
Self-adaptive Middleware for ubiquitous Medical
Device Integration

Andreas Kliem, Anett Boelke, Anne Grohnert, Nicolas Traeder
Technische Universität Berlin

Email: {firstname}.{lastname}@tu-berlin.de

Abstract—E-Health systems need to dynamically integrate a
huge variety of medical sensors in order to provide a meaningful
survey of a patient’s condition. Devices like smart phones or
gateways usually used as integrators, often underlie resource
constraints and have to cope with the mobility of the patient.
Therefore it is difficult to realize an overall integration middle-
ware, that allows to handle a sufficient amount of medical sensors
and is able to quickly adapt to changing requirements (e.g. new
sensors or data aggregation modules) while preserving mobility
and resource constraints. We present a middleware solution for
the integration of medical devices and the aggregation of resulting
data streams, that is able to adapt itself to the requirements of
patients and Care Delivery Operators, using a modular approach
and external knowledge repositories. Knowledge in the shape of
configurations and runtime pluggable software modules is used
to properly integrate and handle discovered medical devices on
demand.

Keywords-E-health; telemedicine; self-adaptive; dynamic re-
configuration; medical device integration; interoperable medical
devices; plug-and-play

I. INTRODUCTION

The evolution of mobile embedded devices in recent
years encourages their widespread adoption in the health-
care domain [1]. Especially domains like intensive care or
telemedicine are proposed to benefit from ICT based sensors
and communication networks [2] [3] [4]. A typical application
domain is the monitoring of vital signs with (mobile) sensors
connected through Body Area Networks (BAN) or Personal
Area Networks (PAN) [5]. Basically, the aim of such systems
is to record and analyze the streams of medical data emitted
by the sensors in order to support physicians in their decision
making process. However, proper decision making is based on
a meaningful survey of a patient’s condition, which requires
to consider a huge variety of typically heterogeneous medical
sensors and devices [6]. Moreover, treatment decisions often
have to be made under time constraints, which constitutes the
need for an aggregated view of the available data streams
generated close to the data sources. Each stream utilized can
differ regarding its specific characteristics, such as real time
requirements, used data formats and nomenclatures or, the
communication protocol used by the medical devices that
provides the data stream [7].

The resulting device integration and data aggregation prob-
lems are highly heterogeneous, require customized and appli-
cation related software components and therefore, often lead
to proprietary solutions. A lot of vendors already provide e-

Health solutions especially in the area of vital signs monitoring
and telemedicine. However, these systems are often based on
closed boxes, integrate only a limited set of medical devices
and sensors, usually from the same vendor or based on the
same (proprietary) protocol specification, and barely intercon-
nect with each other. Using proprietary solutions, medical
device vendors or system integrators gain market exclusivity,
which often forces Care Delivery Operators (CDOs) to be de-
pendent on a vendor (i.e. vendor lock-in). Proprietary solutions
hinder the development of open and fully integrated e-Health
systems, which are required to efficiently deliver cost-effective
health services. The problem is intensified, if we have a look
at the nature of nowadays treatment processes, that usually
involve a lot of different CDOs (e.g. family doctor, specialist,
hospital). Since each CDO might rely on different solutions,
interoperability cannot be achieved and on-demand access to
the medical devices of a patient is difficult to realize. Due
to the aforementioned variety, interoperability in the e-Health
domain requires, that medical devices can be integrated at any
location on-demand, regardless of the protocols or data formats
(proprietary or standard-based) they are based on.

It is often depicted, that the device integration problem can
be mitigated by standardization efforts. Appropriate standards
like ISO/IEEE 11073 (x73) [8] or the Bluetooth Health De-
vice Profile (HDP) [9] exist, but it is unlikely to achieve a
widespread standardization in a reasonable time span. More-
over, a lot of standards allow for vendor defined extensions
and in particular vendors of complex sensors and medical
instruments often rely on pure proprietary protocols to protect
their innovations. This raises the question, how a medical
device integration middleware can be designed, that:

• is able to handle both standard and proprietary devices
• is adaptable to cope with the rapidly changing require-

ments (decreased time to market, new sensors, updated
data formats and profiles)

• allows to handle all the existing medical devices and
preserves interoperability at application level if they are
replaced (which extends the integration with a migration
challenge)

• can be deployed on resource constrained devices like
smart phones or gateways usually used as integration
systems [10]

Given these constraints, it is impossible to integrate all the
software components required to handle the variety of medical

2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom)

