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Abstract

We present a semi-automatic system that converts con-
ventional video shots to stereoscopic video pairs. The sys-
tem requires just a few user-scribbles in a sparse set of
frames. The system combines a diffusion scheme, which
takes into account the local saliency and the local motion
at each video location, coupled with a classification scheme
that assigns depth to image patches. The system tolerates
both scene motion and camera motion. In typical shots,
containing hundreds of frames, even in the face of signifi-
cant motion, it is enough to mark scribbles on the first and
last frames of the shot. Once marked, plausible stereo re-
sults are obtained in a matter of seconds, leading to a scal-
able video conversion system. Finally, we validate our re-
sults with ground truth stereo video.

1. Introduction
Stereoscopic media augments traditional video technolo-

gies with three dimensional perception, thus resulting in a

more lifelike viewer experience. However, the adoption of

such media is hindered by two main factors: the cumber-

some nature of 3D (stereoscopic) displays, and the extra ef-

fort required to produce 3D content.

The production of filmed (as opposed to CG) 3D con-

tent requires either the capture of stereoscopic or multiple-

camera content, or the conversion of 2D to 3D content

in post-production. The former has several disadvantages

including specialized equipment and production pipeline.

Conversion technologies, on the other hand, can be em-

ployed to any existing conventional content, inducing the

usage of old material. However, despite the conversion ad-

vantages, most 3D content today is created by specialized

cameras, and not by conversion technologies. A notable ex-

ception is the June 2006 release of the movie “Superman

Returns”, which included 20 minutes of 3D images con-

verted from the 2D original digital footage. It was recently

declared that a company called “In-Three” may convert all

six “Star Wars” movies to 3D, in a process that seems to be

mostly-manual. Other players in the market include DDD�

and Philips� - in our results section we compare to both.

The goal of this paper is to explore 2D to 3D conversion

technologies which are efficient in terms of both human-

and computer-time, and therefore cost-effective and acces-

sible. A semi-automatic method is presented that requires a

small amount of user interaction and produces good quality

stereoscopic video. Typically, the user needs to mark only a

few scribbles on the first and last frames of each video shot

to produce a dense disparity map from which a second view

is created (see Figure 1).

Our system propagates a sparse set of disparity values

(user marked scribbles) across a video, by employing clas-

sifiers combined with solving a linear system of equations.

The later encourages same disparity values for neighboring

pixels, excluding edge separated pixels. Since depth val-

ues change over time, smoothness in time is applied judi-

ciously based on motion information. Once the estimated

disparities are obtained, a stereoscopic pair is generated by

warping the original frame to Left/Right novel-views.

2. Related work
Fully automatic stereoscopic conversion requires the re-

covery of a three-dimensional structure in the visible part of

the underlying scene. 3D structure extraction from a video

sequence is a well explored problem. However, no method

exists today that can reliably extract 3D information from

unconstrained broadcast video.

Structure-from-motion (SfM) methods [4] have been

proposed for the conversion problem, e.g., [16]. SfM may

be more readily applied if a dense depth map is not re-

quired. Rotem et al. [20] and more recently Knorr and

Sikora [7] create the additional stereo view by employing

a planar mapping (via a homography matrix) of one of the

existing frames. The availability of suitable frames pose

limitations on the underlying shot, these include restrictions

on the camera motion and limited, to none, scene motion.

Recently, statistical techniques have been used to infer

depth from a single image [3, 6, 22, 23]. Potentially, such

statistical techniques may, one day, recover depth accurately
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Figure 1. An illustration of the input and output of our conversion system. (from top-left clockwise) original frame from ”Matrix” marked

by input scribbles; Output, Red/Cyan anaglyph frames form the shot; last frame marked by input scribbles. Note the significant motion of

the camera and characters (the full stereo video is provided in the supplementary material).

enough to allow a fully-automatic video conversion system.

However our experiments with the code published by the

authors of [23] did not produce the needed results for frames

taken from unconstrained video. Instead, we use classifiers

that relate local appearance to disparity estimation within

a global optimization scheme. To alleviate the unreliabil-

ity of local classification, we employ a simple alternative

to the statistical modeling of across-patch depth links, and

incorporate into the optimization only high-confidence pre-

dictions.

Unable to perform fully-automatic conversion, existing

commercial systems rely on user marked key frames. The

system of Philips, at the time of submission in closed beta,

seems to employ fully marked key frames and interpolates

the depth within the frames. This interpolation may be

based on motion estimation (see [25]) and seems to re-

quire perfect motion vectors (as in some of the experiments

of [25]), or a large number of keyframes. The publicly avail-

able system of DDD� employs heuristics in order to ap-

proximate depth from live video. We have no information

regarding their offline system.

