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Abstract—In this paper we focus in health care knowledge,
specified by hybrid formulas, representing flows of medical
assistance in the care delivery process in a hospital. As in
standard knowledgebases inconsistencies may arise. In fact,
Medical Informatics is one field where the ability to reason with
inconsistent information is crucial. Patients can receive different,
and moreover contradictory, diagnoses from different physicians,
and the same can happen with medical treatments: they can
exhibit contradictory symptoms.

We introduce a paraconsistent version of multimodal hybrid
logic to help with this medical issue, specially through the
diagnosis.
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I. INTRODUCTION

Management of knowledge and information is a key issue
in all infra-structures underlying modern information-centric
societies. Hence, the study and development of flexible logical
systems able to handle heterogeneous and complex data has
become more and more relevant for the last decades, resorting
to interdisciplinary research in linguistics, computer science,
mathematics and even philosophy. For example, to achieve
a successful decision-support and knowledge management
approach to medical representation (for some examples see
[12]).

Data collection introduces very often inconsistencies. Be-
ing a common fact rather than a queer anomaly, inconsistencies
have to be suitably addressed. In particular, one needs to
handle data exhibiting, at the same time, assertions of the
form q and ¬q, configuring local inconsistencies, but without
producing global inconsistency. This phenomenon appears
frequently in knowledge representation in the area of health
care, considering patient data, medical guidelines and the care
delivery process. Medical Informatics deals with health care
knowledge that represents the daily behavior of a patient in
the health system and an effective procedure to manage such
flow of information should be studied. Moreover, Medical
Informatics is one field where the ability to reason with
inconsistent information is crucial. Through the health care
processes in a hospital, patients can receive different, and
even contradictory, diagnoses from different physicians, and
the same can happen with medical treatments: they can exhibit
contradictory symptoms. Therefore, it is worth developing easy
mechanisms that offer a safe way to ‘live’ with inconsistency.
Such is the domain of paraconsistent reasoning — a natural
way to deal with inconsistencies allowing both affirmative and
negative sentences to be true or false, depending on the context.

Such logic should help in the prevention, diagnosis and therapy
of patients. More precisely, a paraconsistent logic is a kind
of non-classical logical system that violates the Principle of
Non-Contradiction ([6]) which states that from contradictory
premises any formula can be derived. Łukasiewicz was the first
to discuss the possibility of violating this ancient principle,
however he did not develop any logical system to formalize
his studies. His disciple, Stanisław Jaśkowski, was the one who
constructed the first system of propositional paraconsistent
logic ([10]). Afterwards, for the last sixty years, many philoso-
phers, logicians and mathematicians have become involved in
the area.

Modal logics ([2]) have been successfully used to model
state transition systems as well as to model flows of infor-
mation systems. Modal logics have interesting algorithmic
properties, and, moreover, can naturally be translated into
first-order logic which allows the use of efficient provers.
However, they lack the ability to explicitly refer to specific
states, or stages of interpretation, which, in a number of
cases, is a desirable feature. Hybrid logics [1], on the other
hand, overcome this limitation by introducing a new set of
propositional symbols, called nominals, each of them holding
only in a specific state — the state it names.

Several variants of paraconsistent logic have been studied,
often to meet different aims or target specific applications
([11]). Research has been driven not only by theoretical
interest, but also by genuine problems in different scientific
domains, namely Computer Science, Medicine and Robotics.
This paper proposes a new mathematical procedure to reason
about knowledge bases formalized in hybrid logic that may
contain inconsistencies arising from the way data was obtained.
A paraconsistent hybrid logic, following the work of Grant
and Hunter in [9], is presented in this paper. An important
result that makes this generalization possible is the existence of
Robinson diagrams in (global) hybrid logic. This implies that
hybrid models can be represented by a set of hybrid formulas.
In [4] we have already presented the mathematical foundations
of the single modality version of this logic. Here we go further
by providing the multimodal version needed for applications,
namely for the application to the case study of the health care
delivery process we developed in Section 4.

Outline of the paper.

Section 2 will introduce hybrid multimodal languages and
hybrid diagrams. In Section 3, we introduce Quasi-hybrid
logic over formulas in negation normal form to avoid double
negation. Then, in Section 4, we present an application of
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this logic in the medical informatics area and we also give
an illustrative case study.