978-1-4799-6644-8/14/$31.00 ©2014 IEEE 240

Device Control Layer

Local Device
Directory (DD)

Medical
Device

Aggregator

Global Device
Directory (GDD)

DI, DT, Configuration

Platform Modules

Fig. 1: Overview of a device directory knowledge request

devices and the resulting data streams into one middleware.
The middleware needs to be able to adapt itself to the require-
ments of the environment. It has to recognize the environment
by detecting currently available devices on-demand and adapt-
ing itself in order to handle the devices properly. Knowledge
required to cope with so far unknown devices has to be
gathered dynamically from external repositories and injected
during runtime, which keeps the amount of actual required
resources low, since only software components currently in
use have to be maintained. Therefore, the approach we like
to present relies on a modular, OSGi based [11], device
integration and data aggregation middleware, that allows to
integrate and process data from unknown devices by loading
respective integration and aggregation modules from external
repositories (i.e. adapting itself).

The rest of the paper is structured as follows. Section II
gives an overview of fundamentals to the solution, such as the
layout of the external knowledge repositories or the relation
of semantic interoperability to the framework. Section III will
explain the architecture of the middleware and its relevant
components. Finally Section IV will highlight some related
work and Section V will conclude the paper.

II. BACKGROUND

This section will introduce the Device Directory (DD),
which implements the knowledge repository used by the
middleware to gather required information about medical
devices to be integrated. Additionally, a brief introduction to
the fundamentals of moving medical devices between CDOs
and its relation to the DD approach is given. Throughout the
following sections, the device that hosts the middleware and
acts as the medical device integrator will be called Aggregator.

A. Device Directory

The Device Directory (DD) can be envisioned as a directory
service for devices. It hosts knowledge, that allows the Aggre-
gator to reconfigure itself in case an unknown medical device

is discovered and needs to be integrated. Therefore, basically
three entities are known and maintained by the DD:

• Device Type (DT): Refers to the type of a medical device
manufactured by a certain vendor. It stores information
and configurations that are applicable to all medical
devices of that type and has dependencies to a set of
Platform Modules (PM) required to properly handle the
device (i.e. integrate and process data)

• Device Instance (DI): Refers to a concrete physical
device used by a patient. An instance always belongs
to a DT. It holds information and configurations that are
only applicable to the instance (e.g. security credentials
required to connect to the device). The relation between
device instance and type can be envisioned as the relation
between serial number and product number.

• Platform Module (PM): Refers to a software component
(i.e. module or OSGi bundle) that can be requested from
the DD and deployed to the middleware at runtime.
Several categories like device driver modules, discovery
modules or, data transformation modules are supported.
Each module has to align to the specifications of the
middleware.

Each of these entities can have several attachments (e.g. spe-
cific files or software components) and configuration entries,
that describe how to handle a medical device and allow to
customize the behavior of the middleware’s core components
or the PM’s. Basically, upon discovery of a medical device,
the Aggregator would request all required knowledge using a
DI identifier. This allows the DD to identify the corresponding
DT and all required PM’s and return them as a result to the
Aggregator. More details about PM instantiation and linkage
to the data streams is given in Section III.

Requesting knowledge of a certain DI from the directory
leads to the question how the knowledge is registered. As
shown in Figure 1, we assume that a hierarchy of Device
Directories exists. Each CDO using the middleware framework
operates its own local DD instance. The root instance to be
operated by a third party is called Global Device Directory
(GDD) and maintains knowledge about each medical device
available. New medical device introduced, have to be regis-
tered with the GDD. If a vendor releases a new DT, he has
to register the DT along with all mandatory PM’s (this task
can also be carried out by third parties like system integrators
or the CDOs themselves). Additional PM’s can be added later
by each participant. If knowledge about an unknown DI is
requested from a local DD, it checks if the DI is known by
the GDD and starts a synchronization process.

Besides knowledge about medical devices, the DD pro-
vides a locking mechanism to dynamically bind a device
to an aggregator. If we assume, that medical devices shall
be integrated on-demand at every required location (i.e. the
location the patient carrying the medical devices currently
stays), a mechanism that allows to bind a medical device to
an Aggregator dynamically, while avoiding access conflicts,
is required. Each CDO is likely to host its own Aggregators,

2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom)

241

which implies that Aggregators are changed during a treatment
process and requires dynamic bindings. The mapping to the
actual patient has to be maintained by the CDO (e.g. on
the basis of the locks). As each entity in the DD allows to
store a custom set of configuration keys and attachments, the
patient mapping can also be stored within the local device
directory and marked as private, which prevents the DD from
synchronizing this information with other DD’s (e.g. due to
privacy constraints).

