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Abstract— The main challenge of big data processing includes 

the extraction of relevant information, from a high 

dimensionality of a wide variety of medical data by enabling 

analysis, discovery and interpretation. These data are a useful 

tool for helping to understand disease and to formulate 

predictive models in different areas and support different 

tasks, such as triage, evaluation of treatment, and monitoring. 

In this paper, a case study based on a predictive model using 

the radial basis function neural network (RBFNN) combined 

with a filtering technique aiming the estimation of 

electrocardiogram (ECG) waveform is presented.  

The proposed method revealed it suitability to support health 

care professionals on clinical decisions and practices. 
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I.  INTRODUCTION 

Clinical Decision Support Systems (CDSS) are widely 
applied in healthcare processes, such as triage, early detection 
of diseases, identification of changes in health symptoms, 
extraction of patient data from medical records, inpatient 
support, evaluation of treatment, and monitoring [1]. Patients 
and health care professionals (HCP) should be asked to 
periodically interact with the system so as either to obtain 
health care information such as medication and clinical 
guidance, or to maintain their patients' medical data up-to-date. 
These data may include, for example activities and medication 
reminders, objective measurement of physiological parameters, 
feedback based on observed patterns, questionnaires and 
scores. Therefore, clinical data sets have a large or even 
endless data volume, which makes its computation and 
management exhaust significant resources. In addition to the 
large volume, the sources of big data sets can be very diverse 
and originated on different devices and platforms, which means 
that these data represents unstructured information and is not 
typically easy for traditional databases to analyze it. 

In line with this, the main challenge of big data processing 
includes the extraction of useful and opportune information, 
related to medical practices, from large volumes of a wide 
variety of data by enabling analysis, discovery and 
interpretation. Thus, machine learning (ML) methods may be 

applied into CDSS aiming to establish knowledge refinement 
and discovery with the purpose of giving reliable explanations 
and support to HCP and patients. It is desirable that these 
methods provide not only good performance but also capability 
to deal with missing and noisy data. Moreover, the ability to 
explain decisions, and the ability of the algorithm to reduce the 
number of tests that are necessary to obtain reliable diagnosis 
[2] are sometimes of vital importance. These requirements are 
more pertinent during continuous acquisition of patient data, as 
example when the electrocardiogram (ECG) monitoring 
occurs.  

The ECG is an effective tool for diagnosis of the heart that 
produces a graphic record of the direction of magnitude of the 
electrical activity that is generated by the heart. However, it is a 
very time consuming task for HCP to analyze long ECG 
records. Therefore, using different ML techniques, several 
computerized methods have been proposed. Azemi et al. [3] 
used independent component analysis (ICA) and wavelet 
transform for the classification of five types of ECG beats, 
whereas authors in [4] applied hybrid neuronal-fuzzy networks 
to quantify and characterize the heart rate variability. A neuro-
fuzzy system was also proposed in [5] to diagnose acute 
myocardial infarction, and a Markov model was discussed in 
[6]. 

The model presented in this paper uses a predictive model 
based on the Radial Basis Function Neural Network (RBFNN) 
combined with a filtering technique [7] so as to estimate the 
ECG waveform. This is particularly relevant for its 
implementation in an application operated by users when there 
will be omitted and noisy data, such as the eHealth platform 
implemented by TICE.Healthy [8].  

The paper is organized as follows: section II introduces the 
principles of RBFNN; in section III the methods employed in 
the current work are presented, including details about the data 
along with rules and assumptions used to establish the RBFNN 
model; section IV presents results of the comprehensive 
experimental evaluation and section V discusses the meaning 
and significance of the results; finally, section VI concludes the 
paper and proposes areas for continued research in this area. 
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II. BACKGROUND 

RBFNN is an artificial neural network (ANN) [9] 
composed of interconnected processing elements, called nodes 
that carry out the classification process. This technique is 
commonly used for modeling nonlinear problems and presents 
one hidden layer of nodes that perform a fixed nonlinear 
transformation with no adjustable parameters and it maps the 
input space onto a new space, and a network output obtained 
from the linear combination of weighted with connecting 
weights. As depicted in Figure 1, a typical RBFNN structure 
encompasses an m-dimensional input vector x , and an n-

dimensional output vector : , , :m n

r
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c R i n   , are known as RBF centers, 

and rn  is the number of centers [4]. The functional form 

 .  and the centers ic  are assumed to have been fixed and 

its choices must be carefully considered in order for the 

RBFNN to be able to match closely the performance of the 

two-layer neural network.   

