
Beyond the Euclidean distance: Creating effective visual codebooks
using the histogram intersection kernel

Jianxin Wu James M. Rehg
Center for Robotics and Intelligent Machines

School of Interactive Computing, Georgia Institute of Technology
wujx2001@gmail.com,rehg@cc.gatech.edu

Abstract

Common visual codebook generation methods used in
a Bag of Visual words model, e.g. k-means or Gaussian
Mixture Model, use the Euclidean distance to cluster fea-
tures into visual code words. However, most popular visual
descriptors are histograms of image measurements. It has
been shown that the Histogram Intersection Kernel (HIK)
is more effective than the Euclidean distance in supervised
learning tasks with histogram features. In this paper, we
demonstrate that HIK can also be used in an unsupervised
manner to significantly improve the generation of visual
codebooks. We propose a histogram kernel k-means algo-
rithm which is easy to implement and runs almost as fast as
k-means. The HIK codebook has consistently higher recog-
nition accuracy over k-means codebooks by 2-4%. In ad-
dition, we propose a one-class SVM formulation to create
more effective visual code words which can achieve even
higher accuracy. The proposed method has established new
state-of-the-art performance numbers for 3 popular bench-
mark datasets on object and scene recognition. In addition,
we show that the standard k-median clustering method can
be used for visual codebook generation and can act as a
compromise between HIK and k-means approaches.

1. Introduction
Bag of Visual words (BOV) is currently a popular ap-

proach for object and scene recognition. Local features (ei-

ther at interest points, or, densely or randomly sampled)

are extracted and an image is then considered as a bag of
features, i.e. completely ignoring the spatial relationship

among features. Probably due to the lack of an effective

mechanism to encode spatial information among features,

BOV is widely adopted in vision tasks. A typical BOV-

based method has the following steps:

• Extract features. Features descriptors (e.g. SIFT [17]

or HOG [7]) are extracted from local sub-windows.

• Generate a codebook and map features to visual
code words. A visual codebook is a method that di-

vides the feature descriptor space into several regions.

Features in one region correspond to the same visual
code word, which is represented by an integer between

1 and size of the codebook. An image is then encoded

as a histogram of visual code words.

• Learn and test. Various machine learning methods

can be applied to the histogram representation of im-

ages, e.g. SVM is a frequently-used learner.

The quality of the codebook has an important impact on

the success of BOV-based methods. Popular and successful

methods for object and scene categorization typically em-

ploy unsupervised learning methods (e.g. k-means cluster-

ing or a Gaussian Mixture Model) to obtain a visual code-

book. The most popular feature vectors are based on his-

tograms of image measurements such as spatial gradients,

optical flow, or color. For example, SIFT and HOG both

use histograms of pixel intensity gradients in their descrip-

tors. Currently, the Euclidean (l2) distance measure is used

in most codebook generation methods. However, for the

case of supervised classification, it has been shown that the

l2 distance is not the most effective method for comparing

two histograms [18]. In particular, the Histogram Intersec-

tion Kernel (HIK) was demonstrated to give significantly

improved performance.

In this paper we demonstrate that HIK can be used to

significantly improve the generation of visual codebooks

with unsupervised learning. We describe three related tech-

niques which differ in their computational and storage costs.

These new methods are simple to implement, and our soft-

ware implementations are freely available. We show that

for essentially twice the computational cost of the standard

k-means based method (which uses the l2 distance), we can

gain consistent accuracy improvement of 2-4% across a di-

verse collection of object and scene recognition datasets.

Specifically, this paper makes four contributions:

630

2009 IEEE 12th International Conference on Computer Vision (ICCV)
978-1-4244-4419-9/09/$25.00 ©2009 IEEE

First, we show that HIK generates better codebooks and

thus improves recognition accuracy. We generalize and

speedup the method in [18], such that the generation and

application of HIK codebook has the same complexity as

standard k-means. Our proposed method achieves con-

sistent performance improvements over the k-means code-

book, and has established new state-of-the-art performance

numbers for three benchmark object and scene recognition

datasets. More generally, we suggest that HIK should be
used whenever two histograms are compared.

Second, we show that a one-class SVM formulation can

be used to improve upon the effectiveness of the HIK code-

book, by providing well-separated, compact clusters in his-

togram feature space.

Third, we empirically show that k-median is a compro-

mise between k-means and HIK codebooks. K-median’s

performance is consistently lower than the proposed HIK

codebooks, but better than k-means in most cases. It runs as

fast as the proposed method, but uses less storage.

Finally, we validate our method through experiments

on standard datasets, utilizing both the SIFT feature and

CENTRIST, a recently proposed feature based on CENsus

TRansform hISTogram [35], which has been shown to offer

performance advantages for scene classification.

2. Related Work
The main point of this paper is that when histogram fea-

tures are employed, the histogram intersection kernel (HIK)

should be used to compare them. HIK was introduced by

Swain and Ballard [27] for color-based object recognition.