B. Semantic Interoperability

Semantic interoperability is an important challenge for
the integration middleware and the e-Health domain in gen-
eral [12], because it allows to integrate all kind of medical
devices using different protocols and data formats. Semantic
interoperability refers to a common understanding of the
incoming data streams among all actors in a system [13] and is
based on a common data model that serves as a mediated super
set of all other models. A common nomenclature and data
format give the opportunity for interoperable applications that
are not affected by the replacement of a medical device. As
mentioned, it is unlikely to achieve this at device integration
layer (e.g. by constraining each vendor towards one standard),
which also would stand in contrast to the concept of our mid-
dleware (i.e. supporting both standard-based and proprietary
devices). However, the benefits at application layer can still
be achieved using data transformation approaches. Therefore,
the Device Directory allows to store PM’s of the type data
transformation module, that are able to intercept a certain data
stream and transform the payload to a canonical format. As the
set of PM’s attached to a DT is customizable by each CDO (i.e.
each local DD), the resulting format can be arranged according
to the CDOs requirements and even differ from device to
device. However, our prototypes are based on the format
introduced by the x73 family of standards, which already
provides a rich nomenclature and is currently promoted by the
industry (e.g. Continua Health Alliance) [14] [15] and research
activities [16] as well.

The approach behind the transformation modules can be
referred to as template mapping [17]. Compared to ontology
mapping approaches, for instance, template mapping requires
providing multiple pairs of templates and their mappings.
However, the approach is more lightweight [18] [19], gives
a better modularity and therefore fits to our general system
model, because it allows to split the overall problem into a
lot of lightweight modules directly related to a certain device
type and output format.

C. Medical Device Sharing

Referring to the introduction, one major motivation is that
treatment processes nowadays include several CDOs. This
implies that the medical devices of a patient need to be shared
among CDOs in order to access them on-demand at any
location. Currently, medical devices are often bound statically
to a patient and the CDO owning the device. This leads
to an inefficient utilization and higher costs, because each

CDO participating in the treatment process has to re-equip the
patient with own medical devices to get an overview of its vital
signs, regardless whether the patient is already equipped with
fitting ones. The introduced hierarchy of Device Directories
allows us to establish the notion of collaborating CDOs that
constitute a federated medical device cloud [20].

Each participating CDO can offer a set of its devices to
other CDOs by extending the locking mechanism to a medical
device access negotiation protocol used between the DD’s. If
an Aggregator discovers a medical device not owned by its
operating CDO, the corresponding knowledge request to the
local DD results in a search request to the global DD. Besides
all required knowledge to integrate the device, the global DD
delivers information about the owning CDO. This allows the
local DD serving the current discovery request to contact the
device owning DD. The local DD’s then negotiate access to
the device on a peer-to-peer basis. Security and privacy issues
of this approach are introduced in [20].

III. ARCHITECTURE

The architecture of the device integration and aggregation
middleware is based on a modular design using the OSGi
specification [11], which allows us to deploy Platform Mod-
ules (PM) during runtime to the system. First prototypes of
the middleware and the Device Directory discussed in the
previous section were already implemented in scope of the
RehaInterAct project [21], which aims to develop a sensor-
based interaction- and communication-platform for the physi-
cal therapeutic attendance of rehabilitation exercises in clinical
and domestic environments.

The middleware architecture shown in Figure 2 can be
seperated into two layers, the device integration and the
aggregation layer, whereas each layer is responsible to handle
different types of PM’s. Following types of PM’s are available:

• Discovery Module: is used by the device integration
layer to handle the discovery process. Generates a Dis-
covery Record that is required to identify the Device
Instance (DI) and allows to request required modules and
configurations from the Device Directory (DD).

• Device Driver Module: is used by the device integra-
tion layer to integrate a discovered DI. Implements the
application layer communication protocol to exchange
messages with the medical device and record medical
data from it.

• Data Transformation Module: refers to the semantic
interoperability feature of the aggregation layer. These
modules can intercept a medical data stream and trans-
form it to a canonical data format.

• Data Utilization Module: is used by the aggregation
layer. Performs any kind of processing (e.g. visualization,
data analysis) on a data stream.