 

 

Fig. 1. A standard RBFNN structure. 
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where the weighted norm is defined by: 
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and  i w
G x t is the radial basis function. 

 

Applying Eq. (3) means that the level curves of the basis 

functions are not circles, but ellipses, whose axis do not need 

to be aligned with the coordinate axis. Then, the optimal 

center locations it  satisfy the following set of nonlinear 

equations [10], is defined as  
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where 
i

jP  are coefficients that depend on all the parameters of 

the network and are not necessarily positive. Due to the fact 

that the optimal centers are a weighted sum of the example 

points, in some cases it may be more efficient to adjust 
i

jP  

rather than the components of it . 

In line with this, there are several radial basis functions such 

as the Gaussian function 
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the multiquadrics function 
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and finally the thin plate splines conditionally positive definite 

functions 
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where  1 2, ,...,
T

m
x x x x  is the input vector, 

j
  is the 

center vector, and j  is the radius width of the j-th hidden 

node. The output layer represents the outputs of the network 

and each input node is a linear combination of the k radial 

basis functions of hidden nodes: 
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III. METHODS 

A. Experimental Sample 

The experimental sample is composed of 57 young and 
adult people (43 male and 14 female) aged between 18 and 44 
years, with a mean age of 24.37±5.96 years, all of them 
physically active but not competitive. In this sample 48 
subjects were soldiers belonging to the Portuguese Army 
Infantry Regiment n°13 (RI13) and 9 subjects were college 
teachers or students of the Department of Sports Science, 
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Exercise and Health of the University of Trás-aos-Montes e 
Alto Douro (UTAD), Portugal. Anthropometric data relating to 
age, height, weight and fat percentage of participants in the 
study of both sexes was collected and are detailed in Table 1. 
Data used in this research is available at [11]. 

TABLE I.  ANTHROPOMETRIC DATA OF STUDY PARTICIPANTS. 

Subject 
Age 

(years) 

Height 

(cm) 

Weight 

(kg) 
% fat 

General 24.37±5.96 171.26±9.38 69.88±12.10 16.21±4.59 

Male 24.21±6.24 174.73±7.73 73.22±11.08 14.22±3.41 

Female 24.86±5.19 160.60±4.87 59.62±9.18 22.33±4.91 

 

B. Exercise Plan 

During the experimental protocol each subject performed a 
series of exercises including walking and running in the 
treadmill. The exercise plan consists in applying incremental 
velocities from exercise to exercise. For men, the walking 
velocity was defined as 5.8 km/h and the three running 
velocities levels were 8.4 km/h, 10.3 km/h and 11.6 km/h. For 
women, the walking velocity was defined as 5.1 km/h and 7.7 
km/h, 9 km/h, 10.3 km/h were set for running velocities. The 
duration of each exercise level was five minutes, interspersed 
with a period of 1 to 3 minutes for recovery. 

 

C. Instrumentation 

For physiological data acquisition during the exercise 
protocol the bioPlux [12] acquisition system was used. This 
system technical features include eight acquisition channels, 
with a sampling frequency of 1 KHz, weights 80 g and includes 
a Bluetooth communication interface, thus allowing a great 
comfort and independence of movements during the exercise as 
the device operates with no power or communication wires 
except the wires that connect the sensors to the device. The 
bioPlux was fitted with a triaxial accelerometer, xyzPlux 
(measuring range ± 3g), an ECG sensor (ECG triodes), 
ecgPlux, two sensors of electro-dermal activity (EDA), 
edaPlux, a peripheral temperature sensor, tempPlux (0 °C - 100 
°C ± 1.5%), and an electromyography (EMG) sensor, emgPlux. 
Details of this setup can be found in [11]. 

 

D. Collocation of acquisition system and sensors 

As shown in Figure 2, the bioPlux, was secured to the left 

side of the user’s waist. The sensors were connected to 

bioPlux, as follows: the three ECG leads were placed in the 

horizontal plane precordial position (V3, V4, V5); peripheral 

body temperature was measured by placing the temperature 

sensor in the axillary region on the left side; triaxial 

accelerometry was collected by placing the accelerometer 

sensor in the supra-inguinal region on the right side; the two 

EDA sensors were placed on the abdomen and on the left hand 

(index and middle fingers) and the EMG sensor in the right 

rectus femoral (anterior thigh muscle). 

 

 

Fig. 2. Location of acquisition system and sensors  (adapted from [13]). 

