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Abstract—Context Management Framework (CMF) for Ubiq-
uitous Health (U-Health) Systems should be able to continu-
ously gather raw data from observed entities to characterize
their current situation (context). However, the death of battery-
dependent sensors reduce their ability for detecting the context,
which directly affects the availability of context-aware u-health
services. This paper proposes the use of Quality of Context
(QoC) integrated with a data reduction approach to minimize
the amount of sensed raw data sent to CMF, reducing the energy
consumption and maximizing the lifetime of sensor-based CMF.
The proposed approach rebuilds the gathered raw data taking
into account QoC requirements, avoiding the loss of precision
(QoC Indicator precision) and timeliness (QoC Indicator up-to-
dateness), which has been integrated into our Context Manage-
ment Framework (CxtMF). Experimental results demonstrate the
effectiveness of our approach by reducing the amount of packets
sent over network to 3% for the ECG monitoring service.

Index Terms—U-Health systems, Data Reduction, Context
Management, Context-awareness, Quality of Context.

I. INTRODUCTION

Context Management Framework (CMF) in U-Health Sys-
tems is in charge of gathering, processing, and providing
context information [16], [15] for adapting context-aware
applications, such as health [12], [13], [14], [16] Ubiquitous
health monitoring services are sensor-based platforms able
to check vital signal of people, at anytime and anywhere
[12], [13], [14], [15]. For example, sensor-rich biological
monitoring systems can be equipped with eletrocardiogram
(ECG) sensor for continuously tracking CardioVascular Dis-
eases (CVD). Usually, ECG gathered data is locally stored
on the ubiquitous monitoring platform for later analysis, or it
is continuously sent for server-side analyzer application built
on a CMF. In fact, there is a huge demand for continuous
ECG monitoring systems, requiring real-time response, high
availability and reliability.

Although there are several proposals of CMF [5], [6], [4],
[9], [8], [7], [16], they do not take into account the need
of maximizing the availability of the sensor-rich monitoring
platform in order to reduce the probability of unavailability of
context-aware u-health services. In this scenario, it is a promis-
ing idea to integrate data reduction approaches [11] with
CMF for saving energy. However, these approaches should

take into account quality requirements (QoC1) [16], [17],
[15] associated with context information generated during the
compression of gathered data, such as precision and up-to-
dateness (QoC indicators).

The focus of this work is enhancing the lifetime of sensor-
rich CMF by saving communication data energy, taking into
account QoC requirements. We propose the use of QoC
Indicator for improving a predictive data reduction mechanism
(Adaptive Simple Linear Regression - ASLR) to extend the
lifetime of sensor-rich CMF, preserving the quality of gathered
context data. The proposed ASLR approach compresses data
gathered from monitoring platform before sending it to a CMF.
The monitoring infrastructure used by our U-health systems is
based on the Arduino Platform2, which was integrated with our
Context Management Framework (CxtMF) for constructing
context-aware u-health services, such as continuous ECG
monitoring services (for more information about the CxtMF,
please refers to [16], [15]).

The quality-aware ASLR uses a prediction mechanism
based on the history of raw data gathered by sensors. By using
the proposed ASLR approach, the monitoring systems should
produce coefficients (parameters) that models the readings
set from the samples window. Thus, instead of send all
gathered samples, the monitoring system send to the CxtMF
only the coefficients that represents the line, i.e., the set that
represents the reading [18]. The production of the coefficients
is controlled by the error between the real and estimated value,
as well as the max size of reading window, i.e., respecting
both QoC threshold: precision and up-to-dateness. The pro-
posed data reduction approach can adjust the samples window
used on the model, respecting the max size defined by the
up-to-dateness threshold. Based on the received coefficients
(models), the CxtMF is able to reconstruct the sample set of
gathered data. The quality of gathered data is enhanced by
using Pearson’s Coefficient (correlation rate) in the proposed
ASLR approach.

The reminder of the paper is organized as follows: Section 2

1Quality of Context
2http://www.libelium.com/130220224710/

2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom)

978-1-4799-6644-8/14/$31.00 ©2014 IEEE 259



addresses related work about data reduction mechanisms. Sec-
tion 3 gives an overview on the case study of our experiments
(continuous ECG monitoring services) and section 4 presents
the proposed data reduction approach. Section 5 describes
the experimental results and, finally, section 6 addresses the
discussion and conclusion of this work.