• Data Output Module: is used by the aggregation layer
to transmit data streams to other nodes (e.g. other aggre-
gators, CDO backend or clinical information system)

Common to both layers is a system component (i.e. system
service) called DD service, which is the interface to the Device

2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom)

242

Medical Data Stream

Aggregation Middleware

OSGi Runtime

CDO Backend

Device Driver
Engine (DDE)

Medical Devices

Data Input
Gateway (DIG)

Bluetooth

ZigBee

WiFi

ANT

...

D
rive

r
M

o
d

u
le

s

110
101

Data Transformation
Engine (DTE)

Transformation
Modules

Data Utilization
Engine (DUE)

Utilization
Modules

x73

Data Output
Gateway (DOG)System Services

- Routing Service
- DD Service
- Module Service
- Profile Service

x73

Device Control Layer

Device Directory
(DD)

MD
MD

MD

MD
MD

Aggregation
Middleware
Instance 2

Output Module

Output Module

Fig. 2: Overview of the general system architecture. The middleware consists of several mandatory and optional components
(i.e. Bundles), that run inside an OSGi engine to allow for dynamic reconfiguration.

Directory and allows to request PM’s and configurations
required to integrate a DI. Therefore the Discovery Record
generated by the device integration layer is used. This leads
to the requirement, that DI’s need to be uniquely identifiable
among all connected DD’s. The DD’s are able to maintain
several identifiers for a medical device, which allows to cope
with several different approaches of identifying a medical
device. The most common approach is to use MAC addresses.
However advanced devices, such as x73 compliant ones,
already provide means for such globally unique identifiers.

A. Device Integration Layer

The device integration layer (i.e. Device Driver Engine
(DDE)) is a framework for easy development and runtime
deployment of device drivers. A device driver module designed
according to the DDE specification can be deployed on each
Aggregator, regardless of the actual operating system or plat-
form the Aggregator runs on. Therefore, the DDE implements
a hardware abstraction layer, which allows to provide uniform
interfaces to the transport protocols available through the
operating system. Moreover, the hardware abstraction layer
tries to unify the access to different transport protocols by
exposing only one abstract service API to read and write
bytes from a transport. After a medical device was discov-
ered, the Discovery Record holds a reference to an abstract
communication channel, which later can be used by the device
driver to communicate with the medical device. The abstract
communication channels are based on the channel concept
introduced by Java NIO. This allows a device driver for a
certain DT to be used with DI’s based on different transports.
A use case for this feature is given by the x73 standard, which
allows to implement several transports based on its application
level protocol. The same device driver module could be used
for all x73 blood pressure monitors for instance, regardless
whether they are based on Bluetooth (i.e. HDP), ZigBee or
Ethernet.

Besides the hardware abstraction capabilities, the DDE
follows a two step approach to integrate medical devices. The
discovery process and the integration process are separated
from each other, which corresponds to the two module types
defined above. Discovery of a medical device is subject to a
lot of different heterogeneous approaches. However, without
being able to discover a device, it cannot be integrated and
there would be no need for self-adaptivity of all following
components. Therefore, discovery modules are the only plug-
gable components of the middleware that have to be deployed
manually (i.e. runtime deployment is still possible, but it
has to be triggered manually). Our assumption is, that the
discovery process itself is much more lightweight than the
integration process (i.e. the implementation of the application
level protocol used by the medical device) and in case of
some transports (e.g. Bluetooth), the discovery process can
be unified (i.e. handled by one single module). Therefore, the
separation of discovery and integration allows us to comply
with the resource constraints while still being able to support
a huge variety of medical devices.

The discovery of a medical device results in the creation on
a Discovery Record, which is used to trigger the gathering of
required device driver modules from the DD. After the device
driver module was deployed to the DDE (i.e. installed into the
OSGi framework), a session is wrapped around the driver and
the Discovery Record is passed. The session concept allows
us to handle several DI’s of the same DT in parallel. Note
that the integration can be intercepted by a call to CDO, in
order to check whether the medical device is actually required,
but this is up to the actual use case. Additionally, the DD
locking process described in Section II-A has to succeed,
prior to integrating the device. The reference to the abstract
communication channel contained in the Discovery Record,
then allows the driver to establish a connection to the medical
device and record data from it. The data is forwarded to
an application layer component of the DDE, which simply

2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom)

243

forwards the data again to the Data Input Gateway (DIG) of
the aggregation layer.

B. Aggregation Layer

1) Input Gateway: After integrating the medical device, the
aggregation layer is responsible for handling the data stream
in a way defined by the CDO. When the first data container
of a newly integrated device has arrived at the DIG, a new
session for this DI is created. All following containers can be
assigned to the session using a session ID, which is already
attached to the container by the DDE. The session ID refers to
the ID of the lock, generated by the DD prior to integrating the
medical device. This lock ID uniquely identifies the binding
between an Aggregator and a medical device and therefore
can be used as a session ID, since it will not change while the
DI is connected to the Aggregator.