[21] demonstrated that HIK forms a positive definite ker-

nel, facilitating its use in SVM classifiers. Simultaneously,

works such as [17, 7] demonstrated the value of histogram

features for a variety of tasks. However, the high computa-

tional cost of HIK at run-time remained a barrier to its use

in practice. This barrier was removed for the case of SVM

classifiers by the work of Maji, Berg and Malik, who pre-

sented a technique to accelerate the kernel evaluations [18].

In this paper we extend the results of [18] in two ways:

First, we demonstrate that the speedup of HIK can be ex-

tended to codebook generation (and unsupervised learning

in general). Second, our Algorithm 2 provides an exact

O(d) method, which makes it possible to obtain the max-

imum efficiency without any potential loss of accuracy.

K-means is the most widely used method for codebook

generation [26]. However, several alternative strategies

have been explored. K-means usually positions its clusters

almost exclusively around the densest regions. Jurie and

Triggs used a mean-shift type clustering method to over-

come this drawback [12]. There are also information the-

oretic methods that try to capture the “semantic” common

visual components by minimizing information loss [16, 13].

An extreme method was presented in [28] that divided the

space into regular lattice instead of learning a division from

data. There are also efforts to build hash functions (multiple

binary functions / hash bits) in order to accelerate distance

computations [32]. In this work we propose a new alterna-

tive to k-means, based on the histogram intersection kernel.

In k-means based methods, a code word is represented

by the cluster center (average of all features that belongs

to this code word), which is simple and fast to com-

pute. It was discovered that assigning a feature to multi-

ple code words (soft-assignment) may improve codebook

quality [23, 29]. Within a probabilistic framework, code

words can be represented by the Gaussian Mixture Model

(GMM) [22, 33]. GMM has better representation power

than a single cluster center. However, it requires more com-

putational power. Another interesting representation is hy-

perfeature [1], which considers the mapped code word in-

dexes as a type of image feature and repeatedly generates

new codebooks and code words into a hierarchy.

Methods have been proposed to accelerate the space di-

vision and code word mapping. [20] used a tree structure

to divide the space hierarchically and [19] used ensembles

of randomly created cluster trees. Both methods map visual

features to code words much faster than k-means.

Some methods do not follow the divide then represent
pattern. For example, [36] unified the codebook generation

with classifier learning. In another interesting research Vo-

gel and Schiele manually specified a few code words and

used supervised learning to learn these concepts [31].

It is worth noting that all of these previous methods used

the l2 distance metric, and could therefore in principle be

improved through use of HIK.

3. HIK Visual Codebook
3.1. The Histogram Intersection Kernel

Let h = (h1, . . . , hd) ∈ Rd
+ be a histogram. h could

represent an image (e.g. histogram of code words) or a sub-

window (e.g. SIFT feature descriptor). The histogram in-

tersection kernel κHI is defined as follows

κHI(h1,h2) =
∑d

i=1
min(h1i, h2i). (1)

It is proved in [21] that κHI is a valid positive definite ker-

nel. Thus there exists a mapping φ that maps any histogram

h to a corresponding vector φ(h) in a high dimensional

(possibly infinite dimensional) feature space Φ, such that

κHI(h1,h2) = φ(h1) · φ(h2). Through the nonlinear map-

ping φ, histogram similarity is equivalent to an inner prod-

uct in the feature space Φ.

This kernel trick makes it possible to use the histogram

intersection kernel in creating codebooks, while keeping the

simplicity of k-means clustering. We propose to use a his-

togram kernel k-means algorithm to generate visual code-

books. In Algorithm 1, by kernel k-means in the feature

631

space spanned by φ, histograms are compared using HIK

instead of the inappropriate Euclidean distance.

Algorithm 1 HIK Visual Codebook Generation

1: {Given n histograms h1, . . . ,hn in Rd
+, m (size of the

codebook), and ε (tolerance). }
2: {The output is a mapping from a histogram to a visual

code word index, w1(h∗) : Rd
+ → {1, . . . , m}.}

3: t← 0, e0 ←∞
4: Use the k-means++ method [2] to choose m histograms

h̄1, . . . , h̄m, and use mi = φ(h̄i) as initial centers. φ
is the mapping associated with κHI.

5: repeat
6: For all 1 ≤ i ≤ n, li ← arg min1≤j≤m ‖φ(hi) −

mj‖2. (Set li to index of the center that is closest to

the data point hi.)

7: For all 1 ≤ i ≤ m, πi = {j|lj = i, 1 ≤ j ≤ n}. (Set

πi to the set of indexes that belong to the center mi.)

8: For all 1 ≤ i ≤ m, mi ←
P

j∈πi
φ(hj)

|πi| . (Update the

centers.)

9: t← t + 1, et =
∑

1≤i≤n ‖φ(hi)−mli‖2
10: until et−1 − et ≤ ε.

11: output: For any histogram h∗ ∈ Rd
+,

w1(h∗) = arg min1≤i≤m ‖φ(h∗)−mi‖2. (2)

Note that since k-means++ used in Algorithm 1 is a ran-

domized algorithm, two runs of Algorithm 1 with the same

input will possibly generate different results.

