
RESTful Services for an Innovative E-Health
Infrastructure: A Real Case Study

Fabio Vitali, Alessandro Amoroso and Marco Roccetti
Dept. of Computer Science and Engineering - Univ. of Bologna

Email: {amoroso, vitali, roccetti}@cs.unibo.it

Gustavo Marfia
Dept. for Life Quality Studies - Univ. of Bologna

Email: gustavo.marfia@unibo.it

Abstract—We present a REST approach to build Health
services on the Web. Our proposal originates by the necessity
of evolving the current regional health service to accommodate
emerging needs that are too complex to accomplish with the
current system. The original system extends on the regional scale
of Emilia–Romagna, and it is one of the most advanced in Italy.

Our architecture inherits some of the basic Web methodologies
and techniques to implement an highly scalable and flexible
system that is capable to satisfy the current needs and their
planned evolutions. Moreover, our approach should allow for an
effortlessly addressing of future requirements not foreseen at the
moment.

Without revolutionizing the current IT infrastructure, our
approach introduces a new paradigm that could be implemented
by a sophisticated interface to access data and resources.

I. INTRODUCTION

The region Emilia–Romagna, in Italy, has a widespread
health network, called SOLE, developed by the in-house
company Cup 2000, that connects each other: all the local
health authorities in its territory, the labs operating within
the regional health service, the public medical specialists and
pediatricians. This regional network is one of the two most
advanced in Italy.

Based on a prescription from the family physician, the pa-
tients can make reservations for lab analysis trough the SOLE
network. The physician and the patient will receive trough
SOLE the medical report of the analysis. The documents and
medical reports concerning the hospitalization of a patient are
also exchanged by means of the SOLE network.

The Emilia–Romagna region is planning to extend the
services and the base of users of SOLE, therefore new needs
emerge; we can summarize them as: scalability and flexibility.
These will be discussed in the next section.

We are proposing an innovative architecture to address
the evolution of SOLE. Our main idea is to adopt the up-
to-date methodologies and techniques that rules the World
Wide Web. The Web exhibits extraordinary scalability and
flexibility based on simple and powerful mechanisms. We
propose a way to project them into the public health scenario
that we are considering. Our aim is to preserve the existing
IT infrastructure by adding a kind of Web interface to it
in order to obtain the new functionalities. Moreover, due to
the flexibility of the Web technologies, we suppose that our
approach could accommodate future requests and constraints
not currently foreseeable.

SOLE was designed at the beginning of this century, and
the adopted technologies reflect that period. The data model
is document oriented and the system uses the Simple Object
Access Protocol (SOAP) messages to exchange data over the
network. The payload of the SOAP messages are Health Level
7 (HL7) documents that are generated according with the
Reference Information Model (RIM) specifications.

Nowadays the REpresentational State Transfer (REST) ap-
proach offers a much more simple and lightweight architecture
to Web Applications. This approach does not require the
heavy overhead of SOAP, that requires both the client and
the server to execute local computations to manage large and
complex data messages [1]. Currently a huge portion of the
Web services that offer both the approaches receives the great
majority of request by the REST paradigm. As an example,
Amazon S3 offers the same Web services following both SOAP
and REST approaches, more than the 85% of those services
are accessed by means of the latter [2].

In the recent literature there are some early applications
of the REST approach to e-health Web based applications.
For instance, in [3] a semantic characterization of the content
of health messages helps in the correct matching of services
from two independent health-related databases. More closely,
in [4] the HL7 Fast Healthcare Interoperability Resources
(FHIR) standard is discussed, showing how the REST–based
interchange protocol, an integral part of the FHIR standard,
helps in generating faster and more responsive applications.
In [5] the authors propose a modular design to implement an
HTTP based system to storage, retrieval, and versioning of
Electronic Health Record (EHR).

The remaining of the paper is structured as follows: the
next section sketches the current SOLE systems and its main
limitations. The subsequent section presents our proposal, that
is based on a REST approach, highlighting its novelty and
strengths. The §IV shows some crucial items in the design of
the system based on our approach. The conclusions end the
paper.