Since the DI and the DT are already known and cached by
the DD service (due to the device integration layer request),
the DIG can examine the corresponding configuration and
knows about all PM’s required to handle the data stream.
However, the actual orchestration of data transformation and
data utilization modules depends on the requirements of the
CDO and can also differ from patient to patient. Thus, the DIG
has to request a DI and possibly patient related profile from
the CDO using the profile system service (the corresponding
patient can be obtained on the basis of the lock ID). The profile
defines which data utilization and data output modules have
to be executed. The order currently has to be defined within
the profile and is not generated automatically to avoid loops
within the orchestration. However, each PM defines which
data input formats are expected and which output formats are
generated. This allows the DIG to automatically identify the
set of data transformation modules required to execute the
requested module orchestration. If a required transformation
module is missing, the regarding execution path of the module
orchestration is not executed and a failure is reported.

Afterward, the DIG requests the required PM’s from the
DD using the module system service, which allows to load
the modules asynchronously and not to delay the processing
until all required PM’s are available. The data container then
is forwarded to the system routing service, which creates a
routing configuration for the session (i.e. the order of PM’s).
The general ordering of modules is dynamic, which means
that it is not required to constrain the execution path to a fixed
sequence, as displayed in Figure 2 due to simplicity reasons.
It is allowed that a transformation is followed by a utilization
and another transformation again. As shown in Figure 3, it is
also allowed to establish several execution paths within a data
stream session. Each execution path defined in the profile is
terminated with a data output module.

2) Receiver Engines: After having created a routing config-
uration for the session, the routing system service controls the
processing of the data stream using a set of so called Receiver
Engines, whereas each receiver engine refers to a component
that handles PM’s of a certain type. The aggregation layer
knows three types of receiver engines: Data Transformation

Engine, Data Utilization Engine and, Data Output Gateway.
Each engine is responsible to manage PM’s of the respective
type. The main tasks of the Receiver Engines are to ensure
a proper ordering of data containers corresponding to one
stream, to cache data containers in case the next module to
be executed is not already installed by the module system
service and, to prepare the current configuration of a PM.
Because several medical devices have to be handled in parallel,
a PM might have to deal with data streams from different DI’s
that can correspond to different DT’s (even streams belonging
to different patients are possible). According to Section II-A,
DI’s, DT’s and PM’s can have separate configurations. Ad-
ditionally, the patient profile loaded by the profile system
service also can have a configuration attached. Because each
of these configurations can have a different priority and keys
contained in one configuration can override keys in another
one, it is impossible to prepare a configuration used by the
PM’s once for the session (e.g. by the DIG). Therefore the
session related configurations (i.e. DI, DT, Profile) and the
PM related configuration have to be merged by the Receiver
Engine prior to trigger the next PM contained in the routing
setup. In order to avoid a duplicate generation of routing
information (i.e. at the routing system service and the engines),
the routing system service pushes an engine related module
execution stack along with the data container, which contains
the sequence of all PM’s the engine is responsible for and that
have to be executed for the current execution path.

The data output gateway takes a special role among the
engines. It is responsible for transmitting the data stream to
other nodes (e.g. other aggregators or the CDO backend). It is
designed as an engine, to allow for separate output destinations
even among one data stream. Since the routing sequence is not
fixed, the data output modules can intercept the data stream at
any point of execution, which for instance allows to forward
the stream using different data formats as shown in Figure 3
(e.g. the raw stream for monitoring and logging purposes and
a transformed stream for further processing). A concatenation
of several Aggregators is also possible, because the session ID
was initially generated by the device integration layer and the
DD and therefore can be maintained among several Aggregator
instances. In this case the stream is simply transmitted to the
DIG of the subsequent Aggregator.

C. Data Stream Representation

A medical data stream is modeled by a data container
representation. Each PM and each Receiver Engine expects
an instance of an abstract data container as its input. The
data container holds a reference to the session it belongs to,
which allows each module participating in an execution path to
identify the session and the corresponding DI and DT as well.
Additionally, the container provides a sequence number and
the data format its payload complies to. If a patient profile
includes two utilization modules in an execution path that
differ regarding their corresponding output and input formats,
the middleware can automatically intercept the execution path
with the required transformation module.