3.2. Fast Evaluation

The major component of Algorithm 1 is a kernel k-

means algorithm [25] using κHI (c.f. Eqn. 1). Since the

centers mi are vectors in the unrealized, high dimensional

space Φ, the key computation is carried out in the following

way (using the usual kernel trick φ(x) · φ(y) = κHI(x,y)
such that mi does not need to be explicitly generated):

‖φ(h∗)−mi‖2 =
∥∥∥∥φ(h∗)−

∑
j∈πi

φ(hj)
|πi|

∥∥∥∥
2

(3)

=‖φ(h∗)‖2 +

∑
j,k∈πi

κHI(hj ,hk)

|πi|2 −
2
∑

j∈πi

κHI(h∗,hj)

|πi| .

(4)

The first term in Eqn. 4 does not affect the result in

lines 6 and 11 of Algorithm 1, and the second term can be

pre-computed. Thus most of the computations are spent in

computing the last term
∑

j∈πi
κHI(h∗,hj).

Note that this term is similar to the binary SVM classifier

using HIK, which has the following form

sgn
(∑

i∈π
αiyiκHI(h∗,hi) + ρ

)
(5)

where hi, αi, and yi are support vectors and their corre-

sponding weights and labels.

A naive method will take O(|πi|d) steps to compute

Eqn. 4. In [18], Maji, Berg and Malik proposed fast meth-

ods to compute Eqn. 5 (exact answer in O(d log |π|) steps

and approximate answer in O(d) steps.) In this paper we

generalize their method and propose a variant that finds the

exact answer for Eqn. 4 in O(d) steps.

Note that both Eqn. 5 and the last term in Eqn. 4 are

special forms of the following expression

f(h∗) =
∑

i∈π
ciκHI(h∗,hi), (6)

where π indexes a set of histograms (support vectors) and

ci are constant coefficients.

A histogram of visual code word indexes has the prop-

erty that every histogram component is a non-negative inte-

ger, i.e. it is a vector in Nd. Similarly, a feature descriptor

histogram can usually be transformed into the space Nd.

For example, the SIFT descriptors are stored as vectors in

N128. In general, a vector in Rd
+ can be transformed into

Nd by first multiplying an integer to the histogram and then

rounding its components to nearest integers.

In the rest of this paper we assume that any histogram

h = (h1, . . . , hd) satisfies that hi ∈ N and hi ≤ hmax for

all i. Then the quantity f(h∗) can be computed as follows,

f(h∗) =
∑
i∈π

ciκHI(h∗,hi)

=
∑
i∈π

∑
1≤j≤d

ci min(h∗j , hij)

=
∑

1≤j≤d

(∑
i∈π

ci min(h∗j , hij)

)

=
∑

1≤j≤d

⎛
⎝ ∑

h∗j≥hij

cihij + h∗j
∑

h∗j<hij

ci

⎞
⎠ . (7)

Note that the two summands in Eqn. 7 can both be pre-

computed. It is shown in [18] that Eqn. 7 is a piece-wise

linear function of h∗j . Thus using a binary search for h∗j ,

Eqn. 7 can be computed in O(d log |π|) steps. However,

since we can assume that h∗j is an integer in the range

0..hmax, we have an even faster computing method. Let

T be a table of size d × (1 + hmax), with
∑

k≥hij
cihij +

k
∑

k<hij
ci being assigned to the (j, k)-th entry T (j, k),

1 ≤ j ≤ d, 0 ≤ k ≤ hmax. Then it is clear that

f(h∗) =
∑d

j=1 T (j, h∗j). This method is summarized in

Algorithm 2.

[18] also approximated histogram components by uni-

formly sampled points in the range of possible values in or-

der to achieve the O(d) speed. However, the uniform sam-

pling strategy might be undesirable because histogram cell

values usually concentrate in a small range.

It is obvious that f(h∗) can be evaluated in O(d) steps

after the table T is pre-computed. Because Algorithm 2

only involves table lookup and summation, it is faster (less

632

Algorithm 2 Fast Computing of HIK Sums

1: {Given n histograms h1, . . . ,hn in Nd, with 0 ≤
hij ≤ hmax for 1 ≤ i ≤ n, 1 ≤ j ≤ d }

2: {The output is a fast method to compute f(h∗) =∑n
i=1 ciκHI(h∗,hi), where h∗ ∈ Nd.}

3: Create T , a d× (1 + hmax) table.

4: T (j, k)←∑
k≥hij

cihij +k
∑

k<hij
ci, for 1 ≤ j ≤ d,

0 ≤ k ≤ hmax.

5: output: f(h∗) =
∑d

j=1 T (j, h∗j).

overhead) than the approximation scheme in [18], which

is also O(d). Depending on the relative size of hmax

and the number of approximation bins used in [18], Algo-

rithm 2’s storage requirement (O(hmaxd)) could be larger

or smaller than that of [18]. The pre-computation of T re-

quires O(dnhmax) steps. Although filling in the table T is

computationally expensive, it is done only once.1 It is also

worth noting that under our assumption Algorithm 2’s result

is precise rather than approximate.

Both the pre-computation complexity and storage re-

quirement are linear in hmax, which is a parameter speci-

fied by users. Our experiments show that while a too small

hmax usually produces inferior results, larger hmax does not

necessarily improves system performance. In this paper, we

choose hmax = 128, which seems to give the best results in

our experiments.