II. CURRENT ARCHITECTURE AND DATA MODEL

The current architecture of the SOLE system could be
summarized in Fig.1. The ellipses represent four administrative
actors: three health authorities, simply labelled A, B and C, and
a fourth entity, the Emilia–Romagna Region Health Service,
labelled ERRHS. The rounded boxes at each actor represent

2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom)

978-1-4799-6644-8/14/$31.00 ©2014 IEEE 127

Health
Authority A

Health
Authority B

Health
Authority C

ERRHS

d1

d2 d3

Fig. 1. Current architecture.

the SOLE services local to each one of those entities. The
SOLE services exchange each other health data on behalf
of the actors, and are connected to the centralized control
system located at the regional health service. The solid lines
connecting the SOLE services represent those communication
channels.

The Health Authority B represents a large organization
that includes several separate departments, depicted as small
rounded boxes labelled d1, d2 and d3. Each one of those
departments has a large degree of autonomy that includes
their IT infrastructures. For historical reasons, it is highly
probable that each one of the departments has developed a
custom information system to manage health, administrative
and personal data.

The main role of SOLE is to allow all these different
domains, both administrative and technical, to profitably ex-
change documents. This scenario leads to a “naturally” dis-
tributed system on regional scale, where the data and the rela-
tive computations are local to separate entities. It is worthwhile
to mention that legal requirements concerning the privacy of
patients impose that health and personal data could not be
shared without an explicit authorization from the patient, and
it is subject to restrictions.

A. Document vs. data model

The current SOLE implements a document oriented ap-
proach, i.e. the smallest addressable stored information are the
documents, each one as a whole, regardless of the finest grain
data that they contains. The main idea behind this approach
was to preserve the integrity of the original documents.

Currently SOLE supports documents exchange between
actors, those documents are expressed in XML following one
or more document types of HL7. The documents contains data,
that are frequently redundant, about entities and concepts that

could be orthogonal to the purpose of the document. Those
entities and concepts could be the focus of future searches
and applications.

We are proposing a data oriented approach (see §III),
that considers each single data directly addressable, while
preserving the association with the original document.

B. Scalability and flexibility

The scalability has at least two dimensions: physical, i.e.
the number of users, and logical, i.e. the number of possible
services offered to them. The number of future users of SOLE
2.0 will extend to both all the physicians and all the residents
in the region. That means increasing form 400 to 8000 the
number of physicians and considering up to 4 millions of
residents.

Following the data oriented approach, it is possible to
implement straightforwardly a whole class of new services,
that actually are too complex to design due to the current data
model. An example of new services we could consider those
that requires an “horizontal” access to data, that is in contrast
with respect to the actual “vertical” approach that considers a
“store and delivery” of HL7 messages.

One of those “horizontal” services could be the statistical
analysis of a specific illness. A complete screening of pre-
scriptions searching for correlations between specific data is
hard to implement using the actual document oriented data
model. The useful data are currently glued collectively with
other data that are useless to the extent of the screening and
they are not automatically addressable.

Following the data model approach, each data has its own
identity and addressability. Therefore, almost all the data
analysis could be made with respect to the privacy of the
patients, since their personal data are not glued together with
the data relevant to any research.

C. Standardization

Actually there are at least 17 different clients certified to
access SOLE, each one offering different capabilities and
user interfaces; each physician decides which one to use. The
certification process for these clients is complex: it requires
the clients to know the internal data structure of each remote
system participating to SOLE and requires the system to check
the correctness of the transactions between remote modules.
Any change to the internal data structure would cause the
modification of all the clients and a further run of their
certification process.

Following the REST approach, SOLE will publish a set
of API that could easily manage the standardization of the
practitioners clients interface to the system. SOLE will not
publish the internal data structure, it will publish, instead, the
interface to invoke actions on the data.

III. INNOVATIVE APPROACH

The driving idea of our proposal is to apply the models
and technologies that have been developed for the World Wide
Web to the new version of SOLE. Those instruments have been

2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom)

128

developed during the last decades and share the characteristics
of being highly robust and largely scalable.

A. URI vs. URL

Any resource available on the Web is univocally identified
by means of a Uniform Resource Identifier (URI). A URI can
represent a name, a location or both of them. A client can
accesses a resource on the Web by means of the Uniform
Resource Locator (URL) of the resource, that is the specific
communication protocol to access the resource, e.g. HTTP and
FTP, followed the URI of the resource.