2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom)

244

DI/Patient Profile - Session

DOM 1
Input:
Binary 1

DUM 1
Input:
x73

DOM 2
Input:
x73

DUM 2
Input:
x73

DOM 2
Input:
x73

Routing System Services

MD
Output:
Binary 1

DOM 1
Input:
Binary 1

DOM 2
Input:
x73

DUM 1
Input:
x73

DUM 2
Input:
x73

DTM 1
Input:
Binary 1
Output:
x73

Path 1 Path 2 Path 3

Fig. 3: Routing setup generated from a profile configuration
with automatically integrated transformation modules.

The possibility to aggregate data from different data streams
(i.e. different medical device sessions) is given implicitly by
the middleware, because there is always only one instance
of a certain PM deployed. The isolation between different
data streams is introduced by the session concept described
in the last sections. Based on the session ID and the profile
configuration, a PM is able to identify medical data streams
that belong to the same patient. However, there is currently no
notion available, that allows to explicitly model such PM’s that
intercept different sessions. This means, currently the PM itself
has to take care of synchronizing two data streams it wants to
aggregate. Enhancing the middleware with such feature will
be target of future work.

D. Prototype

In the scope of the ReahInterAct project [21], we im-
plemented a first Java based prototype of our middleware
solution. Based on sensors integrated in training equipment
(e.g. shoes) and a virtual reality feedback system, interactive
exercise scenarios can be realized. The systems can be seper-
ated into local components (e.g. sensors, video system) used
in the exercise room and backend components (e.g. clinical
information base). The Device Directory is deployed as a part
of the backend and uses a websocket communication protocol
(based on JSR356 [22] and Jetty [23]) to expose its interfaces.
The middleware is deployed on a local PC (Intel Core i5
3320m, 4GB RAM, JDK 1.7) and uses Apache Felix [24]
as its OSGi runtime. So far, two movement and pressure
sensors, developed by project partners and based on Bluetooth
(BT2.1 and BT4.0 respectively) with proprietary data formats
(25Hz, 10 bytes payload), were integrated. We developed two
corresponding transformation modules to align the proprietary
format to a common one based on x73 [8]. Because x73

currently does not support movement and pressure sensors,
we extended the private sections of the nomenclature.

We examined the feasibility of our approach by measuring
the delay introduced by routing the data stream through our
middleware’s core components and the transformation module
as well as the time required for the first data container to pass
through, which includes the inital setup of the session and the
routing tables. The time required for the actual download of the
platform modules was not considered, because it higly depends
on the available bandwidth between local and backend site. It
showed that the average delay was less than 40ms, which is
appropriate for the given data rate of the sensors and does not
affect the virtual reality system’s feedback loop. Due to the
inital setup of the routing, the delay of the first data container
was at most 110ms higher.

IV. RELATED WORK

The device integration problem is common to a broad range
of application domains like Ambient Assisted Living (AAL),
E-Health or, Smart Homes. Due to the static and monolithic
nature of available solutions (in terms of integratable sensors,
adaptability, mobility, patient-sensor binding, device sharing),
a lot of research is conducted to simplify the integration
process. Brito et al. [25] presented a middleware for the
integration of heterogeneous medical sensors. Similiar to our
approach, new medical devices and services (i.e. data uti-
lization modules) can be integrated. However, the process is
limited to the start-up process and the movement of sensors
between different CDOs is not covered. King et al. [26]
focused on the integration of stationary medical devices in
clinical environments. Additionally they presented a test bed
to evaluate the coordination of networked medical devices.
Asare et al. [27] proposed a medical device dongle to integrate
heterogeneous and proprietary devices. Their approach is
based on an open-source hard- and software platform allowing
to connect to proprietary medical devices over a network using
a common protocol (x73). Each dongle implementation has to
be specifically designed according to the requirements of the
medical device to be integrated. Dagtas et al. [28] presented
a health monitoring system using cell phones. Similiar to the
Aggregator approach presented by us, the cell phone is capa-
ble of collecting measurements and analyzing the recorded
data. Multiple transport technlogies are supported and pre-
processing of recorded data can be carried out using a rule-
based approach with XML.

Although most of the related approaches already allow to
handle several different medical devices and are able to dy-
namically deploy application logic (e.g. [29]) close to the data
sources, a runtime adaption of the middleware itself, required
when continuously broadening the set of available medical
devices and sharing them among CDOs, is not supported.