II. HYBRID LOGICS

Hybrid logics ([1]) are a brand of modal logics that add
the possibility to describe transition structures and the ability
to refer to specific states. Hybrid logics were introduced by
Arthur Prior in the 50’s. If modal logics have been successfully
used for specifying reactive systems, the hybrid component
adds the possibility to refer to individual states and to reason
about the system’s local behaviour at each of them. A very
important feature that will be central in our approach is
the fact that multimodal hybrid logic can specify Robinson
Diagrams. Namely, @ip says that the proposition p is true
at the state named by i, while ¬@ip (logically equivalent to
@i¬p) denies this; @ij says that the states named by i and
j are identical, while ¬@ij (logically equivalent to ¬@i¬j)
states that they are distinct; finally, @i〈π〉j says that the state
named by j is a successor of the state named by i with the
modality π, and ¬@i〈π〉j (logically equivalent to @i[π]¬j)
denies this. Consequently, in hybrid logic we are able to
completely describe models. This way of looking at models as
sets of formulas will be used to measure the inconsistencies
in a model by conforming to the Quasi-classical case.

A. Multimodal Hybrid Logic.

Let L = 〈Prop,Nom,Mod〉 be a hybrid similarity type
where Prop is a set of propositional symbols, Nom is a set of
nominals and Mod is a set of modality labels. The well-formed
formulas over L, Form@(L), are defined by the following
grammar:

WFF := i | p | ⊥ | > | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | 〈π〉ϕ | [π]ϕ | @iϕ

Definition 1. A hybrid structure H over L is a tuple
(W, (Rπ)π∈Mod, N, V ). Here, W is a non-empty set called
domain whose elements are called states or worlds, and
(Rπ)π∈Mod is a family of binary relations such that Rπ ⊆
W × W for each π ∈ Mod, those relations are called
accessibility relations. N : Nom → W is a function called
hybrid nomination that assigns nominals to elements in W
such that for any nominal i, N(i) is the element of W named
by i. We call this element the denotation of i under N . V
is a hybrid valuation, which means that V is a function with
domain Prop and range Pow(W ) such that V (p) tells us at
which states (if any) each propositional symbol is true.

The satisfaction relation is a generalization of multimodal
satisfaction between a hybrid structure H, a state w ∈W a and
a hybrid formula defined by adding the following conditions
for nominals and satisfaction statements:

H, w |= i iff w = N(i);

H, w |= @iϕ iff H, w′ |= ϕ, where w′ = N(i).

If H, w |= ϕ we say that ϕ is satisfied in H at w. If ϕ is
satisfied at all states in a structure H, we write H |= ϕ.

For ∆ ⊆ Form@(L), we say that H is a model of ∆ iff
for all θ ∈ ∆,H |= θ.

B. Hybrid Diagrams.

In order to define the diagram of a hybrid structure we
have to define the concept of literal. For a hybrid similarity
type L = 〈Prop,Nom,Mod〉, we define:

Hybrid atoms over L: HAt(L) =
{@ip, @ij,@i〈π〉j | i, j ∈ Nom, p ∈ Prop, π ∈ Mod};

Hybrid literals over L: HLit(L) =
{@ip, @i¬p, @ij,@i¬j,@i〈π〉j, @i[π]¬j | i, j ∈ Nom, p ∈
Prop, π ∈ Mod}.

An important feature of hybrid logics is the fact that we can
specify Robinson diagrams. As in first-order logic, in order to
define the diagram of a hybrid structure, we expand the hybrid
similarity type L by adding new nominals for the elements of
the domain W . We write L(W ) for this new hybrid similarity
type; in other words, L(W ) = 〈Prop,Nom ∪W,Mod〉.

Given a hybrid structure H = (W, (Rπ)π∈Mod, N, V ) over
L, we denote by E(W ) the natural expansion of H to L(W )
by taking N the identity on the new symbols.

The diagram of a hybrid structure H over L (i.e., the
set of literals over L(W ) that are valid in H(W )) plays a
very important role in the syntactical representation of hybrid
models (see [4] for details).

III. PARACONSISTENCY IN MULTIMODAL HYBRID LOGIC

In this section we will study paraconsistency in multimodal
hybrid logic. We start by defining a Quasi-hybrid Multimodal
Logic. In [9], it is assumed that all formulas are in Prenex
Conjunctive Normal Form, but here, we will assume, without
loss of generality, that all formulas are in Negation Normal
Form. As in [9], we define a bistructure, the decoupled and
strong satisfaction and QH models as sets of quasi-hybrid liter-
als whose definition is to appear. We also present, as expected,
the paraconsistent diagram of a bistructure. The inconsistency
measure, the central goal of this paper is introduced at the end
of this section.