As an example, consider this fictional URI of a document:
files.cs.unibo.it. We could access this resource by means of
different protocols, gaining different results. By means of the
HTTP protocol, i.e. the URL: http://files.cs.unibo.it, we could
render the content of the document in a browser window. By
means of the FTP protocol, i.e. the URL: ftp://files.cs.unibo.it,
we could download the document into our device.

B. HTTP commands

The main idea of the REST approach is that the function-
alities and the protocol of HTTP are enough to implement
complete Web applications. The RESTful services offer access
to the resources, that are expressed in XML format, solely by
means of the four main HTTP requests:

• GET: to download a document;
• PUT: to store a document in the server;
• POST: do add data to a document;
• DELETE: do delete a document from the server storage.
All of them generate a response from the server. Those

requests admit also some specifications. The GET request
could ask that the indicated document will be returned by
the server only if it has been modified after a specific data,
or if some of its metadata satisfy specific criteria. By means
of the PUT request a client could ask to the server to store a
specific document, with a defined name. The HTTP requests
could be accepted by the server solely if they are sent by
authorized clients. Moreover, the DELETE request could be
accepted solely if it is sent by registered users that have
specific permissions.

C. Resources–Oriented Architecture

The REST approach exposes resources and not processes.
This is a complete departure from the Remote Procedure Call
(RPC) paradigm that is shared by the SOA approach.

Exposing data is a very delicate issue, there are at least two
options: the worst option is to directly show the content of the
database, including its internal structure, the best option is to
expose objects that wrap the data. As an example we could
imagine the “prescription” object, that as a tree data structure
that contains several nodes, each one individually addressable.
Those nodes could include: the personal data of the patient,
the id of the physician that issued the prescription, each single
item, their cost, the state of each item, and so on.

The purpose of the following example is to highlight
some topics of our proposal, not to exactly represent a real

lab

physician

SOLE

patient

2

3

1-4

Fig. 2. Example: the doctor prescribes lab analysis to the patient by means
of the Web services offered by SOLE.

scenario. We refer to a likely scenario, keeping the example
simple enough to be explained straightforward without being
simplistic.

The example is depicted in Fig. 2 and shows a physician that
prescribes to a patient same laboratory analysis by means of
the services offered by SOLE. Each one of the actors accesses
the services offered by SOLE by means of an interface that is
implemented by a Web page accessible by a browser. Some
of the actors, i.e. SOLE, the physician and the lab, can store
locally a copy of relevant data. The shown actors interact
with SOLE performing the steps described below, that are
represented in the figure by means of numbered circles:

1) the physician prescribes some laboratory analysis to the
patient issuing a prescription;

2) the patient books the analysis into a laboratory (this is
not modeled in the example);

3) the laboratory exec the analysis and issues a medical
report;

4) the physician can access the medical report.
In this example SOLE acts like a communication channel

and records all the messages exchanged by the actors. It is not
strictly required that the physician has to store locally all the
issued prescriptions, she/he could access the storage facility of
SOLE to manage them. The laboratory stores all the medical
reports that it issues and could link each one of them to the
corresponding prescription.

In terms of the REST approach, each one of the steps
numbered above is a single HTTP invocation:

1) the physician requests a PUT of the prescription, gener-
ating a new URI;

2) the patient is not modeled;
3) the laboratory requests a PUT of the report generating

a URI derived by the one of the prescription;
4) the physician can verify the completion of the analysis

either by a GET of the specified prescription or by
a lookup, again with a GET, of all the prescriptions

2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom)

129

associated with a lab report.
The physician knows the URI of a prescription, e.g.

abcd1234, either new or previously issued. The physician
issuing a new prescription could add it to the system
by the PUT http://www.SOLE.it/prescriptions/abcd1234.
The lookup of the prescriptions issued by the
physician John Smith could be obtained by the GET
http://www.SOLE.it/prescriptions/?physician=Smith. To add
data to a prescription, e.g. to record that it has been reimbursed
by the national health system, the actor performs the PUT
http://www.SOLE.it/prescriptions/abcd1234/reimbursed.