II. RELATED WORK

Data Reduction for Energy Saving (DRES) is widely used in
Wireless Sensor Networks (WSN) for decreasing the transmis-
sion rate of sensors on the network. The sensor node avoids
the sending of gathered readings as it can be recovered at
the sink node by means the raw data history. The scientific
community has proposed mechanisms that seek to reduce the
data transmission of sensors [22], [24], [23], [25], [26], [27],
[24], [28], as well as few survey [11], [10] describes the
characteristics of such data reduction mechanism.

Prediction of sensor data is often applied to DRES, since
it allows that only the data model is sent to the sink node
to be carried out later data recovery [24], [27], [28], [18].
The location where the generation of the data model is made
depends on each approach.

Some authors [24] argue that data modeling should be done
by the sink node (e.g., CMF) and the data model must be
forwarded to source nodes to performs data recovery. The
source node checks if data model still holds, i.e., if it is within
a previously established threshold. Otherwise, it alerts the sink
node to recalculate a new model. However, Carvalho et al. [18]
recommend that data modeling should be done by source node
and sent to the sink node. That approach enables the sensor
node make decisions instantly, regardless of the transmission
delay of the model.

The mechanism adopted by these approaches can be a
simple prediction technique based on statistical, or a more
complex technique, based on time series. Although the sta-
tistical mechanisms are less robust in terms of accuracy, they
can get good results and may be applied to DRES.

In fact, sensor devices have certain peculiarities when are
embedded in monitoring platforms. They should have a long
lifetime, spending a minimum of energy from the batteries.
Therefore, sensors should be in sleep mode when they are not
gathering data. Moreover, the processing time of the applied
data reduction technique should be minimized, as well as the
activity of sensor device and monitoring platform. Thus, the
data reduction approach can not store too much data for a long
time, which will require longer time of activity of monitoring
platform, expending more energy.

From this discussion, we can conclude that our data re-
duction approach meets the requirements of such limited
embedded systems. The time taken by our approach in real
experiments have been less than the QoC parameter lifeTime
for ECG monitoring. In fact, the QoCP lifeTime of each infor-
mation is smaller than the cycle time of one sensor reading,
i.e., the sum of sensor activation time, the processing time and
sending time of the data model, until the sensor enter in the
sleep mode again. Therefore, more complex approaches may

not meet those requirements. Moreover, any of the existing
work takes into account quality requirements of context-aware
services while reducing data (i.e., QoC precision and up-to-
dateness).

The proposed quality-aware data reduction approach focuses
on statistical mechanisms. Results obtained from experiments
indicate that we can apply the adjustment mechanism for
dynamically change the window size, making the proposal
adaptive to the correlation of the readings, with low loss of
quality for discrete (e.g., temperature) and waveform (e.g.,
ECG) data.

III. CASE STUDY

In order to perform our experiments, we developed a
case study for u-health systems: continuous ECG monitoring
service for people with CardioVascular Diseases (CVD). This
service was built on the CxtMF illustred in Figure 1.

CxtMF fully support QoC control, including the collection
(gathering), measurement, interpretation, access, and delivery
of QoC-enriched context information, as well as other func-
tionalities to efficiently handle QoC (e.g., to delivery context
with a minimum QoC).

In order to implement QoC control, CxtMF performs the
following operations: 1) QoC gathering: sensing/profiling QoC
parameters from the environment for evaluating QoC indi-
cator (QoCI), such as QoCI precision and up-to-dateness;
2) QoC Classifying: representing QoC parameters and QoC
indicators in an format understandable by ubiquitous systems;
3) QoC Evaluating: assessment of QoC indicators by using
QoC measuring methods applied on QoC parameters; 4) QoC
verifying: verifying the values of QoC indicators associated
with context used by context-dependent decisions. We can
note that QoC should be linked to context data delivered
to ubiquitous systems consuming that information. Thus, it
should be included in context models and handled by context
management frameworks.

CxtMF was defined to support context-aware u-health ser-
vices, such as ECG monitoring services [16], [15]. The main
idea behind the CxtMF is the quality-aware management of
context information to be used by context-dependent services
and applications (e.g., remote monitoring systems, self moni-
toring, emergency services). This means, taking into account
the quality of context information in all steps of context
management operations.

The main entities of CxtMF are Context Providers (CP)
and Context Information Service (CIS) [15]. CP is an agent
that sends CxtObj (an instance of a given context information)
associated with some QoC parameters (QoCP) to the Context
Information Service (CIS) belonging to the same domain, e.g.,
ECG signal. Each CP (e.g., Arduino platform) is registered
in a CIS, which is composed by various modules in charge
of context management functions: i) Context Collector (CC),
Context Reasoner (CR), Context Obfuscator (CO), QoC Eval-
uator (QoCE), and Context View Provider (CVP).