V. CONCLUSION AND FUTURE WORK

We presented an approach for a protocol and platform
agnostic device integration and data aggregation middleware,
that is able to adapt itself to the requirements of the current

2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom)

245

environment during runtime. We assume, that a hierarchy
of device directories exists, that similar to common direc-
tory services, maintain knowledge about the medical devices
available. The knowledge exists in shape of configurations
and software modules, that can be loaded by the middleware
at runtime. Therefore the middleware is able to adapt its
behavior regarding device integration and data stream process-
ing capabilities on-demand. The high modularity enables to
manage the amount of software modules deployed in parallel
efficiently and allows to deploy the middleware on mobile
and resource constrained devices, while not limiting the set
of medical devices usable. The presented device directory
approach additionally introduces the notion of a federated
medical device cloud, which allows to share medical devices
among CDOs participating in a patient’s treatment process.

Future work targets the dynamic orchestration of all uti-
lization modules. Currently only transformation modules can
be integrated into an execution path dynamically, which is
due to the possibility of creating loops when orchestrating all
modules based on their input and output data formats. Security
and privacy issues will be further investigated, which includes
policy enforcement (e.g. only secure output module that allows
to encrypt the data stream are integrated) or code signing
features (e.g. only trusted modules signed by the DD or the
CDO authority are allowed to be integrated in an execution
path).

ACKNOWLEDGMENT

This work was carried out within the scope of the RehaIn-
teract Project sponsored by the Federal Ministry of Economic
Affairs and Energy (BMWi, Germany).

REFERENCES

[1] U. Varshney, “Pervasive healthcare and wireless health monitoring,”
Mobile Networks and Applications, vol. 12, no. 2-3, pp. 113–127, 2007.

[2] L. Gatzoulis and I. Iakovidis, “Wearable and portable ehealth systems,”
Engineering in Medicine and Biology Magazine, IEEE, vol. 26, no. 5,
pp. 51–56, Sept 2007.

[3] K. Lorincz, D. Malan, T. Fulford-Jones, A. Nawoj, A. Clavel, V. Shnay-
der, G. Mainland, M. Welsh, and S. Moulton, “Sensor networks for
emergency response: challenges and opportunities,” Pervasive Comput-
ing, IEEE, vol. 3, no. 4, pp. 16–23, Oct 2004.

[4] D. Bates and A. Bitton, “The Future Of Health Information
Technology In The Patient-Centered Medical Home,” Health Affairs,
vol. 29, no. 4, pp. 614–621, apr 2010. [Online]. Available:
http://content.healthaffairs.org/content/29/4/614.full.html

[5] J. Ko, C. Lu, M. Srivastava, J. Stankovic, A. Terzis, and M. Welsh,
“Wireless sensor networks for healthcare,” Proceedings of the IEEE,
vol. 98, no. 11, pp. 1947 –1960, nov. 2010.

[6] I. Korhonen, J. Parkka, and M. van Gils, “Health monitoring in the
home of the future ,” in Engineering in Medicine and Biology Magazine,
vol. 22, no. 3, May-June 2003, pp. 66–73.

[7] D. Arney, S. Fischmeister, J. M. Goldman, I. Lee, and R. Trausmuth,
“Plug-and-play for medical devices: Experiences from a case study,”
Biomedical Instrumentation & Technology, vol. 43, no. 4, pp. 313–317,
2009.

[8] “ISO/IEC/IEEE Health Informatics–Personal Health Device
Communication–Part 20601: Application Profile–Optimized Exchange
Protocol,” ISO/IEEE 11073-20601:2010(E), pp. 1 –208, 1 2010.

[9] Bluetooth SIG, “Health Device Profile (HDP).” [Online]. Available:
https://www.bluetooth.org/Technical/Specifications/adopted.htm

[10] M. N. Boulos, S. Wheeler, C. Tavares, and R. Jones, “How smart-
phones are changing the face of mobile and participatory healthcare: an
overview, with example from ecaalyx,” Biomedical engineering online,
vol. 10, no. 1, p. 24, 2011.

[11] O. Alliance, “Osgi service platform release 4 specification,” Online:
http://www. osgi. org/Specifications, 2007.

