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Abstract—In this work we describe pyEHR, a new toolkit for
building scalable clinical/phenotypic data management systems
for biomedical research applications. The toolkit uses openEHR
formalisms to guarantee the decoupling of clinical data descrip-
tions from implementation details, and NoSQL technologies, or
next-generation SQL ones, to provide scalable storage back-ends.

I. INTRODUCTION

Next-generation sequencing and other high throughput tech-
nologies are rapidly transforming life sciences [1], [2]. Their
use is now routine in biology labs and is very quickly
expanding to clinical research [3] and applications [4]. This
transformation has led to an abrupt transition towards a data-
intensive domain where sophisticated computational analysis
is essential to extract biologically relevant information from
the raw data [5]. Consequently, a great effort has been made
to develop scalable computational tools able to cope with the
current data load and the foreseen, much larger, one that is ex-
pected to arise due to the increasing use of these technologies
in large-scale clinical studies. However, since most biomedical
research is focused on finding correlations between measured
biomolecular signals and observed phenotypic traits, the de-
velopment of novel algorithms and data handling techniques
needs to be complemented by robust, scalable, computable,
uniform and implementation-independent descriptions of phe-
notypic data [3]. Here, scalability is meant both with respect
to the sheer size of the data and to the evolution of their
structure and type. The latter issue is typical of longitudinal
biomedical studies, where multiple, heterogeneous data types
can become necessary within the time span of the project.
Ideally, common solutions based on ad-hoc database tables
should be replaced by computable formalisms for the meta-
description of structured clinical/phenotypic records. Such
systems should easily support operations such as aggregations
on sophisticated profile descriptions across all the available
records, as well as in-depth navigation of all data related to a
specific study participant.

In this paper we describe our ongoing work on pyEHR,
a toolkit for the creation of clinical/phenotypic data-
management systems for biomedical research that are scalable
with respect to the evolution and heterogeneity of clinical data
structures and to data volumes compatible with regional-scale
studies. We use openEHR [6] — a computable formalism
for the meta-description of structured clinical records —

as a systematic approach for handling data heterogeneity.
Scalability with respect to dataset size, on the other hand, is
achieved through a multi-tier architecture with interfaces for
multiple data storage systems. Currently, we provide drivers
for MongoDB [7] and ElasticSearch [8].

Our motivation — as well as our use cases — for the
development of pyEHR comes from our direct experience in
providing computational support to a wide range of biomedical
research projects, including large-scale genome sequencing
studies [9]–[11] and safety assessments of novel gene therapy
approaches [12].

The remainder of the paper is structured as follows. Sec-
tion II provides a brief overview of openEHR, while section III
delineates pyEHR’s architecture. Section IV illustrates related
work on open source openEHR implementations. Lastly, sec-
tion V is dedicated to the conclusions.

II. COMPUTABLE FORMALISMS FOR THE
META-DESCRIPTION OF STRUCTURED CLINICAL RECORDS

There is a large body of research and practical experience in
computable formalisms for the meta-description of structured
clinical records, HL7v3 RIM and CEN 13606/openEHR being
two leading examples. openEHR uses the Archetype Definition
Language (ADL) to express constraint-based clinical models,
or archetypes, and the Archetype Query Language (AQL) to
search and retrieve clinical data from archetype-based EHRs.
Both languages are designed to express clinical facts and
the queries upon them at the semantic level (captured within
the archetype description) rather than at the data instance
level, and are completely neutral with respect to system
implementation and environment. This computability at the
semantic level makes it possible, in principle, to guarantee
the development of clinical health systems that are robust and
future-proof, since their concrete implementation maps to their
formal description.

A considerable challenge in health informatics is the har-
monization of competing clinical perspectives across multiple
clinical sub-domains. For instance, a simple “Family History”
archetype, developed for use in general family practice, may
lack key attributes expected in more specialist settings, where a
full family “pedigree” is required. Nevertheless, both must in-
teract at some level, and therefore be based on a shared model.
The “maximal, inclusive” dataset paradigm used in openEHR
archetypes addresses this difficulty by including all attributes
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required to model a well-bounded concept such as “Family
History”. A further constraints layer — openEHR templates —
is then applied to define an agreed minimal standard applicable
to a specific care setting, or shared-care environment. This
template layer also provides a static, computable formalism
from which traditional software outputs can be derived, such
as program code and GUI generation, message schema or data
dictionary definitions. Although the formalism is terminology-
agnostic, external reference terminologies such as ICD-x,
LOINC and SNOMED-CT generally play a significant role
in the construction of archetype-based semantic models. How-
ever, much work remains to be done to effectively employ such
terminologies, particularly in the context of terminologies such
as SNOMED-CT that rely heavily on post-coordination.