In the CxtMF, context information, QoC, and QoC re-
quirements are represented by OWL-DL ontologies. We have
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Fig. 1. Context Management Framework (CxtMF)[16], [15].

defined three ontologies to model Context, QoC, QoC require-
ments, which provides the semantic interoperability between
all management layers in the CxtFM. For more details about
this architecture, see the work described in [16], [15].

The value of each QoC indicators (e.g., QoCI up-to-dateness
and precision) are defined within the range between 0 and
1, which means that the closer is the value to 1, more the
verified context information is in accordance with the quality
requirement. QoCI up-to-dateness describes how current the
context information is for an entity at a given time, for making
context-based decisions. QoCI precision describes how exactly
the provided context information mirrors the reality.

For example, if the value of QoCI precision associated with
a context information is 1, it means that context information
has the highest level of precision that the sensing platform
is able to provide it. In the case of the QoCI up-to-dateness,
the value 1 means that the context information is extremely
current and valid for use by a context-sensitive service. It
is important to note that for measuring the QoC indicator
we need to define the QoC parameter lifeTime. LifeTime is
the period of time after which context information becomes
obsolete and it is necessary to take its value again. Each
context information has a lifeTime, which is related with
each tuple (sensor, application/service). For more information
about how to measure the QoC indicator precision and up-to-
dateness, please refer to [16], [15].

We are using these two QoC indicator to improve our ALSR
algorithm. In the following, we describe the characteristics of
each monitoring service to further present experiment results.

A. ECG monitoring overview

ECG is an exam which records electrical pulses generated
during the cardiac activity and, thus, aids the diagnosis of heart
and other diseases, not only related to the circulatory system
[21]. Among the main diagnoses, can be highlighted diseases3:
arrhythmias, overload, areas electrically inactive, neurological
and congenital diseases.

3http://www.heart.org/

Fig. 2. Normal electrocardiographic wave.

It is responsability of surgeons, general practitioners and
emergency care physicians, the interpretation of ECG signals.
The heart activity produces currents that radiate through the
surrounding tissue to the skin. ECG electrodes are attached to
the skin to capture that heart’s electrical activity (electrical
currents). The equipment converts that current into waves
which represents the heart depolarization and repolarization
cycle.

A ECG Complex represents the electrical events occurring
in the cardiac cycle and consists of five waves denominated
by the letters P, Q, R, S and T. The letters Q, R and S are
considered a unit, namely, the QRS Complex.

P wave is the first component of a normal ECG (Figure 2)
and represents the atrial depolarization. A normal P wave has
the following characteristics:

• Location: Precedes the QRS complex;
• Width: 2 to 3 mm in height;
• Duration: 0.06 to 0.12 seconds;
• Configuration: Generally rounded up.
PR interval is from the beginning of the P wave to the

beginning of the QRS complex and takes between 0.12 to
0.20 seconds. QRS complex comes shortly after the P wave
and represents the depolarization of the ventricles. A normal
QRS complex has the following configuration:

• Location: After the PR interval;
• Width: 5 to 30 mm in height;
• Duration: 0.06 to 0.10 seconds or half the PR interval;
• Configuration: Q waves (deflection below the baseline),

R (first positive deflection following the Q wave) and S
(first negative deflection after the R wave).

ST segment, also known as J point represents the end of
ventricular depolarization and the beginning of ventricular
repolarization. This segment under normal has the following
characteristics:

• Location: extends from the S wave to the beginning of
the P wave follows;

• Deflection: Generally isoelectric (neither positive nor
negative);

• Amplitude: Can range from -0.5 to 1 mm.
T wave represents ventricular repolarization. It has the

following characteristics:
• Location: Follows the S wave;
• Width: 0.5 to 10 mm;
• Setup: Typically rounded and smooth;
• Deflection: Generally up, but may appear reversed in

some derivations.
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Fig. 3. ECG monitoring service built on the Arduino platform.