The databases involved in this example are managed by
SOLE, while a copy of them, either partial or complete, could
be locally stored by some of the actors:

• Citizens’s personal data used by the physician to com-
plete the prescription. Data do not change too frequently,
the physician could store personal data of their own
patients;

• Medical services that could be supplied. Data seldom
change, the physicians could store a local copy of the
whole database;

• Diseases classified following the ICD9CM. Data seldom
change, the physicians could store a local copy of the
whole database;

• Prescriptions issued under the public health system. Data
could change on a daily basis, the physicians could store
a local copy of their issues;

We realized a fast prototype of both the services offered
by SOLE and of the interfaces for the actors. The main
technologies server side that we adopted are URL rewriting
[6] and PHP. The client side technologies were Ajax, Ajax
Framework (ExtJS) and HTML 5. We implemented the above
databases by means of a NoSQL database, that was not
a technology constraint and we adopted it to test possible
bottlenecks of performances.

IV. DESIGN OF THE SYSTEM

We present a possible Application Programming Interface
(API) for the Web that is based on the REST paradigm. The
aim of this API is to be a factual interface to documents,
entities and concepts stored in the databases local to each
instance of SOLE. The clients of that API are applications
that can access entities and concepts to provides services and
visualizations. This approach masks to the clients both the
internal complexity of the software architecture and of the data
structure and storage. Any possible future modifications of the
system could be implemented without requiring modifications
to the client side. The API represents a single and unified point
of access to the resources that is independent from the model
of storage of data, their site, and their retrieval techniques.

Our proposal is flexible enough to accommodate any entity
and concept that will be defined by the authorities in charge.
We present both the general architecture of the API and
how to modify it to allow for new entity or concept to be
accessed. This approach leads to a simple method to evolve the

repositoryexternal user internal userEHR

Health Authority

Fig. 3. Different users accessing the data.

API accordingly with future requirements, that are currently
unpredictable.

We can summarize the main topics to design the API as
follows:

1) identification of a meta-syntax for the URIs to system-
atically access, booth in reading and writing, the HL7
documents and the concepts and entities there described,
i.e. the meta-syntax of the requests to the system;

2) identification of a meta-format for data output common
to any request, that is linearly equivalent in XML, JSON
and EDF, i.e. the meta-syntax of the responses form the
system;

3) proposal for a pre-elaboration of the requests to parse
the request received by the API before any access to
the data and any activation of application logic of the
system;

4) proposal for a reorganization of the storage introducing
additional indexes to fast access of the original docu-
ments.

We consider that there are at least two different modality to
access the data: internal and external access. Figure 3 shows an
example of this scenario: the data are stored in a repository
under the administrative control of an health authority, and
they can be accessed both by an internal user or an external
user.

The internal users belong to the administrative domain of
the health authority and can access the data either by means of
the interface directly exposed by the repository or by means of
the interface implemented by a middleware or an Enterprise
Service Bus (EBU). The external users could be either the
citizens or the internal users belonging to different departments
or health authorities. These external users can access the data
under different rules with respect to the internal users. The
Electronic Health Record (EHR) defines such an interface,
that masks the repository structure. The EHR will belong to the
administrative and technical domain of SOLE 2.0. Some of the
main topics emerging from this depicted accessing methods
are sketched below.

Access policies mechanism: needs to consider an increasing
number of both users and their typology. It has to be easily
extendable to face the needs that will surface in the future.

Data structure: the number of data and documents will
significantly increase in the future. They are to be defined
both the principles and the best practices to structure the data.

2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom)

130

Selectivity of data access: must be established based on the
role of each actor. They could be implemented by means of
permissions lists associated to the actors.

A. Meta-syntax for the requests

The REST approach is based on the design and publishing
of methods, based on URI, to access data. These URI could
refer existing data, and both entity and concepts that could be
either implicitly or explicitly present in the database.

The request to the system needs to be independent from
the physical site of the data storage. A single point of access
provides the abstraction of a “centralized” storage of the data.
As an example, we can suppose that this single point of access
has the following URL: http://www.sole2.it/data/

To define the purposes of our API, we need to mention the
following basic concepts:

Instance: either of a concept or of an entity, is the set of data
associated with a single individual belonging to a class; e.g.
let “patients” be a class of entity, then the set of personal data
associated with Mr. Mario Rossi from Bologna is an instance
of that class. An instance could contain one or more sub–
instances, e.g. the street address of the patient could be “via
Indipendenza n. 5” (i.e. “5 Independence street”).