Our algorithms have the same complexity as a usual lin-

ear k-means when generating a visual codebook or mapping

from histograms to visual code word indexes (Eqn. 2 or 4).

In practice the proposed method takes about twice the time

of k-means. In summary, the proposed method generates a

visual codebook that can not only run almost as fast as the

k-means method, but also can utilize the non-linear similar-

ity measure κHI that is suitable for comparing histograms.

3.3. One-class SVM code word generation

A codebook generated by the k-means algorithm first di-

vides the space Rd
+ into m regions, then represents each

code word (region) by the centroid of vectors (histogram,

feature vectors, etc.) that fall into this region. This ap-

proach is optimal if we assume that vectors in all regions

follow the Gaussian distributions with the same spherical

covariance matrix (only differ in their means).

This assumption rarely holds. Different regions usu-

ally have very different densities and covariance structures.

Simply dividing the space Rd
+ into a Voronoi diagram from

the set of region centers is, in many cases, misleading.

However, further refinements are usually computationally

prohibitive. For example, if we model regions as Gaussian

1A better method is to first bucket sort each dimension of the his-

tograms then fill in the values of T sequentially, which takes only

O (d(n + hmax)) steps.

distributions with distinct covariance matrices, the genera-

tion and mapping from visual features to code words will re-

quire much more storage and computational resources than

we can afford.

We propose to use one-class SVM [24] to represent the

divided regions in an effective and computationally effi-

cient way. Given a set of histograms in a region hπ =
{h1, . . . ,hn}, we construct a one-class SVM with parame-

ter ν ∈ (0, 1],

sgn

(∑
i∈π

αiκHI(h,hi)− ρ

)
(8)

where αi’s are non-negative, sparse and
∑

i αi = 1. Intu-

itively, a one-class SVM classifier seeks a “simple” (com-

pact) subset of hπ (or the divided region) that retains a large

portion of the histograms (or densities). It is proved that ν
is the upper bound on the fraction of outliers (i.e. on which

Eqn. 8 are less than 0), and at the same time a lower bound

on the fraction of support vectors (i.e. αi �= 0) [24].

The one-class SVM (using HIK) summarizes the distri-

bution of histograms inside a visual code word. It takes

into consideration the shape and density of the histogram

distribution. It seeks to include most of the histograms (at

least (1 − ν)|π|) in a compact hypersphere in the feature

space, while paying less attention to those borderline cases

(at most ν|π| examples). We believe that this compact hy-

persphere better summarizes a visual code word.

At the same time, these new code words can be computed

very efficiently. Eqn. 8 is evaluated in O(d) steps because

it is again a special case of Algorithm 2. We propose Al-

gorithm 3 to use the one-class SVM to generate visual code

words.2 In this paper, we set the parameter ν = 0.2.

Algorithm 3 One-class SVM Code Word Generation

1: {Use Algorithm 1 to generate the divisions πi (i =
1, . . . , m) from n histogram h1, . . . ,hn in Rd

+. }
2: For each division 1 ≤ i ≤ m, train a one-class SVM

from its data hπi
with a parameter ν,

wi
2(h∗) =

∑
j∈πi

αjκHI(h∗,hj)− ρi (9)

3: output: For any histogram h∗ ∈ Rd
+,

w2(h∗) = arg maxm
i=1 wi

2(h∗). (10)

In many applications a histograms h = (h1, . . . , hd) sat-

isfy that ‖h‖1 =
∑d

i=1 hi = N is a constant. Under this

condition, Eqn. 9 is equivalent to

wi
2(h∗) = r2

i − ‖φ(h∗)−mi‖2
where mi =

∑
j∈πi

αjhj and r2
i = N + ‖mi‖2 − 2ρi. In

other words, a histogram is considered as belonging to the

i-th visual word if it is inside the sphere (in the feature space

Φ) centered at mi with radius ri. A sphere in Φ is different

2Note that we use the space Rd
+ because Algorithm 3 is not restricted

to Nd.

633

from the a usual k-means sphere (in Rd
+) because it respects

the similarity measure κHI, and its radius ri automatically

adapts with the distribution of histograms in a visual word.

Although the proposed algorithms are described using

the histogram intersection kernel κHI, they are readily ap-

plied to other kernel types. For example, if we use the linear

kernel κLIN(h1,h2) = h1 · h2, Algorithm 1 will reduce to

a usual k-means visual codebook generation method, and

Algorithm 3 will perform one-class SVM in the space Rd
+.

3.4. K-median codebook generation

Although k-means (or, equivalently κLIN or l2 distance)

is the most popular codebook generation method, the his-

togram intersection kernel has a closer connection to the l1
distance. For two numbers a and b, it is easy to show that

2 min(a, b) + |a− b| = a + b. As a consequence, we have

2κHI(h1,h2) + ‖h1 − h2‖1 = ‖h1‖1 + ‖h2‖1 . (11)

In cases when ‖h‖1 is constant for any histogram h, κHI

and the l1 distance are linearly correlated.

