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Abstract—The societal need for better public healthcare calls
for granular, continuous, nationwide instrumentation and data
fusion technologies. However, the current trend of centralised
(database) health analytics gives rise to data privacy issues. This
paper proposes sensor data mining algorithms that help infer
health/well-being related lifestyle patterns and anomalous (or
privacy-sensitive) events. Such algorithms enable a user-centric
context awareness at the network edge, which can be used for
decentralised eHealth decision making and privacy protection by
design. The main hypothesis of this work involves the detection of
atypical behaviours from a given stream of energy consumption
data recorded at eight houses over a period of a year for cooking,
microwave, and TV activities. Our initial exploratory results
suggest that in the case of an unemployed single resident, the day-
by-day variability of TV or microwave operation, in conjunction
with the variability of the absence of other cooking activity,
is more significant as compared with the variability of other
combinations of activities. The proposed methodology brings
together appliance monitoring, privacy, and anomaly detection
within a healthcare context, which is readily scalable to include
other health-related sensor streams.

I. INTRODUCTION

Changes in demographics, such as longer life expectancy
and smaller working populations (in some countries), alongside
a technological shift towards ubiquitous sensor technologies
can be the start of major transformation in the healthcare
industry. OECD data [1] shows that the average spending on
health per capita has risen over the last few decades with USA
expenditure increasing from $1000 to approximately $7500
between 1980 and 2007. This represents total expenditure on
healthcare in the USA of 16% of GDP [1]. This increase in
costs will be further accelerated due to changing demographics
as the number of people dependent on care increases as a
proportion of those that can support them, termed as a ‘Silver
Tsunami’ [2].

In order to address this challenge there has been interest
in using sensors and other data sources to remotely monitor
individuals for a more personalised health service. This has
a number of advantages, for example, allowing medical staff
to monitor specific patients without requiring an overnight
stay in a hospital. Notable examples of such sensor-based
technologies include wearable systems for (ageing population)
health monitoring and prognosis [3], personalised diabetes
treatment [4], treatment of heart failure patients [5], and pulse
oximetry (blood oxygen level monitoring) [6].

Further, there are possibilities of focusing on the general
public by developing systems which monitor activity and daily
living habits in order to improve health and well-being [7]. For

example, a large Australian study has shown that a strategy for
reducing the risk of abnormal glucose metabolism could focus
on the reduction of sedentary behaviours such as watching
television [8]. Linking these types of observable behaviours,
to specific illnesses is difficult and requires carefully designed
medical trials for reliable results. However, the analysis and
treatment of various data sets that can be used to make health
related inferences is equally important and challenging. There
are a number of challenges associated with this ‘model-based’
approach to care [2]; data acquisition, models of sensors and
monitoring processes, estimation and classification, informa-
tion fusion, sampling and interpolation, modelling behaviour,
detection of anomalies, and alarm fatigue.

The flip side of (continuous and nationwide) instrumen-
tation for health monitoring, and the focus of this paper, is
privacy. Health or health-relevant data (e.g. mental health,
genomics, and dietary habits) is one of the most sensitive
categories of data. In this sense, privacy may be perceived
as a technology barrier of health analytics and biomedical
engineering. Thus the full potential of (big) sensor data-
powered care may only be realised if privacy issues are
addressed. This process includes designing secure data storage
and communication systems, privacy-preserving distributed
(e.g. cloud) computing, access control and data ownership, data
fusion control and decisional interference.

This paper aims to progress work in eHealth privacy do-
main by means of stream informatics to help infer health/well-
being related lifestyle patterns and anomalous (privacy-
sensitive) events. The proposed system is codenamed as ‘IN-
formatics For sensoRS’ (INFeRS), and it is designed to run
at the network edge. In particular, this work analyses real
granular appliance level energy consumption data that are
linked to patterns of cooking and TV activities. In doing
so we use real empirical data to bring together appliance
monitoring, privacy, and event detection within a healthcare
context. The rest of the paper is organised as follows; §II
discusses related work, §III presents the INFeRS system and
experiment, §IV presents the stream mining methodology and
the initial statistical analysis, §V presents a method of detecting
atypical events, §VI discusses the implications to privacy and
eHealth, whilst §VII summarises with a conclusion.

II. RELATED WORK

The issue of privacy is becoming more relevant today in
the era of social networks and complex engineered systems
such as eHealth and the Internet of Things (IoT), which rely
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on large amount of data collected from customers (e.g. via
sensors) to provide an optimised service.

