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Abstract

The state-of-the art in visual object retrieval from large
databases allows to search millions of images on the object
level. Recently, complementary works have proposed sys-
tems to crawl large object databases from community photo
collections on the Internet. We combine these two lines of
work to a large-scale system for auto-annotation of holiday
snaps. The resulting method allows for automatic labeling
objects such as landmark buildings, scenes, pieces of art
etc. at the object level in a fully automatic manner. The
labeling is multi-modal and consists of textual tags, geo-
graphic location, and related content on the Internet. Fur-
thermore, the efficiency of the retrieval process is optimized
by creating more compact and precise indices for visual vo-
cabularies using background information obtained in the
crawling stage of the system. We demonstrate the scala-
bility and precision of the proposed method by conducting
experiments on millions of images downloaded from com-
munity photo collections on the Internet.

1. Introduction

These days, an increasing amount of photos is being
stored on desktops and the Web. For instance, the social
networking site facebook 1 reports that 30 million photos
are uploaded to the site by its users – daily. Most of these
photo organization tools also allow for some form of tag-
ging (labeling) with keywords to facilitate search in the
photo collection. However, tagging is a tedious process,
and the rapidly growing amount of digital photos calls for
some form of automated annotation.

In this paper we present a system which tags photos au-
tomatically with keywords referring to places, landmark
buildings or events present in a photo. The annotation
reaches down to the object level, i.e. recognized items are

1www.facebook.com

http://en.wikipedia.org/wiki/Arc_de_Triomphe

Figure 1. Example output from our system. Landmarks are auto-
matically localized in the image and annotated with relevant con-
tent.

outlined with a bounding box in the image. The whole
system works without any manual creation of a reference
database and can annotate query images with data from mil-
lions of reference images in seconds. Figure 1 shows a
typical example outcome from our annotation system. To
achieve this functionality we combine two lines of recent
work. First, in order to automatically create a reference
database we build on large-scale data crawling from com-
munity photo collections [18]. Second, for recognition from
that database we integrate scalable visual vocabulary based
recognition approaches [7, 6, 10, 15, 16, 17, 21, 8].

The first step, the crawling stage, enables us to create
a large database of (exemplar) object models. Each object
is represented as a cluster of images which show the same
entity (object, event, scene etc.). In addition, the crawling
stage also tells us what the cluster contains, by proposing
labels, GPS location, and related content on the Internet
without any manual intervention. This information is col-
lected from the meta-data associated with the images from
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the community photo collections.
The second stage, the retrieval stage, consists of a large

scale retrieval system which is based on local image fea-
tures. It indexes the entire database that was collected in
the previous step. We further optimize the retrieval stage
by integrating knowledge about the objects into the index
creation process. This knowledge is also automatically ac-
quired during the crawling stage. It results in more compact
indices (only 33% of the original size) without significant
loss in precision. Any query image for annotation is first
sent to the retrieval system, in order to identify matching
objects. A verification step based on multiple view geome-
try refines the hypotheses. Finally, an annotation stage es-
timates the position of the object within the image, and an-
notates it with text, location, and related content from the
database, resulting in the final annotation as the example
shown in figure 1.

In summary, the contributions of this work consist of:
1) The combination large-scale object mining from the
Internet with scalable retrieval to obtain an auto-annotation
system driven by the wisdom of crowds.
2) The exploitation of knowledge collected during the
mining stage to improve object retrieval.
3) The automatic annotation of objects in holiday snaps at
the object level - with bounding box, related text, related
Internet content and geographic location.

The remainder of this paper is organized as follows. A
discussion of related work follows in the next section. In
section 2 we discuss how a reference database is mined
which is used in the object annotation stage. In section 3
we discuss object retrieval and in section 4 we introduce
several improvements to the retrieval based on the knowl-
edge from the mining stage. In section 5 we combine the
results from mining and retrieval stages to create a large-
scale auto-annotation system.

1.1. Related Work

Our annotation method relates to other works in several
aspects. In general, auto-annotation is one of the most rel-
evant applications for object recognition methods, and ac-
cordingly a large amount of work has been devoted to that
problem [2, 4, 5, 11, 12, 19, 23, 24, 25]. Types of annota-
tion cover a wide range, from scene classification [5, 24, 2],
over assigning names to faces [4], to learning general cor-
relations between words and image content [2, 12]. While
many of the classic auto-annotation works deal with collec-
tions such as the Corel database, some of these works also
integrate information from Web-image collections [25].