For an array x1, . . . , xn, it is well known that the value

that minimizes the l1 error (x∗ = arg minx

∑n
i=1 |x− xi|)

equals the median value of the array. Thus k-median is a

natural alternative for codebook generation.3

K-median has been less popular than k-means for the

creation of visual codebooks. An online k-median algo-

rithm has been used by Larlus and Jurie to create visual

codebooks in the Pascal challenge [9]. In Table 2 (Sec-

tion 4.2) we will compare the batch version of k-median

to k-means and the proposed HIK method.

4. Experiments

4.1. Datasets and Setup

We validate the proposed methods using three datasets:

the Caltech 101 object recognition dataset [10], the 15 class

scene recognition dataset [14], and the 8 class sports events

dataset [15]. In each dataset, the available data are ran-

domly split into a training set and a testing set based on

published protocols on these datasets. The random splitting

is repeated 5 times, and the average accuracy is reported.

In each train/test splitting, a visual codebook is generated

using the training images, and both training and testing im-

ages are transformed into histograms of code words. Accu-

racy is computed as the mean accuracy of all categories (i.e.

average of the diagonal entries in the confusion matrix).

The proposed algorithms can efficiently process a huge

number of histogram features, e.g. approximately 200k to

320k histograms are clustered across the training sets in the

three datasets in about less than 6 minute.

3The only difference between k-median and k-means is that k-median

uses l1 instead of l2 as the distance metric.

Figure 1: Illustration of the level 2, 1, and 0 split of an

image.

In the BOV model, we use 16x16 image patches and

densely sample features over a grid with a spacing of 2, 4,

or 8 pixels. We use two types of feature descriptors: SIFT

for Caltech 101, and CENTRIST (CENsus TRansform hIS-

Togram, refer to [35]) for the other two datasets.4 All fea-

ture vectors are scaled and rounded such that a histogram

only contains non-negative integers that approximately sum

to 128 (thus hmax = 128 is always valid.)

The first step is to use feature descriptors from the train-

ing images to form a visual codebook, in which we use

m = 200 to generate 200 visual code words. Next every

feature is mapped to an integer (code word index) between 1

and m. Thus an image or image sub-window is represented

by a histogram of code words in the specified image region.

In order to incorporate spatial information, we use the spa-

tial hierarchy in [35], as illustrated in Fig. 1. An image

is represented by the concatenation of histograms from all

the 31 sub-windows in Fig. 1, which is a 6200 dimensional

histogram. To capture the edge information, we sometimes

use Sobel gradients of an input image as an additional in-

put, and concatenate histograms from the original input and

Sobel gradient image (which is 12400 dimensional). Fol-

lowing [3], we also sample features at 5 scales.5

SVM is used for classification. LIBSVM [6] is used for

the scene and sports dataset. It uses the 1-vs-1 strategy,

which will produce too many classifiers for the Caltech 101

dataset (more than 5000). Instead we use the Crammer &

Singer formulation in BSVM [11]. Since we are classifying

histograms, we modified both LIBSVM and BSVM so that

they are able to utilize the histogram intersection kernel.

4.2. Main Results

We conducted several sets of experiments to validate the

proposed algorithms. Experimental results are organized

using the following rule: the texts in italic type summa-

rize findings from one set of experiments and details are

described after the italic texts. We first present the main re-

sults. Mean / standard deviation values and paired t-tests are

used to show the benefit of HIK codebooks (Algorithm 1),

while the Wilcoxon test is used for Algorithm 3.

4We will also evaluate the effect when these two feature types are

switched in these datasets.
5For more details, please refer to the source code of our libHIK

package, which is available at http://www.cc.gatech.edu/cpl/
projects/libHIK.

634

Table 1: Results of HIK, k-median and k-means codebooks and one-class

SVM code words. (a), (b), and(c) are results for the Caltech 101, 15 class

scene, and 8 class sports datasets, respectively. κHI and κLIN means that

a histogram intersection or linear kernel is used, respectively. ocsvm and

¬ocsvm indicate whether one-class SVM is used in generating code words.

B and ¬B indicate whether Sobel images are concatenated or not. And

s = 4 or s = 8 is the grid step size when densely sampling features. The

number of training/testing images in each category are indicated in the

sub-table captions. The best result in each column is shown in boldface.

B, s = 4 B, s = 8 ¬B, s = 8

κHI, ocsvm 67.44±0.95% 65.20±0.91% 61.00±0.90%
κHI,¬ocsvm 66.54±0.58% 64.11±0.84% 60.33±0.95%

k-median 66.38±0.79% 63.65±0.94% 59.64±1.03%

κLIN, ocsvm 62.69±0.80% 60.09±0.92% 56.31±1.13%

κLIN,¬ocsvm 64.39±0.92% 61.20±0.95% 57.74±0.70%

(a) Caltech 101, 15 train, 20 test

B, s = 4 B, s = 8 ¬B, s = 8

κHI, ocsvm 84.12±0.52% 84.00±0.46% 82.02±0.54%
κHI,¬ocsvm 83.59±0.45% 83.74±0.42% 81.77±0.49%

k-median 83.04±0.61% 82.70±0.42% 80.98±0.50%

κLIN, ocsvm 79.84±0.78% 79.88±0.41% 77.00±0.80%

κLIN,¬ocsvm 82.41±0.59% 82.31±0.60% 80.02±0.58%

(b) 15 class scene, 100 train, rest test

B, s = 4 B, s = 8 ¬B, s = 8

κHI, ocsvm 84.21±0.99% 83.54±1.13% 81.33±1.56%

κHI,¬ocsvm 83.17±1.01% 83.13±0.85% 81.87±1.14%
k-median 82.13±1.30% 81.71±1.30% 80.25±1.12%