A. Quasi-hybrid Multimodal Logic.

In order to generalize the approach in [3] to the multimodal
hybrid case, we have to consider formulas in negation normal
form (i.e., formulas in which the negation symbol occurs
immediately before propositional symbols/nominals). There is
no loss of generality; actually, a simple adaptation on the proof
in [4] by considering multiple modalities can testify it.

Definition 2. The set of NNF formulas over L,
FormNNF(@)(L), is recursively defined as follows. For
p ∈ Prop, i ∈ Nom, π ∈ Mod,

- ⊥,>, p, i, ¬p, ¬i are in NNF;

- If ϕ, ψ are formulas in NNF, then ϕ∨ ψ, ϕ∧ ψ are in
NNF;

- If ϕ is in NNF and i ∈ Nom, then [π]ϕ, 〈π〉ϕ,@iϕ are
in NNF;

It can be shown that every formula ϕ ∈ Form@(L) is
logically equivalent to a formula ϕ∗ ∈ FormNNF(@)(L).
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Actually, the proof of this proposition is only slightly different
from the proof in [4], and through it a recursive procedure
that transforms a formula ϕ into its negation normal form can
be formulated. Therefore, without loss of generality, we will
assume that all formulas are in negation normal form.

Let θ be a formula in NNF and let ∼ be a complementation
operation such that ∼ θ = nnf(¬θ). The ∼ operator is not
part of the object hybrid similarity type but it makes some
definitions clearer.

In order to accommodate the inconsistencies in a model,
we have to consider two valuations for propositions: V +

and V −. A hybrid bistructure (or a paraconsistent hy-
brid model) is a tuple (W, (Rπ)π∈Mod, N, V

+, V −) where
(W, (Rπ)π∈Mod, N, V

+) and (W, (Rπ)π∈Mod, N, V
−) are hy-

brid structures. The map V + is the interpretation for positive
propositional symbols, and V − is the interpretation for the
negative ones.

Definition 3. For a hybrid bistructure E =
(W, (Rπ)π∈Mod, N, V

+, V −) we define a satisfiability
relation |=d called decoupled satisfaction at w ∈ W for
propositional symbols and nominals as follows:

- E,w |=d p iff w ∈ V +(p); - E,w |=d ¬p iff w ∈
V −(p);

- E,w |=d i iff w = N(i); - E,w |=d ¬i iff w 6= N(i).

Since we allow both a positive and a negative propositional
symbol to be satisfiable, we have decoupled, at the level of the
structure, the link between a formula and its complement. In
contrast, if a classical hybrid structure satisfies a propositional
symbol at some world, it is forced to do not satisfy its
complement at that world. This decoupling gives us the basis
for a semantic for paraconsistent reasoning.

The satisfiability relation |=s, called strong satisfaction, is
defined as in the hybrid case except for the atoms and for
disjunctions. For the atoms p,¬p, i,¬i it is defined as the
decoupled satisfaction and for the disjunction we have:

E,w |=s θ1 ∨ θ2 iff,
[E,w |=s θ1 or E,w |=s θ2] and [E,w |=s∼ θ1 ⇒ E,w |=s

θ2] and [E,w |=s∼ θ2 ⇒ E,w |=s θ1];

We define strong validity by E |=s θ iff for all w ∈
W,E,w |=s θ.

B. Quasi-hybrid Models.

Analogously to the definition in the multimodal hybrid case
of a model for a set ∆ of formulas, we say that E is a quasi-
hybrid model of ∆ iff for all θ ∈ ∆, E |=s θ.

To make it easier to follow, we will assume that N maps
nominals to themselves; hence W will always contain all the
nominals in L. This also means that all nominals are mapped
to distinct elements, i.e., N is an inclusion map. Hence, for
a given hybrid similarity type L = 〈Prop,Nom,Mod〉 and a
domain W of a bistructure we must have Nom ⊆W .