Our system requires less manual labor than the system

of Philips by employing scribbles. The use of scribbles was

made popular by work by Boykov and Jolly [2], Levin et
al. [10], Li et al. [14], and the refinement stage of Rother

et al. [21]. We share with the work of [10] the basic set

of weighted linear constraints, optimized in a least squares

manner, that encourage neighboring pixels to have similar

values. Such constrains have been in use for two decades

[18, 24, 12]. Video segmentation [26, 13] is a related task

to ours. An efficient method was recently presented in

which geodesic distances are used in order to segment up

to 100 frames based on few scribbles [1]. Recently, scrib-

bles and classifiers were used jointly for image and video

editing [11].

3. Algorithm
The basic units of broadcast video are frames, shots and

scenes. A shot is a continuous block of frames taken from

a single point of view, which may move continuously. A

scene is a collection of consecutive shots taking place in one

location and in a distinct time. While depth information is

largely shared between the shots of each scene, and between

all scenes taking place at the same location, in this work we

only integrate information across one shot at a time.

Given an input shot, our system carries out the follow-

ing stages: (1) User scribbles are marked on some of the

frames to indicate desired disparity values. (2) The marked

disparities are propagated on the frames on which they were

drawn. (3) A classifier is trained for every disparity value

marked by the user. (4) The classifier is applied to the entire

shot, and high confidence predictions are recorded. (5) The

disparity map of the entire shot is recovered in an optimiza-

tion process which is constrained by the original scribbles

and the high confidence predictions. Below, we address the

design of each of these steps.

3.1. Manual marking

Depth and Disparity. Depth and perceived disparity are

two related quantities. Assuming a simple model of two

aligned sensors, and a perspective model (see Figure 2(a)),

depth (Z) is related to disparity between the two perceived

images (δ), through the formula

Z =
fP

δ
, (1)

where P is the interpupillary distance, which measures the

distance between the center of projections, of the two sen-

137



(0,0) (0,P)

f

P

xL xR

z

�=xL-xR

(X,Z)

f

P

xL xR

XL XRD

(a) (b)

Figure 2. An illustration of stereo geometry according to a sim-

ple model. Eq. 1 stems from combining the two similar triangles

equalities Z
f

= X
XL

, Z
f

= X−P
XR

, to obtain X = XLP
δ

, where the

symbols are as marked on (a), and then substituting it back to the

first equality. The symbols for Eq 2 are illustrated in (b).

sors. The distance of the image plane from these centers is

defined by f .

In stereo displays, the perceived disparity is a result of

projecting two different images one per eye, these two im-

ages are planar image originating from the same screen. As-

suming that the screen is parallel to the image plane of the

two sensors, from Figure 2(b) we can observe that

D

f
=

XL

xl
=

XR

xr
, (2)

where D is the distance of the screen, and XL (resp. XR)

is the distance between the point on the screen closest to the

left (right) sensor, and the screen point being projected to

the left (right) eye. Note that the on-screen disparity (the

distance between the two points on the screen) is given by

Dx = XR + P −XL.

Combining Eq. 1 and Eq. 2, one obtains that in order to

provide a depth perception equivalent to that of an object

at a distance of Z units from the sensors, it is necessary to

provide a screen disparity Dx which satisfies

Z =
PD

P −Dx
. (3)

Eq. 3 reveals that the interrelation between the amount

of disparity in the video and the perceived depth, depends

on the distance of the screen from the viewer, the size of

the screen (same video on a larger display means larger on-

screen disparity) and the distance between the pupils of the

viewer. A stereo pair prepared for one set of viewing con-

ditions may not be appropriate for another, and in order to

provide good viewing experience one needs to be familiar

with the conditions in which the 3D video is to be observed.

Note that it is not enough to enlarge the screen by the ratio

of distance-to-screen change, since P remains constant.

In our system we choose to estimate disparities directly

without estimating depth first. As noted above, perceived

depth is connected to disparity only through limited amount

of parameters. Working directly with disparities has the nu-

merical advantage of dealing with values that are not larger

in magnitude than a few tens of pixels. Depth on the other

hand, can range anywhere between zero and infinity and is

inversely proportional the disparity, which quantifies the fi-

nal observed change in the images.

