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Abstract—The rise in motion-based gaming peripherals has
afforded intriguing opportunities for low-cost instrumentation of
health-oriented activities. One particular activity, that of physical
therapy, is of considerable interest as traditional systems in the
area cost on the order of tens of thousands of dollars. However,
while recent research has shown that gaming peripherals can
deliver high quality instrumentation, non-expert programmers
face considerable challenges in delivering robust and accurate
instrumentation outside of the lab environment. Furthermore,
when one considers how to fuse data across multiple periph-
erals, the heterogeneity of peripheral performance significantly
complicates recording useful data. To that end, this paper seeks
to describe our approach for delivering a robust, accurate,
and scalable framework for motion-based gaming peripherals,
specifically targeted at physical therapy in the clinical and
research settings. We describe the principles of our framework
and composition of data flow through a variety of illustrative
examples. Finally, we conclude with several experimental setups
designed to demonstrate the efficacy of the framework drawn
directly from our experience in live clinical settings.

I. INTRODUCTION

Improvements in instrumentation have often been a sig-
nificant driver in health care advances. That trend has only
accelerated in recent years as clinical-grade instrumentation
has been revisited to study the extent to which consumer-grade
gear can complement (ex. Quantified Self [1]) if not wholly
replace non-life-essential functionality. In particular, the field
of physical therapy has benefited from the adaptation of
consumer-grade electronics, namely the adaptation of motion-
centric games and their associated gaming peripherals. While
the costs of various gaming peripherals such as the Nintendo
Wii Balance Board and Microsoft Kinect are quite appealing,
it is the ability for researchers to interface and interact with
the peripherals that truly drives research. With the catalyst of
inexpensive gaming peripherals for sensing, researchers can
derive customized systems for therapy and instrumentation and
focus on the key task of utilizing the sensed information. The
end result are systems that cost a fraction of existing clinical
systems while taking advantage of gaming peripherals many
therapists have already purchased for on-site use. Examples
abound of researchers taking advantage of gaming peripherals
for physical therapy including the Wii Balance Board in [2]–
[4] and the Kinect in [5]–[8]. More recent research has even
attempted to fuse both peripherals together in order to obtain
richer datasets and feedback [9]–[12].

Unfortunately, as many researchers have discovered, the
fusion of data from multiple gaming peripherals is decidedly
non-trivial. For the case of simple fusion such as using two

Wii Balance Boards (one for each foot [4]), variations between
different devices results in fluctuations where individual device
sample rates vary. That problem is further exacerbated when
the devices themselves become heterogeneous such as with
fusing information from different types, ex. Wii Balance Board
(≈100 Hz) and Microsoft Kinect (≈30 Hz). Furthermore, con-
sideration for multiple devices often involves threading which
introduces its own unique blend of challenges. When coupled
with the fact that effective therapy often requires smooth and
accurate feedback [13], an area that was already difficult for
non-computer scientists becomes nearly overwhelming. It is
this need that serves as the basis for this paper, namely how
to create a robust framework for fusing information across
multiple motion capture gaming peripherals that is accurate
and easy-to-use. By using this framework, researchers and
developers may focus on the use of device data rather than
the complexities of device and data handling. Our design is in
part informed by our prior work with the WeHab [3] software
suite and the complexities afforded in clinical settings when
growing from a single Wii Balance Board to multiple balance
boards and Microsoft Kinect as inputs. Our Motion-Based
Peripheral (MBP) Management Framework aims to deliver
such a platform and is built on four guiding principles:

• Ease of device handling: Interacting with devices should
be simple and efficient. The intricacies of device pairing
should be minimized and robust troubleshooting and
debugging assistance are essential.

• Reliable device data logging: Logging of data must be
done quickly and reliably. Data provenance is of utmost
importance to ensure that no data is missed and the
system state is recorded reliably.

• Robust system and operation: Reliability and robustness
of the overall system is essential. The system must be re-
liable and robust to various errors that can emerge during
operation including peripheral performance heterogeneity
and varying system loads. Poor or computationally exces-
sive visualization should be compartmentalized.

• Accurate data extraction: Data retrieval must be straight-
forward and consistent. The system should have the
capacity for simple data extraction and the state of the
system at any point as well as any data flows should be
able to be replayed with the utmost of precision.