Data anonymity and de-identification (i.e., the process of
limiting access to links to personally identifiable information)
has been widely proposed as a privacy-preserving technique.
However, de-identification assumes a trusted authority and
it may not preclude an inference to personal information.
Another popular approach for privacy involves rule-based
access control, which may be either hard-coded or dynamic
(e.g. expert-systems) [9]. A more systemic approach to the
medical privacy protection is proposed in [10], which is based
on the Privacy by Design (PbD) framework. PbD encourages
embedding privacy ensuring features as the default functional-
ity, designing user-centric solutions, and constructing privacy
enhancing functionalities in a positive-sum manner.

From a data mining perspective, a fundamental require-
ment involves privacy of non-obvious personal information.
In [11], the authors propose two privacy-preserving methods:
value-class membership and value distortion. Both methods
allow users to provide modified values for sensitive fields in
the database. It can be argued that the privacy is larger if
the information distance between the original and modified
values is larger [12]. However, such methods assume a trade-
off between privacy and precision. A common engineering
challenge, regardless of the adopted approach, involves the
evaluation of privacy (or sensitivity). In the data mining
community, this problem essentially relates to the problem
of publishing statistics at certain timestamps [13], which
is similar to releasing streaming data using k-anonymity, l-
diversity, or differential privacy [14]. In [15] it is further argued
that typical behaviour does not violate privacy. Only detected
outliers can breach individual privacy. Thus, they use the K-
divergence to measure the deviation from typical values and,
hence, the potential privacy violations.

Interestingly, the notion of detecting atypical behaviour is
a key requirement in the healthcare context. This involves a
reliable (early) detection of unexpected anomalies, such as
falls, myocardial infarction, and stroke. A common approach
to this area involves the identification of statistical outliers,
‘surprises’ [16], or incongruent events [17].

This paper combines some of the above techniques within
a novel information system (called INFeRS) which analyses
stream sensor data to detect atypical (rare) events. On this ba-
sis, INFeRS helps detect and classify both eHealth and privacy
related context, based on which information personal eHealth
sensor information flows may be configured as appropriate.
While the presented analysis focuses on eHealth implications
of home appliance operation, INFeRS can be readily applied
in different streams of health sensor data.

III. INFERS APPROACH

A. The System

The INFeRS system architecture, given in Fig. 1, is de-
signed to enable context-based eHealth and privacy data flow
control. The main assumptions are as follows.

• An eHealth stakeholder (e.g. NHS) is interested in a
(statistical) summarisation of sensor information. That
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Fig. 1. High level INFeRS system architecture.

is, raw data remain confidential (e.g. they may be
securely stored in private network locations).

• The control of data summary flows from a personal
profile to multiple eHealth stakeholders is ruled by the
INFeRS anomaly detection algorithm.

• Key parameters of the data summary flow control
involve the level of privacy required, the level of
stakeholder trust, and the level of medical importance.

B. The Case of Energy Data

To support the premise of using home appliance energy
consumption sensor data in a general public eHealth system,
we discuss a number of key features from [2].

• Economical feasibility and scalability: Mandated de-
ployments of smart meter infrastructures (e.g. in Eu-
rope) provide an opportunity to acquire aggregate
house consumption data on a nationwide level. Fur-
ther, the use of Non-intrusive Appliance Load Moni-
toring (NiALM) algorithms [18], originally developed
for energy disaggregation applications, can be used to
analyse Activities of Daily Living (ADLs) [19].

• Unobtrusiveness and usability: Sensors should be
transparent and avoid to interfere with user lifestyle
(e.g. requiring too frequent battery charging). Energy
sensors are ideal in this sense as they enable activity
monitoring without constraining ADLs. However, this
comes at the cost of increased uncertainty.

• Continuity: Smart meters collect energy data fre-
quently (e.g. once a minute), which is important for
patient-specific trends and interventions.

IV. DATA MINING

A. Hypothesis and Experimental Setup

The basic hypothesis of this study is that the analysis of
granular (timestamped) cooker, microwave and TV sensor data
may help infer ADLs and health information. To make infer-
ences, we analyse stream data by studying a) the dynamics, e.g.
the variability of event occurrence probability distributions,
and b) the variability from different event spaces and the
discovery of the event spaces that exhibit the most significant
variability. From the point of view of privacy protection, it
is interesting to observe how atypical behavioural patterns
are detected, and how such a detection might control the
communication of such patterns to different stakeholders.