III. ARCHITECTURE

pyEHR consists of three main modules: the Data Man-
agement System (Sec. III-A), the Information Management
System (Sec. III-B) and the Query Engine (Sec. III-C); the
relationships between these modules and the databases are
shown in Figure 1. The software has been written mostly in
Python, with services exported through a REST architecture,
similarly to the approach adopted to develop the LiU EEE
system [13]; in our case, however, particular attention has
been devoted to ensuring a degree of flexibility capable of
satisfying the scalability requirements described in the previ-
ous sections. Specifically, the Data Management System and
the Query Engine have been designed to support multiple data
management technologies via pluggable drivers, thus making
it straightforward to develop extensions for the framework, in
order to to achieve the goals of scalability (vertical, horizontal
or both) depending on what are the needs of the system that
must be implemented.
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Fig. 1. pyEHR architecture: modules and their interactions

A. Data Management System

The Data Management System (DMS) handles data storage
and retrieval. Clinical data records, even when expressed
according to a standard like openEHR, can be represented
in several different formats. Entity-Attribute-Value [14], for
instance, is a good choice for table-based storage systems
(e.g., SQL databases, key-value NoSQL databases, HDF5
files); other popular choices include XML [15] and document-
oriented databases [16].

To avoid tying our system to any specific storage technol-
ogy, we split this component into two layers: a service-oriented
API for managing clinical data and a multi-driver interface that
supports multiple data back-ends (Fig. 2).
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Fig. 2. Architecture of the Data Management System.

The services layer provides the required abstraction for
managing data irrespective of the underlying driver. Both
clinical and patient records are wrapped into specific objects
that all exposed callbacks expect to handle. Clinical records, in
particular, are represented as documents in the ADL format,
with structures that match those described in the openEHR
archetypes. Wrapper objects are converted to and from JSON
as needed, so that they can be handled by the REST API.

The drivers layer has been designed to ensure transparent
and uniform access to multiple storage technologies, such as
the NoSQL-oriented solution proposed by Atzeni et al. [17];
this is achieved by defining a common interface that all drivers
must implement and a factory class that performs driver initial-
ization based upon a given configuration. Currently we support
two NoSQL database management systems: MongoDB [7]
and ElasticSearch [8]. Both systems, having been designed
to handle hierarchical sets of key-value items, are easily
adaptable to the document-like structure of openEHR data.

Each driver has the following responsibilities:

• manage connections and disconnections to the database;
• provide full CRUD (create, read, update, delete) support;
• handle queries (Sec. III-C);

2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom)

301



• encode/decode data to/from the wrapper objects defined
in the services layer, automatically converting any special
characters;

• create data structures such as SQL tables or folders;
• split or join records as required by the underlying storage

system.

B. Information Management System

The Information Management System (IMS) provides
openEHR-related features. The DMS, on the other hand, is
designed to be agnostic with respect to openEHR: clinical
records are stored in an ADL-like format, but no semantic
or syntactic check is performed at this level. The IMS acts
as an independent framework that exposes a set of services,
which implement features like data and query validation. This
component is currently under development; Fig. 3 shows the
intended architecture.
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Fig. 3. Architecture of the Information Management System.

The framework’s core component is the Archetypes Repos-
itory, where normalized version of the archetypes are stored
in a graph-oriented database, implemented using Neo4j [18];
inclusion relationships between archetypes are represented
by graph edges. Access to the repository is mediated by
the Repository feeder, which parses ADL documents using
the official openEHR Java libraries [19]. In addition, the
framework provides the following services:

Data Validation Service: performs semantic and syntactic
validation of clinical records to be stored in the repository.

AQL Query Validation Service: validates AQL queries,
ensuring that any specified paths are correct. This service also
makes use of information stored within the graph database to
resolve all possible paths that lead to the retrieval of a given
record (this ambiguity is due to the fact that an archetype can
be saved as stand-alone or as a member of another archetype).

Data Templates Provider: provides empty document tem-
plates that can be filled by external systems to populate the
DMS (provided that the supplied records pass data validation).
This component also provides descriptions that can be used
by DMS drivers to build appropriate structures for new data

types or by external applications to automatically generate
components such as Graphical User Interfaces [20].

Terminologies Translator: maps openEHR paths to labels
and descriptions in one of the languages defined in the
ontology section of the Archetype’s ADL. This component
allows to present information in a human-readable format.

C. Query Engine

Effective use of the openEHR formalism requires a query
engine that can leverage its archetype-based model to retrieve
clinical data from EHRs. pyEHR supports the Archetype
Query Language (AQL), formerly known as EHR query lan-
guage (EQL) [21]. Its main advantage is that it allows to
express queries at the archetype level (i.e., the semantic level),
rather than at the data instance level, thus allowing to share
queries across system or enterprise boundaries.