Work with photos from community photo collections on
the Internet for retrieval of landmarks, locations etc. is a
topic which is gaining increasing attention recently. For in-
stance, in [9] the geographic location an image was taken

at is estimated by comparing it to an enormous database of
images downloaded from Flickr. The overall objective is
to find near duplicate images of the same scene very effi-
ciently. The images are encoded using several global fea-
ture types. The location of the picture is estimated by find-
ing the nearest neighbor(s) in the database. This results
in recognition rates of up to 16 % for locating an unseen
test-image within 200 km of its correct location. However,
these recognition rates are not sufficient for the kind of auto-
annotation applications we have in mind. A more precise,
but more costly processing is possible with local image fea-
tures. For example, in [20, 22] a method for clustering im-
ages from community photo collections was proposed using
multi-view geometry based matching of local features. The
goal was to derive canonical views for certain landmarks
and to use those as entry points for browsing. Initial image
collections for clustering were retrieved by querying photo
collections with known keywords such as “Rome”, “Pan-
theon”, etc. Quack et al. proposed an approach, which relies
on geo-tagged images in [18], thereby avoiding the need for
manual query generation. Both works focus solely on the
database creation process.

In this paper, we combine a data collection process sim-
ilar to [9, 18, 20, 22] with object retrieval methods [7, 6,
10, 15, 16, 17, 21, 8] to obtain a large-scale, retrieval-based
auto annotation system. The resulting method differs from
earlier annotation systems in several ways. First, the task
we set out to solve is not general annotation of images with
words (such as tiger or grass), but rather the labelling of spe-
cific objects such as landmark buildings (e.g. Eiffel Tower,
Teatro di Marcello), as they are often present in typical hol-
iday snaps. Second, the annotation happens at the object
level, i.e. the object is outlined with a bounding-box in the
image. Besides textual labels, the annotation also includes
related web-sites describing the object and its GPS position.
Third, the annotation of a query image happens within sec-
onds using a database created from millions of images.

2. Automatic object mining

The first element of our annotation system is a large col-
lection of photos for objects (e.g. landmark buildings, stat-
ues, mountains, scenery, ...), which will serve as a reference
database for later annotation of query images. The key suc-
cess factor is, to somehow eliminate all the irrelevant in-
formation, such as dog pictures, party pictures etc. To col-
lect such a high-quality database automatically, we follow
the approach proposed by Quack et al. in [18]. Their work
describes a system, which crawls community photo collec-
tions on the Internet to identify clusters of images referring
to a common object or event. The clusters are created based
on the images’ pair-wise visual similarities, and the meta-
data of the clustered photos is used to derive a labeling for
the clusters and to crawl related content on the Internet. The
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whole process is automated and does not require any man-
ual intervention. The beauty of this method is that it com-
bines the stored collective intelligence of Internet users to
distill a reference database of objects. In summary, the sys-
tem proposed performs the following steps:

1. A geospatial grid is overlaid over the earth. For each
grid tile’s center a query is sent to Flickr, to retrieve
geo-tagged photos from that area

2. For each tile, the retrieved photos are matched pair-
wise using local visual features and a homography as
geometric filter on the features’ positions. The number
of inliers after homography verification gives a simi-
larity measure for each pair of photos. The resulting
distance matrix is used to cluster photos into groups
of images showing the same object or scene. Since
this expensive pair-wise matching step is done only per
geographic cell (which typically contains significantly
fewer than a thousand images in average) it is scalable
and can be executed in parallel for each geographic
tile. Figure 2 shows typical image clusters as they are
created in this stage. For sake of simplicity, we will
refer to these clusters as “object clusters” in the fol-
lowing (in spite that they might also contain images of
scenery, events etc.).

3. The meta-data of each object cluster’s photos is used to
label the object clusters automatically. Textual labels
are estimated using frequent itemset mining [1] on the
associated text (tags, titles etc.).