With these four guiding principles in place, the challenge
is how to deliver not only the desired characteristics of the
framework but how to deliver such characteristics with mini-
mal overhead. In this paper, we present the architectural design
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characteristics that allow us to deliver the robust and accurate
MBP Management framework. In each section, we discuss
the rationale for various design decisions as informed by
clinical [3] and experimental experience [4] with the WeHab
software suite of which the framework will replace the core
instrumentation mechanisms. The MBP-M Framework itself
is available via open-source through our project Wiki page1.

The remainder of the paper is organized as follows. The
MBP-M Framework and the flow of device data through the
system are described. Next, the performance of the MBP-M
Framework during several problematic scenarios is explored
in order to demonstrate the robustness and reliability of the
framework and its logging functionality. Finally, takeaways
regarding the MBP-M Framework are presented and future
plans explained.

II. MBP MANAGEMENT FRAMEWORK

The MBP Management (MBP-M) framework is at its core,
a dataflow management system. Using a variety of internal
components responsible for data acquisition, data transforms,
and data logging, the MBP-M Framework covers the entire
process of data handling from initial acquisition to output (see
Figure 1).

A. Framework

To begin, the most important component of the MBP-M
framework is the object we dub the Oracle. The Oracle object
can be thought of as a central clearinghouse for the system.
The Oracle creates and maintains all Device, Channel, and
Output objects along with all threads. Additionally, the Oracle
maintains mappings of the most recently received data from
each active device and is responsible for the initialization of
data processing via Dataflow objects. The Oracle also acts as
the only means of communication and interaction between the
program inside which the framework has been integrated and
the framework.
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Fig. 1. A high-level overview of the MBP-M Framework.

1http://netscale.cse.nd.edu/MBP-M

Instrument objects in the MBP-M Framework are one of two
types: Devices and Outputs. Devices are representations of pe-
ripheral devices in the system. All Devices inherit from a base
Instrument class containing the core functionality common to
the various types of Devices, including logging, debugging
and event handlers. Specific Device classes represent such
peripherals as the Kinect and Balance Board with their primary
distinguishing features being how data from the peripheral is
obtained and how log entries are structured.

For reporting data out of the MBP-M Framework, Outputs
are used. As Outputs are also children of the Instrument base
class, the core functionality of logging, debugging, and event
handling are already in place. There exist two major types
of Output representing the major approaches to data delivery:
Display and Data. Displays are designed for the purpose of
molding data into an easily visualized format while Data
Outputs are used when data are only intended for consumption.

Channel objects perform transforms of data from Devices.
A Channel receives data and performs some sort of manipula-
tion(s) to transform the data into a different form. For example,
one Channel may take in raw sensor values from two Balance
Boards and fuse these values into a single two-dimensional
Center of Pressure (COP) coordinate. Minor Manipulations
Channels, on the other hand, perform minor, optional data
transforms such as coordinate inversion and applying jitter.
Like Instruments, Channels inherit from a base class contain-
ing the core functionality common to all Channels.

For logging, each Instrument and Channel maintains its own
log file so that exactly what and when each object performed
an action is recorded in an easily queried manner. While
the specifics of log entries for each type of Instrument and
Channel vary, logs follow a template of recording the time, the
current frame number of the logging object, and data points
specific to the type of Instrument or Channel. Additionally,
while all Instruments and Channels create log entries for
every received frame of data, only Devices Instruments write
said data to disk on receipt. Due to the time required to
write to disk and the need to maintain low overhead in the
framework, the logs from Channels and Outputs are stored
together as Dataflow log entries and written to disk as one file
on closure of the main program. In this manner, data retrieval
is both straightforward and consistent. Every incoming frame
of Device data is logged on receipt and the specifics of how,
when, and in what order data were processed and transformed
are preserved. An end-user may go to the on-disk logs to
determine exactly what data came into the system and how
said data was transformed into the output he/she saw.

Figure 2 illustrates the steps the MBP-M Framework takes
to transfer data from a peripheral device to the Oracle and
the first steps taken when the data processing timer inside the
Oracle ‘ticks’. When a Balance Board reports sensor values,
the Device object representing said Balance Board first creates
a copy of the data and delivers the data to the Oracle via
a callback then logs the sensor values. The Oracle responds
to the callback by registering the delivered data as the most
recently received data from the Device. Since each Device is an
independent thread and Device report rates are heterogeneous,
the Oracle can see inconsistently spaced and ordered updates.
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Fig. 2. An illustration of the events that take place when a device reports
new data and what occurs on a ‘tick’ of the Oracle’s data processing timer.

For example, the Kinect reports at ≈30 Hz while the Balance
Board reports at ≈100 Hz. The Oracle can receive several
updates from a Balance Board in the time required for a single
update from the Kinect.