As we pointed out before, hybrid logic can specify Robin-
son diagrams. Following our assumption that N is injective, to
define diagrams we do not need the hybrid literals regarding

equality between nominals, i.e., @ij and @i¬j. Therefore, in
this context, we reformulate the notion of atom and literal.
Namely, for a hybrid similarity type L = 〈Prop,Nom,Mod〉,
we define:

Quasi − hybrid atoms over L: QHAt(L) =
{@ip, @i〈π〉j | i, j ∈ Nom, p ∈ Prop, π ∈ Mod};

Quasi − hybrid literals over L: QHLit(L) =
{@ip, @i¬p,@i〈π〉j, @i[π]¬j | i, j ∈ Nom, p ∈ Prop, π ∈
Mod}.

To build the paraconsistent diagram, we add new nominals
for the elements of W which are not named yet, and we
denote this expanded similarity type by L(W ), i.e., L(W ) =
〈Prop,W,Mod〉 (recall that Nom ⊆ W ). As in the standard
case, E(W ) denotes the natural expansion of the bistructure
E to the hybrid similarity type L(W ), by taking N the
identity for the new nominals. Moreover, we will assume that
Prop, Nom, Mod are finite sets for any hybrid similarity type
L = 〈Prop,Nom,Mod〉, as well as the domain W of any
bistructure.

The elementary paraconsistent diagram of E is the set of
quasi-hybrid literals over L(W ) that hold in E(W ), i.e.,

Pdiag(E) = {α ∈ QHLit(L(W )) | E(W ) |=s α}.

The paraconsistent diagram Pdiag(E) completely defines
the bistructure E in the sense that, fixing the domain W and
N being the identity, there is an unique model of Pdiag(E)
(over L(W )) with domain W and a hybrid nomination N ,
which is E(W ). Therefore, in the sequel, we will represent
a bistructure E = (W, (Rπ)π∈Mod, N, V

+, V −) by its (finite)
elementary diagram Pdiag(E). This syntactical representation
will play an important role throughout this paper.

Let L = 〈Prop,Nom,Mod〉 be a hybrid similarity type,
∆ ⊆ FormNNF(@)(L) and W be a finite set. We write
QH(L,∆,W ) for the set of representations (i.e., paraconsistent
diagrams) of hybrid bistructures that are models of ∆ with do-
main W . Recall that the domain and the hybrid similarity type
are considered to be finite. This implies that the bistructures
are finite and consequently the representations of QH models
are also finite. This fact is relevant in the next section when
discussing the measure of inconsistency in a model.

The syntactic representations of models will be denoted
by M, M1, etc. Let M be the representation of E with
domain W . For w ∈W , we write M, w |=s ϕ if E,w |=s ϕ.
Analogously we define M |=s ϕ by E |=s ϕ.

As we have already pointed out, we can represent bistruc-
tures by the quasi-hybrid literals that are true there. Therefore,
we will consider models to be representations of bistructures
and consequently, we will want to build models as sets of
quasi-hybrid literals.

Example 1. Let L = 〈{p}, {i}, {π}〉, W = {i} and
∆ = {@i[π]¬p,@i[π]p}. Two examples of QH models for
∆ with domain W = {i} are: M1 = {@i[π]¬i}; M2 =
{@i〈π〉i,@ip,@i¬p} (see Figure 1). �

Example 2. Let L = 〈{p, q}, {i, j}, {π, π′}〉,
W = {i, j}, and ∆ = {@i〈π〉j ∨ @j〈π′〉i,@i〈π〉(p ∨
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Fig. 1. The QH models M1 and M2.

q),@i[π
′]q,@i[π]¬j,@i¬q}. A QH model for ∆

with domain W = {i, j} is, for example: M =
{@i[π]¬j,@j〈π′〉i,@i〈π〉i,@iq,@i¬q,@j [π]¬i,@j [π]¬j,
@i[π

′]¬i,@i[π
′]¬j,@j [π

′]¬j} (see Figure 2). �

Fig. 2. The QH model M.

C. The Inconsistency Measure.

Now we will introduce a way to measure the inconsisten-
cies in a QH model. This measure is a ratio between 0 and
1 whose numerator is the number of inconsistencies in the
model, and whose denominator is the total possible number of
inconsistencies there.