4. Possibly related Wikipedia articles are crawled using
the text labels from the previous steps as keyword
queries in order to search for Wikipedia articles. A fi-
nal verification is performed by extracting images from
each article and trying to match them back to the asso-
ciated photo cluster. If matching images can be found,
the article is assumed to be relevant for the cluster.
Note that this final step is essential, to obtain relevant
related content for each object cluster.

We implemented the same pipeline as proposed in [18],
but extended it with some modifications. The most impor-
tant modification is that we do not rely on a regular geo-
graphic grid only to crawl photos from Flickr. Instead, we
also instantiate crawling from the locations of geo-tagged
Wikipedia articles. We start out a list of all articles on
Wikipedia which are annotated with their geographic loca-
tion. Each location is then taken as a “seed point” to query
it’s vicinity for photos on Flickr. The reasoning behind this
extension over [18] is that many relevant articles are already
tagged with their location, but we simply lack a sufficient
amount of photos for the given topic. (A large amount of
photos for each object cluster improves recognition of the

-liberty
-lady
-just liberty
-libertyisland
-statueofliberty
-island statue liberty

http://en.wikipedia.org/wiki/Liberty
http://en.wikipedia.org/wiki/Statue

Verification

Figure 2. Example object cluster. Top: mined photo clusters
with GPS location and tags. Bottom right: related content from
Wikipedia. Bottom left: The images from the articles are used to
match back to the clusters, as proposed in [18], which serves as a
verification step for the articles’ relevance.

object from arbitrary viewpoints.) In fact, this way we add
an inverse processing step to the system of [18], by starting
out with Wikipedia articles and then adding images from
community photo collections.

We also extended step 4. of the above approach, by
not only searching for related Wikipedia articles through
Google, but also querying articles geographically by dis-
tance from the cluster. This is done using the mean location
of all photos assigned to a given object cluster as a query
point and retrieving all geo-tagged Wikipedia articles within
a given radius .

In summary, the data collection steps outlined in this sec-
tion leave us with a set of object clusters, each comprised of
photos describing a given object or event. Each object clus-
ter is associated with relevant tags and many of them also
with related Wikipedia articles.

3. Scalable object cluster retrieval

In order to search the database of object clusters, we em-
ploy state-of-the art image retrieval methods based on vi-
sual vocabulary techniques. Visual vocabularies are usually
created by clustering the descriptor vectors of local visual
features such as SIFT [13] or SURF [3]. This approach has
been applied very successfully in the domain of video re-
trieval [21] using k-means clustering to build vocabularies.
Nister et al. demonstrated the benefits of larger vocabular-
ies using a hierarchical k-means variant [15], which allowed
retrieval for millions of images. The main advantage of
the hierarchical approach is that it allows both for the effi-
cient creation and search of the visual vocabulary. Recently,
Philbin et al. showed [16] that a vocabulary obtained from a
flat clustering still outperforms the hierarchical approach in
precision. To handle large vocabulary sizes without an effi-
cient hierarchical clustering method, they proposed approx-
imate nearest neighbor search to speed-up cluster assign-
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ment using a kd-forest as an index on the cluster centroids.
(This is done while clustering as well as for searching the
vocabulary with a query point).

Due to its superior performance, we build on the approxi-
mate k-means (AKM) idea [16] to index our database of im-
ages. We re-implemented the method and achieved similar
performance on the Oxford test-set from [16]. (We obtained
0.53 mAP without geometric constraints etc. compared 0.6
mAP in [16] and 0.5 mAP in [10], both also without geo-
metric constraints).

Typically the retrieval results are ranked using a
TF*IDF [14] scheme and a geometric consistency check
for the arrangement of the local features in the image. In
our system we use TF*IDF with

TF = 1 (1)

IDF = −
∑
v∈D

log df(v) (2)

where the candidate document D contains the set of visual
words v1 . . . vn and df(v) is the document frequency of vi-
sual word v.2 We then apply a geometric consistency check
by estimating a homography between candidate and query
image using RANSAC. We retain only candidates when the
number of inliers exceeds a given threshold.

The main difference between our work and others is, that
we don’t focus on a ranked list of images as a final result
from retrieval. Instead, we want the system to tell us, which
object is present in the query image. To that end, we return
a ranked list of object clusters instead of images.