κLIN, ocsvm 80.42±1.44% 79.42±1.51% 77.46±0.83%

κLIN,¬ocsvm 82.54±0.86% 82.29±1.38% 81.42±0.76%

(c) 8 class sports, 70 train, 60 test

Table 2: Comparison of three codebook generation methods. The average

accuracy on three datasets are shown in the first row. In the last 2 rows, K-

means is used as a baseline, i.e. a value 2 means 200% of that of k-means.

HIK k-median k-means

Accuracy 78.59% 77.18% 76.45%

Computation cost 2 2 1

Storage requirement hmax 1 1

Histogram Intersection Kernel Visual Codebook (Algo-
rithm 1) greatly improves classification accuracy. We com-

pare the classification accuracies of systems that use Algo-

rithm 1 (i.e. using κHI) and the usual k-means algorithm

(i.e. using κLIN) and k-median. From the experimental re-

sults in Table 1, it is obvious that in all three datasets, the

classification accuracy with a κHI-based codebook is con-

sistently higher than that with a k-means or k-median code-

book. Using a paired t-test with significance level 0.05, the

differences are statistically significant in 16 out the 18 cases

in Table 1, when comparing κHI and κLIN based codebooks.

K-median is a compromise between k-means and HIK
codebooks. As shown in Table 1 and 2, HIK codebooks

consistently outperformed k-median codebooks. How-

ever, k-median generally outperformed the popular k-means

codebooks. Furthermore, k-median requires less memory

than the proposed method.

40 60 80 100 120
0

20

40

60

80

100

120

140

160

180

Distribution of squared distance to cluster center
(histogram intersection kernel in feature space)

N
um

be
r

of
 p

oi
nt

s

After one−class SVM

Before one−class SVM

50 100 150 200 250
0

10

20

30

40

50

60

70

Distribution of squared distance to cluster center
(Euclidean distance)

N
um

be
r

of
 p

oi
nt

s

After one−class SVM

Before one−class SVM

Figure 2: Effects of one-class SVM.

HIK codebook can be computed efficiently (Algorithm 2).
We have shown that Algorithm 2 evaluates in O(d) steps,

in the same order as k-means. Empirically, the κHI-based

method spent less than 2 times CPU cycles than that of k-

means. For example, the proposed method took 105 sec-

onds to generate a codebook for the Caltech 101 dataset,

while k-means used 56 seconds in our experiments.

One-class SVM improves histogram intersection kernel
code words (Algorithm 3). The t-test is not powerful enough

here because we have only 5 paired samples and they are

not necessarily normally distributed. The Wilcoxon signed-

rank test is more appropriate [8] to show the effect of Al-

gorithm 3. Algorithm 3 improved classification accuracy of

the κHI-based method in 8 out of 9 cases in Table 1. The

Wilcoxon test shows that the difference is significant at sig-

nificance level 0.02.

In short, using HIK codebooks and one-class SVM alto-

gether generated the best results in almost all cases (best re-

sults are shown in boldface within each column of Table 1).

One-Class SVM degrades usual k-means code words. It

is interesting to observe a completely reversed trend when

κLIN is used with one-class SVM. Applying Algorithm 3

in a usual k-means method reduced accuracy in all cases.

Since a vector in Rd is not an appropriate understanding of

a d-dimensional histogram, we conjecture that Algorithm 3

with κLIN produced a better division of the space Rd, but

probably a worse one in the space of histograms.

Fig. 2 shows the effect of applying Algorithm 3 to ex-

ample code words. The distribution of squared distance to

cluster center becomes more compact in case of κHI with

a minor increase in the average error. However, in the k-

means case, the distances spread to larger values.

There is not an obvious kernel for the l1 distance, and so

we did not use one-class SVM for codebooks generated by

k-median.

4.3. Effects of Information Content

Next we study the effects of using different type and

amount of information, e.g. different type of base features

635

Table 3: Results when features are sampled in only 1 image scale, using

¬B and s = 8.

Caltech101 15 scene 8 sports

κHI, ocsvm 57.70±0.59% 82.30±0.49% 77.54±1.49%
κHI,¬ocsvm 57.13±0.57% 82.07±0.53% 77.33±1.01%

κLIN, ocsvm 53.18±0.98% 78.70±0.51% 73.42±1.41%

κLIN,¬ocsvm 54.06±0.24% 80.48±0.83% 76.29±0.60%

Table 4: Results when feature type was switched for object and scene

recognition. CENTRIST was used in Caltech 101 and SIFT in the other

two in the first row, and features are switched in the second row. We use

¬B, s = 8, κHI, and ocSVM. Note that the second row contains the top

right corner numbers in Table 1.