 

E. Organization of data files 

The data obtained from the bioPlux is recorded on open 
ASCII format (.txt), containing data on each velocity level and 
the respective pauses. Each file from bioPlux consists in 10 
columns: 1 - Sequential number (repeating from 0 to 127); 2 - 
not used; 3 - x axis of accelerometer (vertical axes); 4 - y axis 
of accelerometer (medial-lateral axes); 5 - z axis of 
accelerometer (anterior-posterior axes ); 6 – EMG; 7 – ECG; 8 
- EDA (hand); 9 - EDA (abdomen); and 10 - Skin temperature.  

 

IV. RESULTS 

The experimental results are carried out in MATLAB 
software package 7.13 and focused on the ECG signals 
extracted from the individual data file of each participant. The 
ECG is a signal acquired from the body surface which 
characterizes the electrical activity of the human heart showing 
the regular contraction and relaxation of heart muscle. The 
analysis of ECG waveform is used for diagnosing the various 
heart abnormalities. This waveform consists of five basic 
waves P, Q, R, S, and T waves and sometimes U waves. The P 
wave represents atrial depolarization, Q, R and S wave is 
commonly known as QRS complex which represents the 
ventricular depolarization and T wave represents the 
repolarization of the ventricle [14].  

Due to the fact that the ECG is a quasi-periodic signal 
where each elementary beat is repeated over time with certain 
variability on the distance between contiguous beats, our case 
study is based on the estimation of it waveform. The predictive 
model is based on the RBFNN combined with the Savitzky-
Golay filter [7] for smoothing and differentiation which 
automatically perform the running least-squares polynomial 
fitting when the input signal was convolved with the filter 
coefficients. The original ECG waveform and the noise 
eliminated from the ECG after band pass filtering, are shown in 
Figure 3 and Figure 4 respectively. Both figures presented a 10 
seconds ECG sample representing 10000 records. 

 

522



 

Fig. 3. Original ECG waveform. X axis depicts sample number (x1000), Y 

axis depicts arbitrary units. 

     

 

Fig. 4. ECG waveform with Savitzky-Golay filter. X axis depicts sample 

number (x1000), Y axis depicts arbitrary units. 

 

An example of the application of the proposed model is 
shown in Figure 5 on which sample data representing six 
seconds (6000 records) is divided between training and testing 
set. The training set is composed by 2400 records (40%) and 
the testing set represents 3600 records (60%). This means that 
the learning process offered by the proposed model occurs 
during 2.4 seconds of ECG data, and the testing phase is 
performed in order to estimate the remaining 3.6 seconds. The 
optimised network structure obtained is based on two hidden 
layers with 18 and one node respectively. The model uses the 
standard RBFNN function provided in the MATLAB with the 
following settings: mean squared error goal: 1.0, spread of 
radial basis function=500, maximum number of neurons=750 
and number of neurons to add between displays=25.  

 

Fig. 5. Estimated and original ECG. X axis depicts sample number (x1000), 

Y axis depicts arbitrary units; plot in green shows the estimated values, plot in 

blue shows the original values. 

 

V. DISCUSSION 

The proposed model revealed its suitability to predict the 
ECG waveform based on a reduced sample of data and 
therefore represents a useful tool for support of HCP on the 
clinical decision making. The model encompasses a RBFNN 
and a filtering technique that assumes great significance 
because the ECG signal is often disturbed by broadband noise, 
mainly composed of high-frequency interferences due to 

electromagnetism and the grounding. Thus it is important to 
minimize the distortion in the feature waveforms so as to keep 
those features that would be of most interest in terms of 
analysis, whilst at the same time removing the noise. Then, 
these filtered data are computed through a RBFNN, on a 
widow size of 5 milliseconds, so as to capability the system to 
estimate the ECG waveform.  

 

VI. CONCLUSIONS 

This study highlighted the importance of methodologies 

for obtaining knowledge starting from the collected data and 

its capability to produce accurate and reliable outcomes for 

health care assistance professionals in the clinical decision-

making. In addition, the problematic of large volumes of a 

wide variety of clinical data was addressed. In line with this, 

are promising innovative techniques which aiming to establish 

knowledge refinement and discovery based on reduced data 

sets. 

Finally, a case study based on RBFNN combined with a 

filtering technique was presented. This model revealed to be 

accurate and suitable when applied on healthcare and 

wellbeing context. Additional studies should be addressed 

aiming to evaluate the combination of several parameters such 

as EMG, ECG and skin temperature, relating to the prediction 

of patients healthcare conditions. This future work may foster 

the development of a new algorithm which includes predictive 

capabilities based not only on the correlation of different 

parameters, but also on the dynamic relation among them.  
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