4. Object knowledge from the wisdom of
crowds

The database we use in this paper differs from databases
used in the retrieval works in an important point: it is not or-
ganized by individual images but by object clusters. We can
use this partly redundant information from within the clus-
ters to obtain a better understanding of the objects appear-
ance in an unsupervised manner. Most image retrieval sys-
tems in earlier works did neither keep any specific informa-
tion on the relationships between the items in the database,
nor did they exploit it. The most similar work in that re-
spect is maybe [7], where initial query results are used to
expand a query with additional visual words in order to in-
crease recall. In contrast, in this section, we show how we
can use redundancies in the database in order to segment
objects from the scene and to create more compact inverted
indices. Note that having as compact as possible indices is
very desirable when scaling to Internet-scale retrieval and
annotation systems with millions of images.

2This corresponds to the set of words document model

Figure 3. Visualization of object specific feature confidence scores
for a few well known touristic sights. The brighter the color, the
higher the score.

4.1. Object-specific feature confidence score

The key idea is to use the feature matches from the pair-
wise matching step in section 2. Using the information from
these matches for each image we can derive a score for each
feature, how likely it is to belong to the object that is rep-
resented by the images in the cluster. Only features which
match to many of their counterparts in other images will re-
ceive a high score. In cases where many of the photos are
taken from varying viewpoints around the objects, the back-
ground will receive less matches. As a result the object is
“segmented” from the scene.

We define an object-specific confidence value for fea-
ture f in image i simply as the number of inlying feature
matches stemming from all other images:

co
if = ‖ {(u, v) | (u, v) ∈ Iij , j = 1 . . . No ∧ u = f} ‖

(3)
where No is the number of images in the current object
cluster o. Iij is the set of inlying feature matches for im-
age pair ij. We can now estimate a bounding box based on
a threshold on that confidence value, where the threshold toi
for object o in image i is defined as

toi = max

(
tmin, α ∗

∑Mi

f=1
co
if

Mi

)
, Mi = ‖

{
f |co

if > 0
}
‖

(4)
where tmin and α are parameters. We obtained good results
with tmin = 1 and α = 1

3
. The bounding box is drawn

around all features with confidence higher than toi , in other
words around all features that have a confidence higher than
a fraction α of the mean confidence value.

Examples of the resulting confidence values and esti-
mated bounding boxes are shown in Figure 3. Features,
which lie within the estimated bounding box area are more
likely to lie on the object and can also be used to create im-
proved inverted indices for later retrieval of the object, as
we will demonstrate in the following section.

617



Figure 4. Bad “object” clusters

4.2. Better indices through object-specific feature
sampling

We can use the gained knowledge on the object clus-
ters to improve the efficiency and precision of our indexing
stage.

The estimated bounding boxes can help to compact our
inverted index of visual words. Since features which lie out-
side the bounding box are less likely to belong to the actual
object, we simply remove their visual words from the in-
verted index. This results in a roughly 33% smaller inverted
index without any significant loss in precision. (Exact num-
bers are given in section 6).

An additional improvement in terms of index quality can
be achieved by removing irrelevant data. Here, we resort
again to the meta data collected alongside the images from
flickr. Besides the associated tags, titles etc. it also tells
us which user took the photo. This is valuable informa-
tion, since it allows us to decide how relevant a given object
cluster is for our auto-annotation system. We observed, that
clusters which contain images taken only by a single user
on a single day sometimes distract the retrieval. This is par-
ticularly bad when such a cluster contains hundreds of near
duplicate images, as illustrated by the example in Figure 4.
We thus simply remove these object clusters from ranked
lists returned by the index lookup, or rank them lower.

The last step of the retrieval stage consists of selecting
the best object cluster as a final result. The naı̈ve approach
of simple voting with retrieved images for their parent clus-
ters has the obvious problem of normalization. Normaliz-
ing by cluster size is not feasible either, since some large
clusters cover a wide range of viewpoints for a given item.
Since only photos taken from a similar viewpoint as the
query would match, the normalization by the full cluster
would punish these large clusters (which are often the ones
of highest quality). A simple but effective solution we found
works as follows: only the votes of the T images per cluster
with the highest retrieval scores (i.e. TF*IDF) are counted.
We obtained good results with T = 5.