Figure 3 presents a brief example during which two Balance
Boards and a Kinect are reporting data. Figure 3 illustrates
how the Oracle keeps track of Device data with each Device’s
frame report. When a Device reports a new frame of data,
the Oracle registers this new frame of data as the most
recently received frame from the sending Device. Note that as
illustrated in Figure 3, the heterogeneity of device reporting
makes it possible for multiple frames of data from both BB 0
and BB 1 to be received and logged in the time between two
Kinect 0 frames.

To begin processing received data, the Oracle contains
a timer running on a thread separate from the rest of the
framework whose purpose is to initiate a series of steps that
lead to the eventual output of collected data as illustrated in
Figure 2. A timer is used to avoid difficulties caused by the
cumulative frame rates of devices and to keep the system close
to real-time. A Balance Board can report data to the framework
at over 100 frames per second, and if two Balance Boards are
in use the framework is receiving nearly 200 frames of data
per second to be processed and visualized. If the framework
started processing and visualizing data the instant said data
came in from a Device, the framework would rapidly become
swamped in a backlog of data as it simply cannot keep pace.

On the ‘tick’ of the timer, a Dataflow object is generated.
As illustrated in Figures 1 and 2, a Dataflow contains any
number of data transformations (Channels), an Output, and
the most recently received data from each Device. Once a
Dataflow object has been generated, it is handed off to another
thread which proceeds to pass the attached data through each
enqueued Channel and Output of the flow. Note that the ticking
of the timer is consistent and can be tuned to an appropriate
level by the programmer. For example, if the programmer
knows that the display frame rate will be 30 Hz at best,
the timer can be tuned to tick at a rate which will have

Time
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BB_1

Frame 0

Frame 0

Frame 0

Frame 1

BB_0: No Data         Frame 0                Frame 0           Frame 0         Frame 1     Frame 1
BB_1: No Data         No Data                 No Data           Frame 0         Frame 0     Frame 1
Kinect_0: No Data         No Data                 Frame 0           Frame 0         Frame 0     Frame 0

Most Recently Received Data

Frame 1

Fig. 3. A time-line example of a brief window of MBP-M System operation
to illustrate how the System is updated as new frames of data from Devices
are received by the Oracle.

data processed and delivered at approximately 30 Hz. On
completion of data processing, the processed data is returned
to the Oracle for final output.

III. PERFORMANCE

In order to illustrate the benefits of using the MBP-M
Framework, problematic scenarios and the potential overhead
cost of the framework are explored. In the results below, the
metrics used consist of display frame rates (Hz) and display
render times (ms) for illustrating the problems caused by
overloading the display of a frame of data, device reporting
rates (Hz) to illustrate device report rate heterogeneity, and
Dataflow processing and write times (ms) to quantify the
overhead cost of the framework. The data were all collected
on an HP Probook 4730s running Windows 7 64-bit with a
2.50GHz Intel Core i5-2450M CPU (two cores capable of
two threads each) and 4GB Ram. For Bluetooth connection
with the Balance Boards, the 32feet.NET library (version 3.4)
[14] was used. The WiimoteLib library (version 1.7) [15] was
used for communicating with the Balance Board. Additionally,
an original Kinect sensor was used alongside the Kinect for
Windows SDK (version 1.8) [16]. All sessions were run for
sixty-five seconds and for analysis, the first fifteen and final
five seconds of each test were ignored. In addition, all sessions
were run using a WPF program with simple controls and a
single visualization region on which data output was displayed.
The MBP-M Framework was integrated into this program.

A. View Overloading

If software is coded without threading and appropriate
attention to data provenance, an overload of data visualization
can lead to data being ignored or miss-handled. For example,
if a trace of previous coordinates is applied to a moving
COP indicator visualized with each new frame of data from a
Balance Board such that a set number of previous points are
also visualized, the length of the trace will directly influence
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TABLE I
INSTRUMENT FRAME RECEIPT RATES AND DISPLAY PERFORMANCE WHEN VARIOUS TRACE LENGTHS ARE APPLIED TO THE DISPLAY

Average Instrument Frame Receipt Rate (Hz) Average Display Frame Rate (Hz) Average Display/Render Time (ms)
No Trace 101.76 ± 0.84 65.41 ± 1.77 0.00 ± 0.08
100 Points 101.86 ± 0.84 62.79 ± 3.68 7.94 ± 1.87
250 Points 101.67 ± 2.08 23.12 ± 2.08 29.06 ± 4.84
500 Points 101.95 ± 0.77 11.06 ± 1.61 76.54 ± 11.04

Fig. 4. Cumulative Distribution Function (CDF) of the frame rates of
visualization on a single Balance Board setup.