As a proof-of-concept we analyse timestamped data for
cooker, microwave and TV data that have been collected
twice a minute from eight houses in Bristol City, UK, for
approximately the duration of one year. All eight houses were
chosen so that they have one occupant, which helps assume a
good correlation between appliance usage and the behaviour
of a single person.
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B. Behavioural Patterns

In our setting the number of appliances is 3. We can thus
define a space of 4 possible events, including the zero event
where no appliance operates. Further, we consider than any
subset of the set of events may be used to define an event space.
In general, for a set of N streams, a number of 2N − 1 event
spaces may be defined (excluding the empty event space).

To mine the events from given energy data, we implement
a sequential batch window algorithm that counts the usage of
each event, for each separate hour interval of each day. Given
the twice a minute interval between subsequent measurements,
each event may be used a maximum of 120 times per hour.
Finally, we mine two types of behaviour: 1) capturing the
duration of the usage of each appliance, and 2) capturing
the number of times of switching on an appliance (including
switching on from standby).

C. Boxplot Evaluations

Initial exploration of the data sets is around daily patterns
of appliance usage. Fig. 2 shows a boxplot of the duration of
TV usage for House 1 over the whole time period (approxi-
mately 1 year) broken down into hourly figures. The horizontal
line on each bar shows the median value of all data points
in that time slot, whilst the filled circular marker shows the
average usage. The upper and lower boundaries of the box
show the first and third quartiles whilst the whiskers show
data within 1.5 times of the interquartile range. Any points
outside this range are shown as circular points. The triangular
markers indicate the group average (of all the houses) over the
same one year period split into 24 hours. This graph provides a
number of insights into occupant behaviour. From the hours of
10 p.m. to 9 a.m. the average duration of TV usage for house
4 was higher than the group average. Comparing these trends
with community averages as they build up over time can help
identify health risks associated with lifestyles. For example,
the consistently high level of TV usage along with the time at
which this occurs points to inconsistent sleeping patterns and
sedentary lifestyle patterns. Fig. 3 shows the same type of data
for the microwave appliance. Again, what we see is a greater
use of the microwave compared to the group average. This
can help build on the observations in Fig. 2 where a high use
of the microwave may hint towards poor diet which combined
with high level of TV use, may point to health risks associated
with diet and sedentary lifestyles.

V. ATYPICALITY

A. Empirical Probability distribution

The method of atypicality, which we use to detect rare
events, is based on the concept of Empirical Probability
distributions (EPDs) [15], which is adapted here as follows.

Definition 1: (Interval EPD.) Let X be the alphabet of an
event space defined by a multi-sensor stream p. The EPD, Pp,
of p is defined by Pp(b) = N(b|p)/N for any b ∈ X , where
N(b|p) is the number of occurrences of the b event within p.

Consequently, for any particular time interval the sensor
data can be sampled and the number of occurrences for each
event b can be counted in order to obtain the EPD. The method
of EPD is further used to define an averaged distribution.
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Fig. 2. Boxplot of the duration of TV usage for house 1 along with group
average values.
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Fig. 3. Boxplot of the duration of Microwave usage for house 1 along with
group average values.

Definition 2: (Average EPD.) Assume that L distinct mea-
surements have been obtained providing with L different
sample paths of the multi-sensor stream. The average EPD,
Qp, is obtained by counting number of events across all L
sample paths (ideally, L → ∞).

In our setting L = 8 is the number of different houses
participating into the experiment.

B. Divergence

Given an average EPD Qp, the deviation of an interval
EPD Pp from Qp may be measured by functions which are
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in general called divergence measures. The simplest one is
called the relative entropy D(Pp||Qp) [20] and it is given by

D(Pp||Qp) :=
∑

b Pp(b) log
Pp(b)
Qp(b)

. We note that the relative

entropy is infinity if there exists a symbol b such that Pp(b) 6= 0
and Qp(b) = 0. In this paper we use a divergence measure
called K-divergence [20] given by

K(Pp||Qp) :=
∑

b

Pp(b) log
2Pp(b)

Pp(b) +Qp(b)
. (1)

The advantages of the K-divergence as compared to the
relative entropy is that it is always defined, for all values of Pp

and Qp, and its value is between zero and one. It is noted that
if the K-divergence increases, the relative entropy increases as
well. Next we define atypicality.

Definition 3: If Qp is the average EPD of a number of
samples and Pp is the interval EPD of one sample p, the
atypicality of p is the deviation of Pp from Qp.