User Interface. First, an automatic shot detection seg-

ments the video into consecutive shots by a simple, yet ef-

fective, color histogram change detection.

For each shot, the user is prompted to manually mark

scribbles, each depicting a constant disparity value to all

its pixels. The user selects a color for the scribble which

encodes via the hue channel various disparity values. The

default behavior, and the one which was applied in all re-

ported experiments, is to mark scribbles on the first and last

frames of each shot.

A natural question to ask is “how can the user know the

correct disparity values to mark?”. Surprisingly enough, ac-

curate disparity values are not needed in order to create an

immersive 3D viewing experience. As cognitive studies by

Koenderink and his colleges [8] show, the human visual sys-

tem is more tuned into depth order and precedence than to

absolute depth.

3.2. Disparity propagating through optimization

The optimization problem we solve amounts to a sparse

linear system, where the disparity values at each video loca-

tion (d(x, y, t)) serve as the unknowns. We solve the entire

shot at once in a least squares manner and in order to make

the solution more efficient, we typically solve for a low res-

olution video, reduced by a factor of 4 in each dimension,

and then upsample with a joint bilateral technique [9] ex-

ploiting the existence of high res frames.

There are four types of equations. First, we apply soft

constraints that encourage the disparity at each location to

be similar to the disparity of its spatial neighbors. Sec-

ond, we encourage continuity over time with relation to the

change in disparity expected from the local motion field.

Third, we strongly encourage the system to adhere to the

scribbles, and finally, we encourage the system to respect

the results of the classifiers on anchor points where the con-

fidence values of the classifier are high. As can be seen in

Figure 3,5 , classification by itself is not reliable, but it con-

siderably improves the final results.

Weighted least squares modeling All our constraints are

soft and are expressed as weighted equations, which are op-

timized in a least squares manner. When the cost function
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Figure 3. Disparity maps obtained by parts of our system (Hue values encode depth). (a) The original frame. (b) Disparity map obtained

by propagating the marked disparities (scribbles). (c) The disparity map obtained by the classifiers alone. (d) The disparity map obtained

by combining both smoothness based constraints and classification results as described in Section. 3.2.

is being optimized, error in an equation of weight w1 is

(w1
w2

)2 times more significant than the error in an equation

of weight w2.

This way of modeling is similar to what is done in [27]

for the task of video retargeting. It differs from the cost

function employed by [10] in that it does not couple neigh-

boring pixels together, and in that normalizing local corre-

lations to a sum of 1 is not needed. However, care should

be taken so that all weights are ranged reasonably.
Specifically, the cost function of [10] has elements of

the form:⎛
⎝U(r)−

∑
s∈N(r)

wr,sU(s)

⎞
⎠

2

=

⎛
⎝ ∑

s∈N(r)

wr,s(U(r)− U(s))

⎞
⎠

2

(4)

where U are the unknown values, r is an index and N(r) is

the group of indices neighboring r (i.e. connected pixels),

and the equality holds from the fact that the weights were

normalized such that for all r
∑

s∈N(r) wr,s = 1.

The cost function we employ, requires a simpler weight-

ing scheme (no normalization required), and seems to pro-

duce comparable results in our experiments. It has analog

elements that are of the form:∑
s∈N(r)

wr,s (U(r)− U(s))2 , (5)

where we set wr,s = wr to depend only on r.

Spatial and time smoothness constraints The spatial

constraints are weighted to reflect the local edge energy at

each pixels‘ location. Pixels which lie on edges are less

constrained to be similar to their neighboring pixels.

The edge energy is defined by the L2-Norm of the image

gradient (images range [0..1]):

WE =

√
(

∂

∂x
I)2 + (

∂

∂y
I)2 (6)

The linear equations encouraging local smoothness are

defined for every video location (coordinates x,y, and frame

t) and are of the form:

c1WE(x, y, t) (d(x, y, t)− d(x− 1, y, t)) = 0
c1WE(x, y, t) (d(x, y, t)− d(x, y − 1, t)) = 0

(7)

(a) (b)

(c) (d)

Figure 4. A shot with significant zoom out. (a) first frame, (b) last

frame. (c) the disparity map without motion-based weighting (d)

with weighting. Note that the car disparity is lowered (darker) i.e.

it is farther away from the camera. See the full red/cyan anaglyph

video provided in the supplementary material.

where c1 = 1 is a constant in all of our experiments.