QT interval is from the beginning of the QRS complex to
the end of T wave. This range varies with age, sex and heart
rate. Usually takes from 0.36 to 0.44 seconds. From this value,
we define the QoC parameter lifeTime for ECG data as 0.45s.
Heart rate is the number of times that the complete cycle (the
start of a P wave to the beginning of another wave P) occurs
per minute. The reference values for adults is 60-100 bpm
(beats per minute) and the heart rate is the distance between R
wave peaks from two successive QRS complexes. If all those
distances are in the same size range, the rhythm is normal.
Furthermore, the electrocardiographic wave is diagnosed as
normal if it meets the following five characteristics:

• Regular rhythm;
• Normal frequency;
• A P wave for every QRS complex and all the P waves

and QRS complexes similar in size and shape;
• PR and QT intervals normal;
• T waves up and rounded.
Figure 3 illustrates the Arduino platform used for sensing

ECG signal. Our data reduction mechanism implemented on
the CxtMF (Context Collector - CC) receives the data from the
ECG signal and checks the correlation between the readings.
If it does not reaches a error threshold, the parameters are
computed, which represent those data (modeling), and forward
to the CxtMF only the coefficients of the linear equations.
Therefore, the original ECG signals are reconstructed at the
CxtMF, prior to being provide for context-aware services.
We note in the experiments that ALRS approach performs
prediction for generating data models for recovering signals
maintaining the complex characteristics of ECG signal, con-
taining all five waves.

IV. USING QOC FOR IMPROVING ENERGY-EFICIENT
MONITORING APPROACH

This section outlines the proposed approach of DRES based
on Adaptive Simple Linear Regression (ASLR), which mini-
mizes the error generated by Pearson’s Coefficient (correlation
rate). Instead of calculate the data model with sample size with
a fixed size, the ASLR approximates the predicted values to
the actual values by adjusting the window samples guided by
the Pearson’s Coefficient.

A. Adaptive Simple Linear Regression Based on Pearson’s
Coefficient

Simple Linear Regression (SLR) models the relationship
between a scalar dependent variable Y and one explanatory or
independent variable named X . SLR is based on least squares
[Equations ( 1) and ( 2)].

Each sensor node calculates α and β by using as the
independent variable a counter that represents the time. The
monitored physical variable is the dependent variable to
be predicted (temperature or ECG signals). In our adaptive
scheme, the sensor node adjust the samples window based on
correlation coefficient. In that case, α and β are computed from
samples based on Pearson’s Coefficient, according to Equation
( 3). That coefficient shows the level of intensity between two
variables and the direction from that correlation (positive or
negative). The Value of the coefficient should be in the range
[−1,+1].

Value of coefficient can be played as follows: if value
is +1, then there is a perfect positive correlation between
the two variables; if value is −1, then there is a perfect
negative correlation between two variables. If the value is 0
then there is not correlation or correlation is non-linear. In
our case, the better results on performance evaluation from
prediction (low error) were got when Pearson’s Coefficient
ranged between [0.6 − 1]. In our proposal, the Pearson’s
Coefficient is equivalent to the QoCI precision, i.e., the context
information will be acceptable if the value is between the range
of [0.6− 1].

• Step #1: The sensor node takes one measurement from the
interested variable, for instance, the ECG signals (in this
case, the dependent variable), and stores the measured
value in a internal buffer;

• Step #2: The Pearson coefficient is calculated, based on
the values stored in the buffer;

• Step #3: The Pearson coefficient is evaluated and the
QoCI up-to-dateness is verified (considering the lifeTime
of 0.45s for ECG data). If the value of the coefficient
and the QoCI up-to-dateness is equal or bigger than a
predefined threshold (for example, 0.6 for QoCI precision
and 0.3 for QoCI up-to-dateness), then the values in the
buffer has a stronger correlation and the algorithm goes
to Step #7; otherwise, it goes to Step #4;

• Step #4: The Pearson coefficient is below the predefined
threshold which means that the last value measured was
the responsible to the decay of the value. In this case,
the algorithm calculates α and β coefficients of the linear
regression based on the values stored in buffer, without
the last value measured. The X variable is represented
by a counter, which represents how many measurements
were taken. α and β coefficients and the counter are sent
to the sink node (i.e., CxtMF);

• Step #5: The buffer is cleared, and the last value measured
is stored in it;

• Step #6: The α and β coefficients are transmitted to the
CxtMF;

2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom)

262



β =

∑n
i=1

(
xi −X

) (
yi − Y

)∑n
i=1

(
xi −X

)2 (1)