Collection: is the set of data associated with one or more
instances of that class; i.e. it is a set of instances. As an
example, a collection could be the set of data associated with
all the patients living in a specific city; that collection could
be an ordered list containing solely some selected data about
the patients, e.g. name, family name, address and tax code.
Note that in Italy the tax code could be a unique identifier of
each citizen.

Key: is a unique identifier associated with an instance of a
class. A class could have multiple keys with non intersecting
values.

In the following examples of URI we suppose the ex-
istence of the classes physicians and patients. The URI
www.sole2.it/data/patients/MRSFBA72H20A9432Z identifies
the patient whose tax code is MRSFBA72H20A9432Z. An
URI identifying a collection ends with a slash “/”, e.g. he URI
www.sole2.it/data/patients/ identifies the collection of patients.
The collection of all the patients of the physician whose key
is 123456 is www.sole2.it/data/physicians/123456/patients/.

The requests could be quite complex, and could use prede-
fined parameters. As an example, let us consider the parame-
ters q, s, start, length, accept, debug in the following URL:
http://www.sole2.it/data/patients/?q=city%20eq%20modena
%20and%20born%20gt%201999/12/31&start=301&length
=100&s=familyname+name&accept=text/xml&debug=true

This returns the collection of 100 records starting from
the number 301 (start=301&length=100) from all the pa-
tients living in the city of Modena that were born after
the 31 December 1999 (q=city eq modena and born gt
1999/12/31). That list is ordered by both family name and
given name (s=familyname+name) and it is formatted in
XML (accept=text/xml). Moreover, the list will contain details,
whenever it is possible (debug=true).

delete

- create
(unknown key)

-
POST

-

GET - read
(record)

collection

PUT

-PATCH update

istance
read
(list)

sub-istance

-

DELETE

create
(know key)

-

update (if PATCH
is not used)

-

Fig. 4. Relationships between HTTP methods and CRUD operations.

The four main operations of REST, as described in §III-B,
could be associated with the CRUD (Create, Read, Update,
Delete) functions of persistent storages. The Fig. 4 shows that
relationship.

The PATCH request has been added for the sake of sim-
plicity, it allows to specify within the request what are the
fields that will be modified ad what are the updated values.
There are tree possible PATCH operations: the substitution of
existing values, the additions of new values to a populated
field, the removal of a value from a populated filed.

B. Meta-format for the responses

We consider that the systems encodes both the request and
the responses as UTF-8. Any response could be described by
the following MIME types: i) XML:MIME type text/xml or
application/xml, ii) JSON:MIME type application/json and iii)
Turtle RDF:MIME type:text/turtle. The type of the response
could be contained in the request, as shown above.

Any response from the system could contain either entities
or concepts that could be formatted as records or list.

Record format: contains all the known data about the
considered instance. It could contain also linked data whenever
those are appropriate with respect to the size of the record. As
an example consider the record of a patient that could contain
a section about the physician, and the record of a prescription
could contain the records of the prescribed drugs. The whole
record could be accessible solely by authorized actors. It could
be the case that same actors are authorized to access solely a
portion of the complete record.

List format: could be either a JSON array or an XML sub-
tree, whose elements are a short representations of the selected
instances. The response could also contain paging information,
such as the number of all the records that satisfied the request
and the number of returned records.

C. Logic–functional description of the system

Any public API accepts requests from unknown actors, we
could generically call them clients, that request services. The
services provided by our API, following the REST approach,
are both reading and writing of the data that are actually
managed by SOLE. Our API should be flexible enough to
accommodate future evolutions that are not predictable now.

2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom)

131

request

response

Web
interface

validation conversion

data
manager

response conversion

Fig. 5. Internal data flow for the proposed architecture and its modules

Moreover, our architecture should be able to manage in a
seamlessly way the existing data, without disruption of the
existing services.