The time smoothness equation takes a similar form:

c2WM (d(x, y, t)− d(x, y, t− 1)) = 0 (8)

The constant c2 is set to 3 in all reported results. WM is

set to exploit common characteristics of interplay between

depth and motion in the scene. This is a unique character-

istic of the disparity estimation problem. In a general seg-

mentation problem, for example, the property is constant

over time, as it is oblivious to the distance of the object

from the camera. Specifically, we notice that lateral motion

seldom changes the depth of the objects, while objects mov-

ing in the vertical direction may change depth. Moreover,

a zoom-in or a zoom-out motion results in motion in both

directions, and is likely to result in a depth change.

To apply these observations in our system, we compute

optical flow using the method of [17]. WM is set to 1 if there

is no motion or horizontal motion only; to 0.5 if the vertical

motion is above a threshold of 2 pixels/frame, and to 0.2 if

there is motion above this threshold in both directions. As

can be seen in Figure 4, weighting the time constraints have

a substantial effect on the results.
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Scribble and classifier constraints. Another set of equa-

tions arise from the user scribbles. Taking into account inac-

curacies that may be introduced by the user, we apply these

as soft-constraints as well, albeit with a high weight, given

by the constant c3 = 10. Define V (x, y, t) as the value of

the scribble in a marked coordinate (x,y) on frame t (in our

system, either the first frame or the last frame). The follow-

ing equation is added for each marked triplet:

c3d(x, y, t) = c3V (x, y, t) (9)

In our system a classifier (see Section. 3.3) is employed

to predicted the depth value based on appearance. We define

anchor points as points where the prediction is assigned a

high confidence value. Let the prediction be T , and set the

constant c4 = 0.5, the added equations are of the form:

c4d(x, y, t) = c4T (x, y, t) (10)

3.3. Classification

One of the design requirements we impose on our sys-

tem is to have only a sparse set of user scribbles. The

user marks only two frames out of hundreds of consecu-

tive frames. This is much sparser, for example, than the

results presented in [10], and somewhat sparser than what

was presented in [1], nevertheless we chose to challenge our

system with a more complex set of video shots containing

significant motion.

To achieve this sparsity, we employ a Support Vectors

Machine (SVM) classifier that is trained on the frames

marked by the user and then applied to the entire video.

The SVM is trained as follows: first the scribble data is

propagated on the frames on which they were drawn. Then

for each frame a multiclass classifier is trained (see below).

The classifier is then applied to the other frame(s) and the

confidence values are calibrated.

Training the classifiers The local appearance at an im-

age point can be represented in many ways. We have exper-

imented with using the gray values themselves, color his-

tograms, SIFT [15], and SIFT+gray descriptors. As Fig-

ure 5 shows, it seems that SIFT+gray values is the most

suitable for our problem.

The mapping between local image appearance and de-

sired disparity values is a continuous regression problem,

however, we obtain much better results treating it as a multi-

class classification problem. The underlying reason might

be that local appearance by itself does not tell us much on

disparity, and therefore one cannot expect a patch which is

similar in appearance to a blend of two patches to have their

interpolated disparity value.

Given the user marked scribbles on the first and last

frames of the shot. To obtain a training set, we first propa-

gate the data of marked scribbles onto their frames by solv-

ing the spatial equations described in Section 3.2. We look

at the unique set of values that the user scribbles are com-

posed of1, and assign each pixel in the frame to the class

that is associated with the value which is closest to the prop-

agated disparity value.

Then, for the first frame and separately for the last frame,

we train SVM classifiers in a One-Vs-All scheme. The in-

put space for the classifiers is the local appearance descrip-

tor at each point, and the target space is the set of unique

user-scribble values.

Calibrating the classifiers Classification based on ap-

pearance alone can be unreliable. We therefore only take

into account high confidence classifications. In order to do

so we need to transform the vector of One-Vs-All outputs

(a vector of signed distances from each SVM hyperplane) to

likelihood of correct classification. This is the classifier cal-

ibration problem in the multiclass SVM setting. Previous

work include [19] for the binary case, which can be com-

bined with methods such as coupling [5] for the multiclass

case. Here we propose a simple binning method[28].

We learn, for each scribble color in the first frame a clas-

sifier, which has all pixels belonging to that color as posi-

tive examples, and all pixels belonging to the other colors

as negative examples. To calibrate our classifier, we apply

the classifiers learned on the first frame to the pixels of the

last frame. Ground truth is provided to marked pixels on the

last frame by assigning each scribble the color of the closest

color of the first frames‘ scribbles.