Fig. 5. A screenshot from the WeHab application presented in [3]. Shown is
an example of a ‘trace’ being applied to a moving CoP indicator illustrating
where the CoP was previously.

how much time is required for the display to complete its
‘draw’ operation. Such an increase in drawing time decreases
the number of frames displayed per second as evidenced in
Figure 4. If frames are being processed at 60 Hz (with no
regard to slowdown), then a 500 point trace would include
COP points processed over the past 8.33 seconds.

Figure 5 presents an example of a trace in the WeHab
application described in [3]. Unlike the MBP-M Framework,
WeHab was designed such that logging occurs at the same
moment the data is displayed. As described above and discov-
ered during development, drawing a long trace of data points
can have a significant detrimental effect on the display frame
rate. When logging is coupled with display and a substantial
amount of time is required to completely display a single
frame, multiple frames of data reported by a device can be
ignored while the program works to visualize the previous

TABLE II
DISTRIBUTION OF CONSECUTIVE DEVICE UPDATES WITHOUT UPDATES

FROM OTHER DEVICES

Interim
Updates

BB / Kinect 2x BB / Kinect
BB Kinect BB 1 BB 2 Kinect

0 69.3% 0.0% 13.0% 13.9% 0.1%
1 30.7% 1.5% 51.5% 50.5% 0.3%
2 0.0% 17.2% 28.4% 27.5% 1.2%
3 0.0% 39.8% 6.6% 7.5% 1.4%

>= 4 0.0% 41.5% 0.5% 0.6% 97.0%

frame. While it seems at first that logging data at the same
moment as data display is a poor design decision due to the
potential of slowdowns, the ability to log the exact state of the
system at the same moment the user sees the output is useful
for understanding exactly what the user saw at a given time.

The MBP-M Framework avoids the slowdown caused by
view overloading through its use of multi-threading. All data
logging is handled on threads separate from the main pro-
gram’s display thread, thereby allowing logging to continue
unhindered even if the main program experiences some sort
of slow down like an overburdened display. The success of this
strategy is evident in Table I. The stable Balance Board report
receipt rates compared against the decreasing display frame
rate as longer traces are applied show that the rate at which
frames of Balance Board data are received by the framework
remains unaffected by slowdowns in visualization. If all data
logging were coupled with visualization, then upwards of
ninety frames could be ignored by the system every second
when a 500 point trace is being visualized.

Fig. 6. CDF presenting the rates at which reports from the Kinect and Balance
Board are received by the system.

B. Heterogeneous Instrumentation

An unfortunate fact about devices is that not all devices
collect data at the same rate and the rate at which this data
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is received is not always consistent. Figure 6 shows that the
Kinect and Balance Board clearly report at different rates with
the Kinect reporting less than half as often as the Balance
Board. It should also be noted that although the Balance Board
reports at ≈100 Hz, only about 64% of frames are actually
unique (at least one reported sensor value is different from
the previous frame). When only unique frames are sent to
the Oracle, only ≈65 frames are reported per second. While
Figure 6 does show report rates for the Kinect and Balance
Board to be quite consistent, the consistency is not perfect.

The lack of perfect consistency between different types of
devices and even between devices of the same type raises
questions of what should happen when, for example, a single
Channel modifies and passes along a combination of data
coming from a Balance Board and a Kinect. If the Kinect
reports at less than half the rate at which the Balance Board
reports, how often should the Channel perform and pass
along its transformations? The MBP-M Framework is designed
such that Channels always use the most recently received
data from each of the devices and perform transforms on a
consistent interval (inside Dataflows). Therefore, a Channel
receiving data from both a Balance Board and a Kinect will
potentially use the same Kinect data multiple times as that
data comes from the most recently known state of the Kinect.
This approach makes sense because, while the most recently
known state of the Kinect may remain the same between
consecutive Dataflows, the most recently known state of the
Balance Board is changing and therefore, the Channel’s output
is also changing.

Table II presents situations in which a Channel listens to
both a Balance Board and a Kinect in one case, and two
Balance Boards and a Kinect in the other case. Table II
shows how the total number of Device updates to the Oracle
between updates for each specific Device were distributed. For
two Balance Boards and Kinect, in the time between 97% of
consecutive Kinect reports at least 4 updates from the Balance
Boards arrived in the Oracle. Conversely, for one Balance
Board and one Kinect, the time between 69.3% of consecutive
Balance Board updates to the Oracle saw no Kinect updates
arriving in the Oracle. Both of these examples help illustrate
that a potentially large number of Balance Board updates can
reach the Oracle between Kinect updates.