To make the notation in the next definition simpler, let
us consider the set of inconsistency literals over L and W
as IL(L,W ) = {@ip | i ∈ W,p ∈ Prop}. For a QH
model M, Conflictbase(M) = {@ip ∈ IL(L,W ) | @ip ∈
M & @i¬p ∈ M}. The inconsistency measure comes in the
form:

Definition 4. The measure of inconsistency for a model M
in the context of a hybrid similarity type L and domain W is
given by the ModelInc function giving a value between 0 and
1 as follows:

ModelInc(M, L,W ) =
|Conflictbase(M)|
|IL(L,W )|

Example 3. Some examples over the use of the ModelInc
function:

• In Example 1, ModelInc(M1, L,W ) = 0 and
ModelInc(M2, L,W ) = 1.

• In Example 2, ModelInc(M, L,W ) =
1

4
�

IV. APPLICATIONS

Several variants of paraconsistent logic have been proposed
to answer different problems in specific applications. Research
has been driven not only by theoretical interest, but also
by genuine challenges in different scientific domains, namely
Computer Science, Medicine and Robotics (see for example
[7], [8]). In the medical practice, for example, consulting

two or more physicians may lead to (partially) contradic-
tory diagnoses, none of them to be dismissed. In Physics,
paraconsistent logic was used to deal with some aspects of
quantum mechanics. In Computer Science, subdomains like
requirements engineering, artificial intelligence and automated
reasoning within information processing knowledge bases, are
among the most relevant areas in which paraconsistent logic
can address theoretical difficulties raised by inconsistent data.
There are many fields where paraconsistency regarding a
hybrid logic is welcome. Inconsistent information can appear
as we hear from different sources. A very important application
of this subject concerns medicine, and is about the health care
flow of a patient.

A. Health Care Flow of a Patient.

Figure 3 represents a fragment of the clinical flow of
patients in a central hospital. A patient coming into a hospital

Fig. 3. The care delivery process.

is consulted at the triage station. The next step in the care
delivery process is the observation of the patient by physicians
at an observation room. From this stage, several things can
happen: (1) the patient may need to take some medication,
(2) the patient may need to take an examination, (3) the
patient may need to be hospitalized, or (4) the patient may be
discharged. If the medication has no effect, or the examination
is inconclusive, the patient returns to the previous state. The
following situations may also occur: (i) the patient takes
medication and after takes an examination or vice-versa, (ii)
the patient after being medicated or examined needs to be hos-
pitalized, (iii) the patient only needed one of the following —
medication/examination/hospitalization — and is discharged
after that treatment. This representation corresponds to the set
∆, which must be satisfied in every model, and that comes in
the form of:

∆ = {@Triage(�Obs.room ∧ ♦Obs.room),@Obs.room♦Med ∨
@Obs.room♦Exam ∨ @Obs.room♦Hosp ∨
@Obs.room♦Med.disch,@Med♦Exam ∨ @Med♦Hosp ∨
@Med♦Med.disch,@Exam♦Med ∨ @Exam♦Hosp ∨
@Exam♦Med.disch,@Hosp�Med.disch}
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The pathway of cares of the patient can be represented
by a Kripke frame and the reports made at each stage are
represented resorting to a decoupled valuation. Note that the
decouple of the valuation is mandatory since very often the
diagnosis is not deterministic and we have to allow incon-
sistencies; actually, a team of physicians may not agree in
the diagnosis of a specific disease or even an exam can be
inconclusive (for example a CT Screening for lung cancer may
hold inconclusive evidence).

The propositional variables are used to represent the data
in the patient report that may vary from one observation to
another. More specifically, a propositional variable can be seen
as a health feature observed in the patient (for example fever,
cancer, cough, pallor). Some of them are classical, however
some others are paraconsistent. Nominals are used to name
referential states (i.e. important moments of diagnosis), while
modalities are used to label transitions in the flow, for example
transitions induced by the administration of a certain medicine
or by a specific examination.

B. Practical Example.

Figure 4 represents the pathway of care of the patient A

Fig. 4. The QH model M of a patient A.

that appears at the triage with fever. At the observation room,
he is diagnosed with disease X . Another physician disagrees
and diagnoses him not with disease X but with disease Y . The
patient takes some medication, and the fever does not go away
so he returns to the observation room, where the diagnoses are
maintained. The patient takes an examination that is conclu-
sive: the patient has disease X but not disease Y . He is hospi-
talized, loses his fever and is finally discharged. The medical
pathway of the patient A can be seen as a paraconsistent model,
where Prop = {fever, disease X, disease Y } and W =
{Triage,Obs. room,Med,Exam,Hosp,Med.Disch} and
the valuations are given in Figure 4.