Then, for each classifier, we consider only those pixels

in the last frame on which the classifier returned the highest

positive value among all classifiers (with accordance to the

One-Vs-All scheme). Based on the ground truth labels of

those pixels we set a threshold for the classifier at hand such

that the false positive rate is less than 5%.

This process is repeated when inverting the roles of the

first and last frames. The two multiclass classifiers are then

applied to the entire shot, and pixels, which are classified

above the low-false-positive threshold, are marked as an-

chor points in the optimization process.

3.4. Synthesizing the output video

The recovered disparity is of a lower resolution. In or-

der to increase its resolution while respecting the edges of

the original image, we apply the Joint Bilateral Upsampling

method[9]. Once the disparity is estimated, we create two

novel views by shifting the left and right views each by half

of the disparity value. A simple forward warping method is

used to synthesize the two novel views.

1Typically this set is smaller than the number of scribbles. If this set is

large, e.g., when the user marks points on the same scribble with different

tones, clustering can be first applied.
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(SIFT+Gray values) (Color histogram) (SIFT)

Figure 5. Disparity estimation results, obtained on the middle frame, with either SIFT + gray values patches, color histograms, or SIFT as

the local image descriptor. From our tests it seems that SIFT + gray level patches perform better than the alternatives implemented.

4. Results
We applied our method on a variety of broadcast videos.

Figure 6,1 shows a collection of our results. As can be seen

our method works well on sport videos with long shots, ex-

treme scene and camera motion, on animation sequences,

on documentation (music concert, ballet) and on feature

films (”Matrix”, ”Batman - The Dark Knight” etc).

Note that although the user scribbles are sketchy, a real

depth experience emerges, and the dynamic range of the

disparity map is quite large (Table 4 User-survey).

Numerical results In order to obtain a quantitative per-

formance measure we collect a set of 11 demo videos from

the Philips� WowVx c© project website. Each video con-

tains a 2D input video along side with a high quality dis-

parity map created manually or by using a 3D camera.

Monochrome scribbles are drawn on the first and last frames

of each shot. Disparity values are assigned to the scribbles

based on the mean disparity value along the scribble. Each

tested conversion system is then applied, producing right

stereo view and estimate disparity.

We compare the following systems: (1) A simple scrib-

ble based, disparity propagation method marked as “Mo-

tion Scribble”. In this method the disparity is propagated

from the scribbles to each frame individually, using a least

squares system similar to ours. The location of each scrib-

ble is tracked from one frame to the next, and from the last

frame to the first one. The contribution of each scribble is

weighed by the distance from its original frame (first or last

frame). (2) Our implementation of the system of [25]. This

system uses the entire depth information of the first and the

last frames. Depth information from the first frame is prop-

Algorithm MSE User User
disparity-map survey No.1 survey No.2

Motion Scribble 2.48 0% 0%

DDD* n/a 0% 8.7%

[25] 2.00 0% 18.4%

Ours w/o
classification 1.59

Ours w/
classification 1.41 22.7% 59.2%

Ground Truth 0 77.3 13.7%

Table 1. Left: Disparity prediction results. Right: User survey

results. * The DDD system takes no depth information as input

and produces no depth information.

agated until the middle of the shot. Depth information from

the last frame is propagated in reverse through the second

half of the shot. (3) Tri-Def� DDD c© system, which works

automatically on the raw video without using the scribble

information. (4) Our method with the classification module

turned off. (5) Our complete method. Table 4 presents the

benchmark’s numerical results.

In addition, we conduct a user study on the same videos.

30 viewers were asked to rate the 3D clips of the various

systems and to select a winner and a first runner-up. The last

two columns in table 4 show the average number of times

an algorithm was selected for the first and second place.

To keep the results clean, and to reduce the viewer’s labor,

only our full system participates in the survey. Naturally,

the ground-truth wins the user-study, however, our system

is selected as the next best system in almost all cases. In

some of the anaglyphs, users were consistently unable to tell

the ground-truth from our system, implying that even when

the disparity-map is imperfect the user cannot distinguish

between results.
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Figure 6. Depth experience emerges from video, as demonstrated on the middle frame of each shot. Best viewed with Red/Cyan glasses.

(left) Disparity reconstruction for a rotating animated hand, (top right) Disparity reconstruction in a high motion skateboard sequence.

(bottom right) “Romeo and Juliet” – although the scribbles are of discrete values, a dynamic range of disparities is obtained. The full stereo

videos are provided in the supplementary material.
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