C. MBP-M Framework Overhead

While it is important that the MBP-M Framework provides
robust and accurate data logging, it is also important that the
system does no harm. Overhead imposed by such matters as
data manipulation, logging, and data transfer must be kept to
a minimum. As long as Dataflow processing time remains low
enough such that the display frame rate remains above ≈60
Hz (or 30 Hz when a Kinect is in use due to 30 Hz report rate),
then the MBP-M System is performing acceptably as a display
frame rate of 60 Hz appears fluid and understandable for most
users [17]. In order for the display frame rate to remain above
60 Hz however, Dataflow processing time combined with the
Dataflow generation timer interval of 15 milliseconds must
take less than 17 ms (60 frames * 17 ms = 1020 ms). However,

a frame rate of 30 Hz is also seen as acceptable [17], so a
processing time of 22 ms could also be considered viable.
As evidenced by the processing times in Figure 7, overhead
caused by the framework during Dataflow processing remains
largely below 3 ms no matter the number of devices actively
reporting data to the framework. However, there does exist a
small drop in performance as more devices are added. The
increased Dataflow processing times seen with the addition
of more devices can be attributed to the limited resources
available through the four logical cores of the computer CPU
and the simple fact that more devices in use means more
threads are active, placing a greater burden on the CPU.

The MBP-M Framework currently writes only Device data
to disk with every received frame as, unfortunately, writing to
disk is not an instantaneous operation and can take several mil-
liseconds as shown in Figure 8. For Figure 8, the framework
was set to write to disk the log of every Dataflow object on
completion of Dataflow processing (rather than on closure of
the program). While the single Device examples in Figure 8
consistently have write times of less than ten milliseconds,
adding a second (or third) Device has a detrimental effect
on write time. With more Devices actively reporting to the
framework, more writes to the disk must be made every second
as each Device is attempting to write to disk every time it
has a new frame to report. Since the Devices run on separate
threads from the rest of the framework and from the Dataflow
processing thread, multiple attempts to write to disk can occur
concurrently. As the computer has limited resources and can
only write to one location on the disk at a time, multiple
requests to write to the disk in the same moment naturally
require more time.

Fig. 7. CDF presenting the time required to process data through a Dataflow
for several possible device use combinations.

A potential solution to the issue of writing to the disk for
every frame of data that passes through a Device (or Dataflow
if also writing Dataflows to disk immediately) is to write log
entries to disk in batches. Like Figure 8, Figure 9 represents
results gathered when the framework was set to write to disk
the Dataflow log entries on completion of Dataflow processing.
Figure 9 shows that increasing the interval between writes to
the disk such that each write consists of the frames logged
since the last write can improve Dataflow processing time
while still recording all processed data. However, by increasing
the interval between log writes, risk of lost or inaccurately
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Fig. 8. CDF presenting the time required to write one frame of processed
data to disk for several possible device use combinations.

recorded data increases. For example, if Device log entries
are written to disk in batches of 1000 and the computer either
crashes or loses power, hundreds of log entries would be
lost representing potentially several seconds of device use.
A balance must be achieved between improved framework
performance and the risk of data loss.

Fig. 9. CDF presenting the time required to process data through a Dataflow
with three different log batching strategies when a single Balance Board was
in use.

IV. CONCLUSION/DISCUSSION

Low-cost motion-based gaming peripherals are a flexible
and inexpensive approach to instrumentation of health-oriented
activities. However, as described in this paper, there are
complexities in the development of software that makes use
of motion-based gaming peripherals that must be attended to
lest data be lost or the developed software lack robustness.
Our MBP-M Framework provides an easy to use and reliable
platform upon which to develop software aimed at making use
of motion-based gaming peripherals. The MBP-M Framework
is designed to offer accurate data logging safe from any actions
taken outside the framework and is robust against the various
difficulties incurred when working with motion-based gaming
peripherals, thereby allowing users of the framework to focus
on the use of data rather than on the collection of data.

In the near future, a visualization suite with the MBP-M
Framework at its core and a focus on consistent data logging
will be constructed. This suite will exist as both a viable

program for interaction with low-cost gaming peripherals and
as an example/template of how the MBP-M Framework can
be used.
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