5. Object-level auto-annotation

The final annotation stage consists of two steps: bound-
ing box estimation and labelling. The bounding box for the
object’s location in the query image is estimated in the same
way as the bounding boxes for the database images. To that

Figure 5. Crawling hotspots.

# Images crawled 4’482’582
# Images processed to date 996’341
# Object Clusters 63’232

Table 1. Dataset statistics.

end, the query image is matched to a number of images in
the cluster returned at the top of the retrieval results to refine
the initial voting from the retrieval stage. The mean num-
ber of votes for all features in the bounding box serves as a
score for the bounding box hypothesis.

Since the crawling stage already added location, related
text and related content to each object cluster, we can simply
copy this information to serve as labels for the query image.

6. Experiments and Results

We report experiments for all steps of the annotation pro-
cess. First we evaluate how well our object retrieval stage
retrieves the correct object clusters from the database. For
the retrieved object clusters we then measure the quality of
the object-level annotation.

The experiments were conducted on a large dataset col-
lected from Flickr ( www.flickr.com ) as described in
section 2. We crawled and downloaded over 4 million im-
ages at 500px resolution to date. Figure 5 shows the hot-
spots (i.e. regions with large numbers of photos) encoun-
tered by our crawling method. The exact statistics of the set
are shown in Table 1.

We report results on a subset of of roughly 1 million
images, since the processing for the mining stage had not
been finished processing at the time of writing this pa-
per. These images are contained in 63′232 object clusters
identified by the mining stage and the estimated bound-
ing boxes cover on average 52% of each image. For this
database, we collected a challenging test-set of 674 images
from the Internet. We selected a number of object clusters
and for each we manually searched Picasa Web-Albums (
www.picasaweb.com ) for images of the same object,
ensuring that the images were not contained in our database.
By using images from Picasa, we obtain typical holiday
snaps shared by users on that platform. The testset is in-
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Figure 6. Examples from our test dataset.

tended to simulate typical photos tourists would take during
a holiday trip, including examples taken from varying view-
points, with partial occlusions of the objects, bad lighting
conditions etc. A few examples are shown in figure 6.

6.1. Efficiency and Precision of Recognition

To achieve good annotation results, the goal of the re-
trieval stage must be to return the correct object cluster with
the highest possible precision, i.e. we rather retrieve no ob-
ject at all than a wrong result. The object clusters that were
collected during the mining process allow us to reach these
high levels of precision, since they contain a large number
of images covering the objects from many viewpoints, light-
ing conditions etc. However, since ultimately we are inter-
ested in world-scale auto annotation of holiday snaps, the
system needs to be not only precise, but also efficient. Thus,
our evaluation emphasizes both criteria.

As introduced in section 3 the retrieval stage is composed
of object cluster candidate retrieval followed by geometric
verification. In order to evaluate the object cluster retrieval
precision, we look at the position of the correct cluster in
the retrieved ranked list of candidates. This is illustrated
in figure 7. We plot the percentage of query results that
contain the correct groundtruth cluster on the y-axis. This
value is set in relation to the rank k in the retrieved list. As
a baseline we perform image retrieval on the entire dataset
using TF ∗ IDF -ranking on a 500K visual vocabulary as
it is used in other works. The vocabulary is trained on the
features of a random subsample of the 1 million images.
We compare this to our optimized indices based on the two
improvements described in section 4. The first optimization
– discarding clusters with photos from only one user from
retrieval – increases precision by about 5%.

The second optimization reduces the index by about 33%
by building the inverted index only from features within the
mined object bounding boxes. This significant memory ef-
ficiency improvement comes at nearly no loss in precision.
We demonstrate the superiority of our approach over ran-
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Figure 7. Recall in top k results after inverted index, no geometry.

Uncompressed Compressed
Full Index 3.7 GB 1.8 GB
BB Features 2.3 GB 1.2GB

Table 2. Inverted index sizes in GB. (BB = Bounding Box)

dom subsampling by also plotting the results achieved with
a 66% random subsampling of features. The precision of
this method is about 10% lower.