We can measure the inconsistency of this model in order
to compare it with others. Assuming that the propositional

variable fever can not be paraconsistent, and that the paracon-
sistency relies only on the medical diagnoses, and also that at
the triage there is no paraconsistency as well as at the medical
discharge because there are not diagnoses to make, the measure

of inconsistency for this model is
2

8
.

Another example is given in Figure 5, which represents

Fig. 5. A QH model M′ of the patient B.

the pathway of care of the patient B that enters in triage
with fever and an elevated heart rate. At the observation
room, two physicians disagree with the diagnose, one keeping
that the patient has disease X but not disease Y and the
other stating the converse. The patient takes an examination
where it is concluded that he has disease X but not disease
Y . The patient takes a certain medicine that cures his fever
and elevated heart rate and is discharged. Again, the patient’s
medical pathway can be seen as a paraconsistent model, where
Prop = {fever, elevated heart rate, disease X, disease Y }
and W = {Triage, Obs. room, Med, Exam, Hosp,
Med.Disch} and the valuations are given in Figure 5.

Assuming that the propositional variables fever and
elevated heart rate are not paraconsistent, and that the
paraconsistency relies only on the medical diagnoses, and also
that at the triage there is no paraconsistency, as well as at the
medical discharge because there are not diagnoses to make,

the measure of inconsistency for this model is
2

8
.

Comparing the two situations, we conclude that M′ is as
inconsistent as M.

Further considerations.

Transitions between states can also be labeled with modal-
ities that might correspond to specific medications or exami-
nations. If we had the chance to fully axiomatize the medical
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guideline, we would have the perfect case. The axiomatization
of the medical guideline would include: (1) the complete (not
a fragment) clinical flow of patients in a central hospital,i.e.,
all the possible transitions between different stages (formulas
of the form @i〈π〉j, i, j nominals, π a modality), (2) the action
of specific medication in the problems verified in the patient,
for example p → 〈A〉¬p means that a patient with problem
p would take medicine A and get cured, and furthermore, (3)
the diagnose of a disease by means of a specific examination,
i.e., for any disease there would be an examination conclusive
— the disease is present or not.

V. CONCLUSION AND FURTHER WORK

Formal methods, i.e. mathematical tools, have been advo-
cated as a means of increasing the reliability of systems, spe-
cially those which are safety critical, as is the case of medical
knowledge representation. The scientific community has been
working on providing efficient representations, technologies,
and tools to reason over electronic health records, as well as
over health care information systems. Our contribution in this
paper goes in this direction, namely we present a paraconsis-
tent version of multimodal hybrid logic that provides models
adequate to represent medical knowledge. As the examples we
presented showed, it is worth to integrate the above mentioned
methods as part of the solution of problems in Medical
Informatics (e.g. [12]). The mathematical developments of
this paper are the use of quasi-hybrid multimodal logic - the
paraconsistent version of multimodal hybrid logic - to reason
about inconsistencies in health care knowledge. We define two
valuations, so that we can accommodate inconsistencies, and
define decoupled and strong satisfaction. Since QH models
can be viewed as sets of quasi-hybrid literals, we can use
them to represent the care pathways of patients in a hospital
and consequently compare them with respect to inconsistency.
In practice, each state of observation does not consist on a
unique procedure, in almost all of them a sequence of decisions
and consequent diagnosis are made, so it is worth to consider
themselves as structured states (for example state transition
systems that can be modeled by a Kripke model). This suggests
the use of hierarchical hybrid logic or, even better, some
paraconsistent version of it, to model the health flow.
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[6] N. C. da Costa, J.-Y. Béziau, and O. A. Bueno. Aspects of paraconsis-
tent logic. Bull. IGPL, 3(4):597–614, 1995.

[7] J. I. da Silva Filho, G. Lambert-Torres, and J. M. Abe. Uncertainty
treatment using paraconsistent logic. Introducing paraconsistent artifi-
cial neural networks. Amsterdam: IOS Press, 2010.

[8] N. A. Ernst, A. Borgida, I. J. Jureta, and J. Mylopoulos. Agile
requirements engineering via paraconsistent reasoning. Information
Systems, 43(0):100 – 116, 2014.

[9] J. Grant and A. Hunter. Measuring inconsistency in knowledgebases.
Journal of Intelligent Information Systems, 27(2):159–184, 2006.
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