The main advantage of the AQL is that it allows to express
the queries at the archetype level, i.e. semantic level, other than
at the data instance level. This is the key in achieving sharing
queries across system boundaries or enterprise boundaries. Its
main features are:

• the utilization of openEHR archetype path syntax in the
query expression;

• the utilization of containment mechanisms to indicate the
data hierarchy;

• the utilization of ADL-like operator syntax, such as
matches, exists, in, negation;

• a neutral expression syntax. AQL does not have any
dependencies on the underlying RM (Reference Model)
of the archetypes. It is neutral to system implementation
and environment;

• the support of queries with logical time-based data roll-
back.

The Query Engine consists of the following components:
• the Query Manager Service;
• the Parser;
• the DB Drivers (supporting multiple DBs);
• the Command Line Interface.
The Query Manager Service is the main component; it is

responsible for instantiating the Parser and the DB Drivers,
coordinating their activities and providing an interface that
allows access by external process.

The Parser converts an AQL query string into an object
model instance that allows to access the query’s structure and
data via API calls; this instance is used by other components
to perform matches into the database.

A DB Driver (see Sec. III-A) act as an interface to the under-
lying storage system. Its main responsibility is to translate the
object model instance provided by the parser into the specific
format required by the storage system, execute the query and
return the results as an AQL Results Set — a simple interface
that represents query results as sets of columns and rows.

The Command Line Interface, implemented in Python,
provides a text-based tool for executing queries and displaying
the corresponding results.
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The query processing workflow is structured as follows:

1) the Query Manager Service receives a query string;
2) the Parser generates an object model instance of the

query, or Query Object Model (QOM);
3) the DB Driver translates the QOM into a language

supported by the underlying DB;
4) the DB Driver converts the result to an AQL Result Set;
5) the Query Manager Service returns the result to the user.

IV. RELATED WORK

The development of a comprehensive data infrastructure for
the management and analysis of Electronic Health Records
based upon the openEHR specifications has been pursued
extensively in different contexts and with various goals. Here
we provide a short overview of related work on this subject;
for a more detailed discussion, see [22].

In [13], Sundvall et al. describe LiU EEE, an educational
EHR environment designed to help newcomers and developers
experiment with and learn about the EHR model. Liu EEE
uses an HTTP-based interface to provide a comprehensive set
of features for handling EHR records described as openEHR
archetypes and templates, as well as retrieving data using AQL
queries. Although the system does provide a rich-featured
openEHR-based environment, its intended usage is for ed-
ucational purpose rather than for large-scale data analysis;
in particular, data records are stored as XML documents, an
approach that does not scale well to population-wide queries.

ResearchEHR [23] [24], formerly known as LinkEHR, is a
platform for the development and application of semantic tech-
nologies to the management of existing EHRs. The system,
which allows to “describe the semantics of legacy health data
in a manner independent of the particular data organization
in the underlying data repositories”, provides an application
builder to easily create and deploy web applications starting
from known archetypes, and an integration framework to fetch
data from legacy EHR systems and map them to archetypes.
ResearchEHR is mainly intended for health professionals, and
its focus is on semantic interoperability; in particular, it does
not offer research-oriented features such as population-wide
queries. Moreover, interaction with the underlying database is
not mediated by a sophisticated query service as described
in Sec. III-C; rather, interrogations are driven directly by the
graphical user interface.

Domain-specific systems that use openEHR are described
in [25], which shows a solution for electronic patient records
in neonatology, and in [26], which provides guidelines for
chemotherapy. Both works show how to apply an openEHR
approach to develop a system where patient data can be struc-
tured, stored, managed and exchanged in a safe and reliable
way between different healthcare providers, and how both
existing and new archetypes can be used for data description;
however, they do not describe a full working system.

Several solutions have been proposed to develop EHR
systems for whole countries, such as Romania [27] [28],
Indonesia [29] and Brazil [30] [31].

V. CONCLUSIONS AND FUTURE WORK

We have presented pyEHR, a new toolkit designed to
simplify the creation of clinical/phenotypic data management
systems for biomedical research. pyEHR is a modular envi-
ronment that consists of three main components: the Infor-
mation Management System and the Query Engine provide
functionalities to store, retrieve and query data modeled using
the openEHR formalism (ADL and AQL), while the Data
Management System offers a flexible storage solution that
employs a multi-driver layer to select among different scalable
storage back-ends.

The current implementation of PyEHR includes: the Data
Management System, with storage drivers for MongoDB and
ElasticSearch; the Query Engine and the Information Manage-
ment System, albeit without the ADL validation capability.

PyEHR is distributed as open source and is available on
GitHub at https://github.com/crs4/pyEHR
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