Note that the index can be even further compressed by
using standard index compression techniques from text-
retrieval, e.g. lossless compression techniques such as
Simple-9 [14]. Table 2 compares the resulting index sizes.
It demonstrates how the combination of our bounding-box
feature sampling method together with Simple-9 results in
a total index size reduction of 67% compared to the naı̈ve
implementation where each index entry occupies 4 bytes.

After this step, the ranked list contains between 55% and
80% of the correct clusters within the top 20 and top 1000
positions, respectively. This index lookup typically requires
well below 1 second in our current system. The following
geometric verification step should move most of these can-
didates to the top spots.

For this geometric verification step we consider two sce-
narios. In the first we only use the matched visual words
for the homography estimation. Since no more correspon-
dences have to be computed this can be done very efficiently
for large sets of images. Our current implementation per-
forms this step for 1000 images in about 2 seconds. In the
second scenario we trade speed for accuracy by matching
the actual local features of the query to the candidate im-
age features in order to increase the number of correspon-
dences for the homography estimation. In principle this can
be done in near real time (sub 4 seconds) for 1000 images
using dedicated hardware like a GPU. On our testset we
achieved 0% false positives using a threshold of 8 inliers
for the first scenario and 20 inliers for the second scenario.
The final recognition rates (i.e. correct clusters at position 1)
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Feat. Based Vis. Word Based
Full Index 452 (67.1%) 324 (48.1%)
BB Features 447 (66.3%) 325 (48.2%)

Table 3. Final recognition rates after geometric verification. (BB
= Bounding Box)
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Figure 8. ROC plot for object-level auto-annotation.

after the retrieval stage are summarized in table 3. Consid-
ering the extremely challenging nature of our testset, these
results are of good quality.

6.2. Annotation precision

In this section we evaluate how well our system localizes
bounding boxes for the retrieved objects. We evaluate the
localization precision by measuring the intersection-over-
union (IOU) measure for the ground-truth and hypothesis
overlap, as it is commonly done also in object class detec-
tion. An IOU value greater than 0.5 counts as true positive,
any other hypothesis counts as false positive. The evalua-
tion is carried out on all images, that have been correctly
recognized from the previous stages of the annotation sys-
tem, i.e. in this step we measure only how well we can local-
ize the object, given that we already determined its presence
in the image. Figure 8 shows a ROC plot for this experi-
ment. The curve is generated by varying the confidence (c.f .
equation 4) threshold for the estimated bounding boxes. We
reach up to 76.1% localization rate at rather low false pos-
itive rate. Note that the false positives are exclusively gen-
erated from detections which do not have sufficient overlap
with the groundtruth. The geometric verification step af-
ter the retrieval stage circumvents the generation of false
positives. Figure 9 shows final localization and annotation
examples. We show the ground truth bounding box in yel-
low, and our correct detections in green. We also show the
Wikipedia article that was considered relevant for the de-
tected object by our system. All objects are also labeled
with relevant tag and with a GPS location which are omit-
ted in this figure. Note the wide variety of objects, and the
sometimes surprising matches with Wikipedia articles re-
sulting in astonishing annotation results. (Remember, that
from each Wikipedia article an image matched to our object
cluster, which we used to verify the content assignment as

described in section 2.)

7. Conclusions

In this paper we presented a full auto annotation pipeline
for holiday snaps. The complete system functions fully au-
tomatically starting with data crawling up to object-level
annotation with bounding box, relevant tags and Wikipedia
articles, as well as GPS location. The system design allows
scaling to millions of images in the reference database. To
achieve this functionality, we combined a multi-modal data
mining method for community photo collections with state
of the art object retrieval based on visual vocabularies. The
mining method groups photos of objects into object clusters
which serve as exemplar models for items in the database.
These object clusters allow us not only to recognize query
images for annotation from a wide variety of viewpoints,
but also to automatically localize the object in database im-
ages. We showed how to exploit this information to reduce
the index size without loss in retrieval precision, enabling
further scaling. The system was evaluated on challenging
test-data and a large database in terms of correct recogni-
tion and annotation of objects as well as their localization
within the query image.

Acknowledgments: The authors gratefully acknowl-
edge the support by the Swiss SNF NCCR IM2 and the
Swiss KTI.
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