use of session-ids, which
would have to be exchanged in clear since, unlike SSL where
the whole communication channel is encrypted, we secure only
the application data. We make an exception for the upload of
the collected data as we explain later.

Not using session-ids means also that server never gets
a confirmation to its responses. One of the challenges is
therefore to design a safe and efficient way to re-send a request
to the server if, for some reason, the response was lost or
corrupted. To avoid replay attacks in this context, we always
add a sequential number to each request, making it unique
and not reusable. The other solution for this problem, using
time stamps, would require keeping the client and the server
synchronized, which is not feasible in our scenario.

For symmetric cryptography we propose to use the AES
algorithm in CBC mode, with keys of 128 or 256 bits and
random unique IVs (Initialization Vectors) for each new en-
cryption. In addition an HMAC (Hash-based Message Authen-
tication Code) should be added to guarantee the data integrity
and some degree of accountability.

We assume that the application has been configured and
installed properly on the mobile device. The individual steps
of the protocol shown in Figure 1 are discussed below:

1) Retrieving server public key: The first time the appli-
cation is opened, the server URL is entered to request
and retrieve the public key.

2) Authenticating the public key: The public key needs
to be authenticated, since we cannot rely on certificates.
This is done by challenging the server to decrypt a secret
key. To be able to perform the decryption, the server
must use a shared secret that was distributed in advance
to the users together with their user name and password.
If the server can decrypt the secret key, it will be able to
encrypt its response consisting of a unique application id
to identify the specific device running the application in
future requests, and a seed to improve the quality of the
keys generated by the random generator on the mobile
phone. The public key digest is used as a proof that the
server sending the response is the same one that initially
supplied the public key.

3) Registering a user: After server authentication, a user
must create an account on the mobile phone. Apart from
sending the user name and password in the request, a

storage key is also sent that will be used to encrypt the
data on the phone, and a session key that will be used
to encrypt the traffic. If the credentials are correct, the
server stores the keys and returns a unique user id to
identify the user on the specific application instance.
All cryptographic information pertaining to the user after
registration is stored in a user specific Record Store,
to which only the Secure API has access. The data in
the forms, instead, is encrypted by the Secure API, but
managed and stored by the client application.
After registration, the user is asked to choose a password
to logon to the mobile phone (thus creating a mobile
password). This password is used to generate a key
through a Password Based Encryption (PBE) scheme
[8], which is in turn used to encrypt the storage key
of the user on the phone. The storage key itself is used
to encrypt all other data about the user. This increases
the independence between security and application layer,
and allows multiple user to be registered on the same
device, without compromising accessibility or privacy.
The login procedure is based on the successful decryp-
tion of the storage key. A key is generated from the
password using the PBE scheme and the salt created
at the registration step, and used to decrypt the storage
key. Since the storage key is encrypted together with its
digest, it is possible to check whether the decryption was
successful, and therefore authenticate the user. Using
two passwords reduces the risk that an attacker can gain
access to the data on the server if the device and/or
the mobile password are stolen. In fact, the password
to access the server is the same as the one used for
registration and is not stored in any form on the mobile.
However, completely protecting against a brute force
attack on the data stored on the phone is practically
impossible (see also [4]).

4) Uploading data: In order to optimize the upload proce-
dure, the forms that have been completed are encrypted
directly with the session key, rather than the storage
key, before being stored. To initiate upload, the client
asks the Secure API to open a connection to the server
by authenticating the user. The Secure API receives a
session id from the server, and opens a new connection
with that session id. This connection is returned to
the client application, that simply retrieves the already
encrypted forms from the Data Store and sends them
to the server. Although this approach might expose
the connection to session hijacking attacks, we rely on
the fact that data is encrypted and that only upload is
possible in such sessions, limiting any potential damage
if an attacker gains access to the session key. Risk is
further minimized by setting the duration of the session
appropriately.

5) Downloading data: A flawed download procedure can
compromise the server, where as a flawed upload proce-
dure can only compromise the data on a single phone. To
avoid compromising the server, the download procedure

92

does not rely on session ids. Instead, the encrypted
credentials of the user are added to each request to the
server.

6) Recovering an account: The user password (the one
used in the registration step) can be used to reset the
mobile password. If the mobile password is lost, the
user can still be authenticated on the server and can
retrieve the storage key that was stored there at the
registration step. The storage key can then be encrypted
with a new password on the mobile phone, and replace
the one encrypted with the forgotten password. This way
all the data on the phone is accessible again. If the server
password is lost, than a new password must be issued at
the discretion of the server/administrator. Thus issuing
a new user password does not affect the use of any of
the mobile phones where the user is registered. Only the
server needs to know about the change, and the mobile
device can be normally accessed and used offline.