Given that in this paper we use K-divergence, atypicality
is given by (1). We note that, using a data mining language,
a sample p provides a bag of (basic) events. Thus, a large
atypicality indicates an atypical bag of events, and a small
atypicality indicates a typical bag of events. We also suppose
that a typical bag contains mostly cyclical events, and an
atypical bag contains some rare events.

One way to understand atypicality is to look at the defi-

nition of the K-divergence. Each term log
2Pp(b)

Pp(b)+Qp(b)
in (1)

will be greater than zero if Pp(b) > Qp(b), and it will be
zero if Pp(b) = Qp(b); otherwise it will be negative. Thus,
Pp(b) >> Qp(b) is a sufficient condition for a spike in
atypicality.

C. Evaluations

Observing the complete set of atypicality evaluations, both
for mining appliance duration data and switch-on appliance
data, across different hours and days, both with or without
the zero event, for all 8 houses, allow us to make a number
of remarks: 1) The appliance duration data (On-On events)
provide statistical properties for hourly and daily sampling, as
the Off-On events are more sparse. 2) While daily atypicalities
have value in summarising ADLs, hourly atypicalities provide
a better insight of the diurnal cycle. 3) The exclusion of
the zero event intensifies potential spikes of atypicality, as
the zero event is typically (and by far) the most frequent
event. These observations are highlighted in Fig. 4, where
NZ signifies the exclusion of the zero event from the EPD.
We further make a distinction between spikes (e.g. for On-
On NZ events between 50–100 days for House 1, and across
all days for House 8) and consistently high atypicality (e.g.
during the last 100 days on House 1). The former case is
more likely to be linked to atypical behaviour, whereas in the
latter case is clearly a case of false alarm due to unknown non-
behavioural (technical) problems. Finally it is worth observing
that the hourly atypicality patterns of House 1 appear to have
smaller values between 9-15 hours, which is consistent with
the observations make in Fig. 2 and Fig. 3.

Further we apply the notion of atypicality in different event
spaces, in order to explore combinations of interval EPDs that

exhibit a greater variability, as compared with their average
EPD. That is, we expand on the cases where the EPDs of
duration or of switch-on events is taken across either the 3 ap-
pliance events (cooker, microwave, TV) or across the 4 events,
if the zero event is included. All possible combinations of event
spaces and their corresponding atypicalities is shown in Fig. 5.
In this figure we observe that the atypicality of the event space
comprising the duration of the microwave and the absence
of any other activity (TV and cooker) is more significant as
compared with the atypicality of other combinations of event
spaces. This infers that atypical behaviour is more likely to
be observed in the case where both the microwave usage and
the absence of other appliance usage is taken into account.
While this may lack statistical significance (e.g. due to alarm
fatigue), there is still value in regarding this empirical result
as a proof-of-concept or initial evidence for a hypothesis that
would need to be medically tested (in large scale trials).

Table I summarises the results of the atypicality alarms of
different bags of events, across all houses and for both the
appliance duration and switch-on events. The given summary
is readily obtained by counting the number of days where
atypicality exceeds a threshold value, thus triggering an alarm.
Here, we take the threshold value of 0.4. Similar to Fig. 5,
we observe that high atypicality becomes more frequent in
the cases where TV or microwave, and no other appliance is
considered. This means that a) the usage of other appliances
reduces the number of high atypicalities, and b) the zero event
increases the number of high atypicalities (even through it may
reduce their intensities as previously discussed).

VI. PRIVACY AND EHEALTH IMPLICATIONS

The atypicality analysis above illustrates how often rare
(atypical) events occur within a multi-sensor stream. Atypical
events are important because they are likely to compromise
health sensor data privacy. To understand the importance
of atypical events better, one may refer to the Shannon’s
definition of information saying that the amount of information
conveyed by an event A is log(1/P (A)). Thus, the smaller the
probability of the event the larger amount of its information.
That is, an atypical event carries a large amount of information.
This implies that it is more important to protect an atypical
event as compared to a typical one.

From an eHealth perspective, the techniques for detection
and inference presented scale as the number of sensors in-
crease. However this increase in sensor information requires an
underlying system to manage the data and extract meaningful
insights. The atypicality detection method has shown how
multiple data streams can be analysed together to identify
patterns or events that are unexpected. In the previous section
we introduced a method of counting occurrences above a given
threshold, as shown in Table I. By developing this approach, a
trigger mechanism can be used to generate an action or alert.
Consider the following example: an atypical event (e.g. cooker
and microwave event for House 1) occurs and is detected by
an in-home application. This triggers an action whereby a
summary of the event detected is presented to the householder
via an App. The user can then make a decision based on this
and decide if it needs to be sent onward to other stakeholders
such as the family doctor. This might be more critical if the
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Fig. 4. Atypicalities for daily NZ appliance duration (left) and hourly switch-on events (right) for House 1 (top) and House 8 (bottom).
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TABLE I. YEARLY FREQUENCIES OF DAYS EXHIBITING ATYPICALITIES LARGER THAN 0.4, FOR DIFFERENT BAGS OF ON-ON & OFF-ON EVENTS.