The proposed architecture is sketched in Fig. 5. The system
could be decomposed in 5 modules, each one performs a step
in the elaboration of the request and is connected in a pipe with
the others, i.e. the output of one module is the input for the
next one. The module receiving a request is the Web interface,
that is connected to the Web, depicted as a cloud, that module
is available at a predefined HTTP address, and represents the
centralized access point to the system. It receives the requests
and sends back the responses. The validation module analyzes
and transforms the requests according to the capabilities of the
client to avoid that she/he could access unauthorized services.
The conversion module, translates the request into a sequence
of actions that can be executed by the internal system, i.e.
it allows the API to be independent from the actual service.
The data manager module is the actual service. The response
conversion module translates the format of the data from
the internal representation of the actual service to the format
requested by the client. The output of the response conversion
module goes to the first module that therefore can respond to
the request.

The communication channels between the modules are
secured by HTTPS and implement an adequate level of
cryptography with respect to the current state of the art.

The users of the system could play different roles depending
on their current activity, i.e. we could say that the user is
“acting as” a specific role. As examples consider a physician
that could be also a patient, or a physician that is an internal
user in a specific health department while she/he is an external
user for all the remaining departments. The validation module
avoids the return of restricted data to unauthorized actors.

Depending on the role on the requester, the system could
return different levels of detailed data. E.g. a physician could
access all the details about the data of her/his patients, while
could access solely a digest of the patients of other physicians;
a patient could access all of her/his data, while none of the
data of the others.

Our system has to be robust with respect to possible misuse
and attacks, such as the SQL injection technique [7]. More
generally, a robust system could be obtained applying one or
more of these techniques:

• input validation: by parsing the query to identify suspi-
cious code;

• temporary sandboxing: executing the query into secure
and controlled environments;

• virtual tables: accessing the databases solely by means
of VIEWs;

A critical point when migrating to the REST approach is
the architecture of the storage system maintained by SOLE.
It is not feasible to force any department or health authority
to revolutionize their current storage systems, that are mostly
document oriented, to satisfy the new data oriented paradigm.
Our main idea is that the local instances of SOLE will maintain
their own “version” of the local data according with the new
paradigm. Considering the huge quantity of data, the DBMS to
adopt has to be carefully chosen between: XML native, JSON
native and SQL. We estimated that the “atomic” data, i.e. not
further divisible, contained in the XML documents produced
solely by the emergency departments of the regional public
hospitals in the 2013 is about 5× 108.

V. CONCLUSIONS

We presented a novel approach to build the regional health
services of the Emilia–Romagna region in Italy. Our approach
is based on the REST paradigm and has been described in this
paper mainly from a syntactic point of view.

We believe that our proposal is flexible enough to accom-
modate the requirements and the planned evolutions of the
current system.

There are remaining open issues, such as the kind of DBMS
to store the data maintained by SOLE, that will be analyzed
in the close future.

ACKNOWLEDGMENT

We are indebted towards CUP 2000 s.p.a. for the financial
and technical support.

REFERENCES

[1] A. Rodriguez, “Restful web services: The basics,” IBM, Tech.
Rep., 2008. [Online]. Available: http://www.ibm.com/developerworks/
webservices/library/ws-restful/

[2] T. O’Reilly, “Rest vs. soap at amazon.” [Online]. Available: http:
//www.oreillynet.com/pub/wlg/3005

[3] N. Miyoshi, A. Ferreira, and J. C. Felipe, “Ontology-based approach to
achieve semantic interoperability on exchanging and integrating infor-
mation about the patient clinical evolution,” in 22nd IEEE International
Symposium on Computer-Based Medical Systems. IEEE, August 2009,
pp. 1–6.

[4] D. Bender and K. Sartipi, “Hl7 fhir: An agile and restful approach to
healthcare information exchange,” in 26th IEEE International Symposium
on Computer-Based Medical Systems (CBMS 2013. IEEE, June 2013,
pp. 326–31.

[5] E. Sundvall, M. Nyström, D. Karlsson, M. Eneling, R. Chen, and
H. Örman, “Applying representational state transfer (rest) architecture to
archetype–based electronic health record systems,” in BMC Med Inform
Decis Mak, May 2013, pp. 13–57.

[6] “Apache mod rewrite,” The Apache Software Foundation, Tech. Rep.,
2014. [Online]. Available: http://httpd.apache.org/docs/current/rewrite/

[7] [Online]. Available: http://en.wikipedia.org/wiki/SQL\ injection

2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom)

132