Caltech101 15 scene 8 sports

53.25 ± 0.80% 78.54 ± 0.22% 81.17 ± 0.65%

61.00 ± 0.90% 82.02 ± 0.54% 81.33 ± 1.56%

and step size in dense feature sampling.

Sampling features at 5 scales improved accuracy. It is

advantageous to sample features from multiple scaled ver-

sions of the input image. Comparing Table 3 and the last

columns of Table 1, we find that sampling more features

improves object recognition by a large margin while the im-

provement to scene recognition is relatively small. Also,

Table 3 reinforced all the conclusions from Section 4.2.

Smaller step size is better. Similarly, a smaller step size

means that more features are sampled. Table 1 shows that

when other conditions were the same, s = 4 outperformed

s = 8 in general. However, we again observe differences

between object and scene recognition. The accuracy dif-

ference in Caltech 101 is significant. In the sports dataset,

s = 4 slightly outperformed s = 8 and they are indistin-

guishable in the 15 class scene dataset. Thus it is not neces-

sary to compute s = 2 results for the two scene recognition

datasets. In Caltech 101, however, s = 2 further improved

recognition accuracy to 67.82± 0.59% (using κHI, ocSVM,

and B.)

Use the right feature for different tasks. SIFT is widely

used in object recognition for its performance. CENTRIST

has been shown as a suitable feature for place and scene

recognition [35]. As shown in Table 4, if we use SIFT for

scene recognition and CENTRIST for object recognition,

the recognition accuracies are significantly reduced.

More code words are (sometimes) better. We also exper-

imented with different number of code words. In the scene

recognition tasks, we did not observe significant changes in

recognition accuracies. In the Caltech 101 dataset, however,

a higher accuracy 70.74± 0.69% was achieved using 1000

code words (with κHI, ocSVM, B, and s = 2).

In summary, we need to choose the appropriate feature

for a specific task (CENTRIST for scene recognition and

SIFT for object recognition), and incorporate as much in-

formation as possible.

What’s more interesting is the different behaviors of ob-

ject and scene recognition problems exhibited in our experi-

ments. Scene recognition requires different type of features

(CENTRIST instead of SIFT) and less information (perfor-

mance almost stabilize when step size is 8 and codebook

size is 200). We strongly recommend the CENTRIST de-

scriptor (or variants like PACT [34]) and the proposed algo-

rithms for recognizing place and scene categories.

4.4. Comparison with previously published results

In this section we will compare our methods with previ-

ously published results. The parameters we use in the pro-

posed methods are κHI, ocSVM, and B.

In the scene recognition tasks, the proposed method

achieved the highest accuracy in the literature. In the 15

class scene recognition task, the proposed method has an

accuracy of 84.12 ± 0.52%. The Spatial Pyramid Match-

ing method achieved 81.4± 0.5%. SP-pLSA [5], a method

combining spatial pyramids and pLSA (probabilistic Latent

Semantic Analysis), had 83.7% correct recognitions. The

sports dataset was first published in [15], which achieved a

73.4% accuracy. The method in [15] used manual segmen-

tation and object labels as additional inputs for their train-

ing method. Spatial PACT [34], using a spatial hierarchy

of PACT (which is simply PCA of CENTRIST), achieved

78.50% correct category predictions, which is still inferior

to the proposed methods (84.21±0.99%) by a large margin.

Results for the Caltech 101 dataset are usually divided

into two types: methods that use a single type of feature

and methods that integrate multiple cues (e.g. color, texture,

shape, etc). Several methods that use multiple cues outper-

formed our method, for example [4, 3, 30]. The proposed

method (which uses only a single type of feature), however,

has much higher accuracy than published single cue meth-

ods. With m = 1000 and s = 2 and 15 training examples

per category, its accuracy is 70.74±0.69%. This accuracy is

higher than methods such as NBNN (Naive-Bayes Nearest-

Neighbor) [3] (65.0± 1.14%). For more single cue results,

please refer to [3]. It is expected that when the κHI-based

codebook and one-class SVM code words are used, the pro-

posed method will be integrated into and further improve

the multiple cue methods.

5. Conclusions

In this paper we show that when the Histogram Intersec-

tion Kernel (HIK) is used as the similarity measure in clus-

tering feature descriptors that are histograms, the generated

visual codebooks produce better code words and as a conse-

quence, improved Bag of Visual words classifiers. We pro-

pose a HIK based codebook generation method which runs

almost as fast as k-means and has consistently higher accu-

racy than k-means codebooks by 2-4%. Unlike k-means in

which cluster centroids are used to represent code words,

636

we proposed a one-class SVM formulation (using HIK)

to generate better code words. The proposed algorithms

achieve state-of-the-art accuracy on three benchmark object

and scene recognition datasets. Although k-median is rarely

used to generate codebooks, we empirically evaluated k-

median codebooks and recommend it as a compromise be-

tween the proposed method and k-means. K-median code-

books have lower accuracy than HIK codebooks but usually

have higher accuracy than k-means codebooks. It also re-

quires less memory than HIK codebooks.

We also provide a software package, named libHIK,

which contains implementations of the methods proposed

in this paper. The software is available at http://www.
cc.gatech.edu/cpl/projects/libHIK.