House No. 1 2 3 4 5 6 7 8

Cook 0 & 0 3 & 0 0 & 0 0 & 0 0 & 0 0 & 0 0 & 0 0 & 0
Micro 0 & 0 3 & 0 0 & 0 0 & 0 0 & 0 0 & 0 0 & 0 0 & 0
TV 0 & 0 3 & 0 0 & 0 0 & 0 0 & 0 0 & 0 0 & 0 0 & 0
Zero 8 & 0 15 & 0 0 & 0 0 & 0 0 & 0 0 & 0 0 & 0 0 & 0
TV,Zero 9 & 25 0 & 1 8 & 18 68 & 27 0 & 0 4 & 29 10 & 7 50 & 76
Micro,Zero 0 & 25 15 & 15 0 & 0 27 & 27 0 & 0 11 & 22 15 & 15 125 & 24
Micro,TV 4 & 0 0 & 0 33 & 33 54 & 14 0 & 0 4 & 28 8 & 0 20 & 105
Cook,Zero 4 & 0 14 & 0 0 & 0 0 & 0 0 & 0 0 & 0 0 & 0 0 & 0
Cook,TV 9 & 0 0 & 8 18 & 19 41 & 41 0 & 0 4 & 13 10 & 13 46 & 31
Cook,Micro 7 & 0 11 & 0 0 & 0 0 & 0 0 & 0 0 & 0 0 & 0 0 & 0
Cook,Micro,TV 0 & 0 3 & 0 0 & 0 0 & 0 0 & 0 0 & 0 0 & 0 0 & 0
Cook,Micro,Zero 0 & 0 0 & 0 0 & 0 0 & 0 0 & 0 0 & 0 0 & 0 0 & 0
Cook,TV,Zero 0 & 0 0 & 0 0 & 0 0 & 0 0 & 0 0 & 0 0 & 0 0 & 0
Micro,TV,Zero 0 & 0 0 & 0 0 & 0 0 & 0 0 & 0 42 & 42 0 & 0 0 & 0
Cook,Micro,TV,Zero 0 & 0 0 & 0 0 & 0 0 & 0 0 & 0 0 & 0 0 & 0 0 & 0
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householder is an at-risk patient who needs support and/or
monitoring from healthcare personnel.

Whilst the sensor data used in this paper is predominantly
around appliance energy consumption it can easily be extended
to include other data streams such as pulse rate, electrocar-
diogram data, and body temperature. This would be able to
provide links between personal parameters alongside domestic
activity resulting in richer context and more directed atypical
event detection.

The key limitation of this work is the assumed link between
detecting activities in the house and health related issues.
There is evidence from other fields of research where links
between activities, diets, and health related issues has been
found. However the inference of activities and thus health risks
through the detection of atypical appliance usage is an area
which has not been explored in detail. The methods developed
here can be applied to such a situation and we urge greater
collaboration between medical trials, sensor technology, and
informatics in order to develop our understanding in this area.

VII. CONCLUSION

The paper has proposed INformatics For sensoRS (IN-
FeRS): a system to enable context-based health and privacy
data flow control. The methods and algorithms discussed have
shown that sensor information can highlight atypical behaviour
which can be used to identify health related issues. For exam-
ple, sedentary behaviour can be identified by analysing TV
patterns both in a single house and in comparison to a group.
All the information being collected through different data
sources gives rise to privacy concerns. The method proposed
identifies atypical events allowing the numerous data streams
to be reduced to usable information. The proposed system
will then allow for summary data to be sent to appropriate
stakeholders as opted by the householder.

The methodology presented here can be used to provide
insights for designing larger scale medical trials and explore
the link between activity inference from sensors to specific
health risks and medical conditions.

In the future we will investigate the eHealth contextual
analysis of environmental sensor data in the case where more
that one users are present. Future research will also focus
on the challenges of false alarms and the classification of
specific health risks with the most appropriate data sources.
We envisage that this research direction will help close the gap
among nationwide eHealth instrumentation, health indications,
atypical events, and their connection to privacy analytics.
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