α = Y − βX (2)

where β represents a constant that is multiplied by the value of each independent variable. α is a constant added to the previous
multiplication, resulting in the predicted value. X and Y are two one-dimensional vectors, which respectively represent samples
window of the independent and dependent variables, with X = x1, x2, ..., xi and Y = y1, y2, ..., yi, where i = 1, ..., n and n
is the number of samples. X and Y represent the average of samples of each vector.

r =
n
∑n

i=1 xiyi − (
∑n

i=1 xi)(
∑n

i=1 yi)√[
n
∑n

i=1 x
2 − (

∑n
i=1 xi)

2
] [
n
∑n

i=1 y
2 − (

∑n
i=1 yi)

2
] (3)

where r represents the relationship between two one-dimensional vectors X and Y , to be compared in terms of its correlation.
It contains samples window of two variables, X = x1, x2, ..., xi and Y = y1, y2, ..., yi, where i = 1, ..., n and n is the number
of samples (window size). X and Y represent the average of samples of each variable vector.

• Step #7: End of cycle; Go back to Step #1.

These seven steps are summarized in Algorithm presented in
Figure 4. Algorithm is used for predicting ECG signals by
applying DRES. The threshold is defined according to the
application requirements, which reflects in the performance
of the DRES. By increasing the threshold the accuracy will
increase together, but the algorithm generates more coefficients
α and β to be sent on the network. The challenge is to
define the best configuration for this tradeoff. It should still be
analyzed further, to ensure a better adjust of ASLR approach,
but experiments show satisfactory results.

Fig. 4. Algorithm for DRES based on Quality-Aware ASLR

V. EXPERIMENTAL RESULTS

In order to measure performance of our solution, we define
metrics such as amount of packets sent on network (psent) and
the error of prediction (eprediction). psent shows the energy
saved of sensor by reducing the communication. eprediction
computes the accuracy of prediction approach. Experiments
were conducted for both monitoring services, which will
discussed in the following.

We conducted experiment with 399 ECG signals, using
threshold = 0.95 (QoCI precision) and QoCP lifeTime 0.45s
(for measuring QoCI up-to-dateness). That amount of signals
corresponds to a complete cycle of the heart. A conven-
tional application of ECG gets psent = 399. Meanwhile,
our approach obtains psent = 13 (3%) and eprediction have
been 0.0009, saving about 97% of the packets. These results
are justified because ECG signals are modeled in 13 linear
regression functions, which its parameters (coefficients α and
β) must be sent to the CxtMF, instead of the 399 readings.

Fig. 5. The quality-aware ASLR algorithm recovers the gathered ECG signals.

Figure 5 shows prediction results from ECG monitoring
service using the Quality-aware ASLR algorithm and the raw
data. The recovered ECG signal by the CxtMF is well similar
with the original raw signals gathered by sensors, proving that
our approach is precise and effective. Note that the complexity
of the ECG signal is maintained even after applying the
DRES, since we are using linear regression approximation.
The adjustment has been done in the samples window in an
adaptive way that enables the creation of multiple data models
into a threshold error.

Experimental results show that our approach reduces the
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amount of packets sent (psent) on the network. As our ex-
periments take into account only the useful application data
(payload) of packets, the energy spent for sending a packet
is 0.48375 mJ, neglecting the overhead and signaling from
network layer. Considering the psent from ECG service on
the experiments, we obtained the following results: without
applying any data reduction mechanism, the energy consump-
tion of daily usage was 25,267.56J (i.e., 399 readings/cycle
X 0.48375 X 130,909 cycles, every 0.66s). After applying
our data reduction approach, the energy consumption for this
service was 823.25J (i.e., 13 coefficients/cycle X 0.48375 X
130,909 cycles, every 0.66s).

VI. DISCUSSION AND CONCLUSIONS

Context Management for U-Health Systems should be
quality-aware and energy efficient in order to maximize the
lifetime of monitoring platform and improve the availabil-
ity and reliability of context-aware u-health services, such
continuous ECG services. This paper proposes a quality-
aware data reduction approach that was integrated with the
CxtMF [16], [15], [17] in order to gather raw data and
saving energy of sensors, increasing its lifetime. The quality-
aware ASLR approach uses prediction of readings gathered
based on SLR, which performs approximation by generating
values by a straight line (linear approximation). We applied
an adaptive mechanism on the window samples that takes
into account the QoC indicator precision and up-to-dateness
for defining the window size. With the quality-aware ASLR
proposed in this work, we decreased the noise driven by the
correlation coefficient. As future work, we plan to investigate
an efficient data reduction solution based on wavelet 4 for
reducing waveform signal, preserving the quality of data.
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