IV. RELATED WORK

Currently most mHealth systems for data collection do
not systematically address security issues and even SMS is
widely used. There are mHealth systems that use HTTPS
for the communication between mobile devices and server
e.g. EmitMobile by Cell-Life (based on openXdata) [2] and
EpiSurveyor [5] by DataDyne (based on JavaROSA mobile
[11]). These represent commercial solutions, which use a
centralized proprietary server, but there is still no encryption
of data stored on mobile device. The OpenRosa consortium
[10] is working to define general standards for mobile data
collection practices and a particular reference J2ME imple-
mentation [11], including security. However, at the present
time, the only adopted standard proposed as alternative to
HTTPS is the Basic and Digest Access Authentication defined
in [6].

A protocol similar to the one we propose is presented in
[7]. In this paper, the authors also consider the problems of
authentication, confidentiality and secure storage, but starting
from different working assumptions. In their scenario, the
application would be customized and packaged for each user,
so that all the necessary shared secrets and keys would be
already bundled with the JAR file of the application. The
application would also be installed directly on the user phone
by an administrator. This eliminates most of the problems we
face. In addition only symmetric encryption is used. Finally,
the secure storage problem is reduced to simply encrypting the
user keys that came with the application, and no real password
based encryption is used.

V. CONCLUSIONS

The protocol described in this paper addresses security
concerns regarding low-end mobile devices used for collecting
sensitive and personal data. However, we now need to provide
a proof of concept for our protocol. The implementation of
a prototype is still ongoing and no extensive tests have been

performed. There are a number of issues that will have to be
dealt with and clarified once the prototype is complete.

First of all, a more systematic security analysis of the
protocol must be performed, but this is difficult to do before
an actual implementation is in place and all the protocol steps
have been tested. In fact, some of the cryptographic operations
might prove to be too computation intensive for some lower-
end phone (for example, generation of an encryption key
from the user password), and some adjustments might be
required (for example, adjusting the number of iterations for
key generation).

Finally, the protocol should be deployed and tested in real
projects for further improvement. Extensive performance tests
should be run to analyze the impact of cryptography on the
device performance and on the communication channel. We
must also test the performance and overhead of each step of the
protocol in different scenarios and on different devices. This
will allow us to optimize the implementation and to minimize
any adverse effects by the security layer on the application.

Once a reference implementation of the protocol is com-
pleted, an API should be designed to allow smooth integration
with other existing data-collecting mobile clients, starting with
the openXdata mobile client. The challenge will be to take into
account possible configurations of the security concerns, both
from the developer point of view and the end user.

REFERENCES

[1] J. Bouda, J. Krhovjak, V. Matyas, and P. Svenda, “Towards true random
number generation in mobile environments,” in Identity and Privacy in
the Internet Age, ser. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2009, vol. 5838, pp. 179–189.

[2] Cell-Life, “Emit,” Accessed Mars 2011. [Online]. Available: http:
//www.emitmobile.co.za/

[3] S. Crocker and J. Schiller, “RFC 4086 - randomness requirements
for security,” 2005, Accessed Mars 2011. [Online]. Available:
http://www.ietf.org/rfc/rfc4086.txt

[4] T. Egeberg, “Storage of sensitive data in a Java enabled cell phone,”
Master’s thesis, Hgskolen i Gjøvik, 2006.

[5] Episurveyor, Accessed Mars 2011. [Online]. Available: http://www.
episurveyor.org/

[6] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach,
A. Luotonen, and L. Stewart, “RFC 2617 - HTTP authentication: Basic
and digest access authentication,” 1999, Accessed Mars 2011. [Online].
Available: http://www.ietf.org/rfc/rfc2617.txt

[7] W. Itani and A. Kayssi, “J2ME application-layer end-to-end security for
m-commerce,” Journal of Network and Computer Applications, vol. 27,
no. 1, pp. 13–32, January 2004.

[8] B. Kaliski, “RFC 2898 - PKCS #5: Password-based cryptography
specification,” 2000, Accessed Mars 2011. [Online]. Available:
http://www.ietf.org/rfc/rfc2898.txt

[9] T. Legion Of the Bouncy Castle, Accessed Mars 2011. [Online].
Available: http://www.bouncycastle.org/

[10] Open Rosa, Accessed Mars 2011. [Online]. Available: http://www.
openrosa.org

[11] ——, “Javarosa,” Accessed Mars 2011. [Online]. Available: http:
//www.javarosa.org

[12] OpenXData, Accessed Mars 2011. [Online]. Available: http://www.
openxdata.org

[13] Oracle, “Java ME reference,” Accessed Mars 2011. [Online]. Avail-
able: http://www.oracle.com/technetwork/java/javame/documentation/
index.html

[14] ——, “Security and trust services API for J2ME (SATSA),” 2006,
Accessed Mars 2011. [Online]. Available: http://java.sun.com/products/
satsa/

93