[12] V. Bicer, G. B. Laleci, A. Dogac, and Y. Kabak, “Artemis message
exchange framework: semantic interoperability of exchanged messages
in the healthcare domain,” SIGMOD Rec., vol. 34, no. 3, pp. 71–76, Sep.
2005. [Online]. Available: http://doi.acm.org/10.1145/1084805.1084819

[13] S. Heiler, “Semantic interoperability,” ACM Comput. Surv., vol. 27,
no. 2, pp. 271–273, Jun. 1995. [Online]. Available: http://doi.acm.org/
10.1145/210376.210392

[14] C. H. Alliance, “http://www.continuaalliance.org/index.html.”
[15] J. Yao and S. Warren, “Applying the ISO/IEEE 11073

Standards to Wearable Home Health Monitoring Systems,”
Journal of Clinical Monitoring and Computing, vol. 19, pp.
427–436, 2005, 10.1007/s10877-005-2033-7. [Online]. Available:
http://dx.doi.org/10.1007/s10877-005-2033-7

[16] A. Fioravanti, G. Fico, M. Arredondo, D. Salvi, and J. Villalar, “Inte-
gration of heterogeneous biomedical sensors into an ISO/IEEE 11073
compliant application,” in Engineering in Medicine and Biology Society
(EMBC), 2010 Annual International Conference of the IEEE. Buenos
Aires, Argentina: IEEE Engineering in Medicine and Biology Society,
2010, pp. 1049–1052.

[17] A. A. Sani, F. Polack, and R. Paige, “Generating Formal Model Trans-
formation Specification Using a Template-based Approach,” in Scope of
the Symposium, 2010, p. 3.

[18] D. Ivanov, A. Kliem, and O. Kao, “Transformation middleware
for heterogeneous healthcare data in mobile e-health environments,”
in Proceedings of the 2013 IEEE Second International Conference
on Mobile Services, ser. MS ’13. Washington, DC, USA: IEEE
Computer Society, 2013, pp. 39–46. [Online]. Available: http:
//dx.doi.org/10.1109/MS.2013.15

[19] K. Czarnecki and S. Helsen, “Feature-based Survey of Model Transfor-
mation Approaches,” IBM Systems Journal, vol. 45, no. 3, pp. 621–645,
2006.

[20] A. Kliem and O. Kao, “Cosemed - cooperative and secure medical device
cloud,” in e-Health Networking, Applications Services (Healthcom),
2013 IEEE 15th International Conference on, Oct 2013, pp. 260–264.

[21] Fraunhofer Institute for Open Communication Systems, “Re-
haInterAct Project,” accessed 19-August-2014. [Online]. Available:
http://rehainteract.fokus.fraunhofer.de/

[22] Oracle Corporation, “JSR 356: Java API for WebSocket,” accessed
19-August-2014. [Online]. Available: https://jcp.org/en/jsr/detail?id=356

[23] Eclipse Foundation, “Jetty Web Server,” accessed 19-August-2014.
[Online]. Available: http://www.eclipse.org/jetty/

[24] Apache Foundation, “Apache Felix,” accessed 19-August-2014.
[Online]. Available: http://felix.apache.org/

[25] M. Brito, L. Vale, P. Carvalho, and J. Henriques, “A sensor middleware
for integration of heterogeneous medical devices,” in Engineering in
Medicine and Biology Society (EMBC), 2010 Annual International
Conference of the IEEE, 2010, pp. 5189–5192.

[26] A. King, S. Procter, D. Andresen, J. Hatcliff, S. Warren, W. Spees,
R. Jetley, P. Jones, and S. Weininger, “An open test bed for medical de-
vice integration and coordination,” in Software Engineering - Companion
Volume, 2009. ICSE-Companion 2009. 31st International Conference on,
2009, pp. 141–151.

[27] P. Asare, D. Cong, S. G. Vattam, B. Kim, A. King, O. Sokolsky,
I. Lee, S. Lin, and M. Mullen-Fortino, “The Medical Device Dongle: an
Open-source Standards-based Platform for Interoperable Medical Device
Connectivity,” in Proceedings of the 2nd ACM SIGHIT symposium on
International health informatics, 2012, pp. 667–672.

[28] S. Dagtas, Y. Natchetoi, and H. Wu, “An integrated wireless sensing
and mobile processing architecture for assisted living and healthcare
applications,” in Proceedings of the 1st ACM SIGMOBILE international
workshop on Systems and networking support for healthcare and as-
sisted living environments. ACM, 2007, pp. 70–72.

[29] M. Eisenhauer, P. Rosengren, and P. Antolin, “Hydra: A development
platform for integrating wireless devices and sensors into ambient
intelligence systems,” in The Internet of Things, D. Giusto, A. Iera,
G. Morabito, and L. Atzori, Eds. Springer New York, 2010, pp. 367–
373. [Online]. Available: http://dx.doi.org/10.1007/978-1-4419-1674-7
36

2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom)

246