This research was supported in part by a grant from the

Google Research Awards Program.

References
[1] A. Agarwal and B. Triggs. Multilevel image coding with

hyperfeatures. IJCV, 78(1):15–27, 2008.

[2] D. Arthur and S. Vassilvitskii. k-means++: the advantage

of careful seeding. In 18th Symposium on Discrete Algo-
rithms (SODA), pages 1027–1035, 2007.

[3] O. Boiman, E. Shechtman, and M. Irani. In defense of

nearest-neighbor based image classification. In CVPR, 2008.

[4] A. Bosch, X. Muñoz, and A. Zisserman. Image classification

using random forests and ferns. In ICCV, 2007.

[5] A. Bosch, A. Zisserman, and X. Muñoz. Scene classifica-

tion using a hybrid generative/discriminative approach. IEEE
TPAMI, 30(4):712–727, 2008.

[6] C.-C. Chang and C.-J. Lin. LIBSVM: a library for sup-
port vector machines, 2001. Software available at http:
//www.csie.ntu.edu.tw/˜cjlin/libsvm.

[7] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In CVPR, volume 1, pages 886–893, 2005.

[8] J. Demšar. Statistical comparisons of classifiers over multi-

ple data sets. JMLR, 7:1–30, 2006.

[9] M. Everingham, A. Zisserman, C. Williams, and L. V. Gool.

The PASCAL visual object classes challenge 2006 (VOC

2006) results. Technical report, 2006.

[10] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative

visual models from few training example: an incremental

bayesian approach tested on 101 object categories. In CVPR
2004, Workshop on Generative-Model Based Vision, 2004.

[11] C.-W. Hsu and C.-J. Lin. BSVM, 2006. Software available at

http://www.csie.ntu.edu.tw/˜cjlin/bsvm.

[12] F. Jurie and B. Triggs. Creating efficient codebooks for vi-

sual recognition. In ICCV, volume 1, pages 604–610, 2005.

[13] S. Lazebnik and M. Raginsky. Supervised learning of quan-

tizer codebooks by information loss minimization. IEEE
TPAMI, 31(7):1294–1309, 2009.

[14] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of

features: Spatial pyramid matching for recognizing natural

scene categories. In CVPR, volume II, pages 2169–2178,

2006.

[15] L.-J. Li and L. Fei-Fei. What, where and who? Classifying

events by scene and object recognition. In ICCV, 2007.

[16] J. Liu and M. Shah. Scene modeling using Co-Clustering. In

ICCV, 2007.

[17] D. Lowe. Distinctive image features from scale-invariant

keypoints. IJCV, 60(2):91–110, 2004.

[18] S. Maji, A. C. Berg, and J. Malik. Classification using inter-

section kernel support vector machines is efficient. In CVPR,

2008.

[19] F. Moosmann, E. Nowak, and F. Jurie. Randomized

clustering forests for image classification. IEEE TPAMI,
30(9):1632–1646, 2008.

[20] D. Nistér and H. Stewénius. Scalable recognition with a vo-

cabulary tree. In CVPR, volume 2, pages 2161–2168, 2006.

[21] F. Odone, A. Barla, and A. Verri. Building kernels from

binary strings for image matching. IEEE Trans. Image Pro-
cessing, 14(2):169–180, 2005.

[22] F. Perronnin. Universal and adapted vocabularies for generic

visual categorization. IEEE TPAMI, 30(7):1243–1256, 2008.

[23] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman.

Lost in quantization: Improving particular object retrieval in

large scale image databases. In CVPR, 2008.

[24] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola,

and R. C. Williamson. Estimating the support of a high-

dimensional distribution. Neural Computation, 13(7):1443–

1471, 2001.

[25] B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear com-

ponent analysis as a kernel eigenvalue problem. Neural Com-
putation, 10(5):1299–1319, 1998.

[26] J. Sivic and A. Zisserman. Video Google: A text retrieval

approach to object matching in videos. In ICCV, volume 2,

pages 1470–1477, 2003.

[27] M. J. Swain and D. H. Ballard. Color indexing. IJCV,

7(1):11–32, 1991.

[28] T. Tuytelaars and C. Schmid. Vector quantizing feature space

with a regular lattice. In ICCV, 2007.

[29] J. C. van Gemert, J.-M. Geusebroek, C. J. Veenman, and

A. W. Smeulders. Kernel codebooks for scene categoriza-

tion. In ECCV, 2008.

[30] M. Varma and D. Ray. Learning the discriminative power-

invariance trade-off. In ICCV, 2007.

[31] J. Vogel and B. Schiele. Semantic modeling of natural scenes

for content-based image retrieval. IJCV, 72(2):133–157,

2007.

[32] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In

NIPS 21, pages 1753–1760, 2009.

[33] J. Winn, A. Criminisi, and T. Minka. Object categorization

by learned universal visual dictionary. In ICCV, volume 2,

pages 1800–1807, 2005.

[34] J. Wu and J. M. Rehg. Where am I: Place instance and cate-

gory recognition using spatial PACT. In CVPR, 2008.

[35] J. Wu and J. M. Rehg. CENTRIST: A visual descriptor

for scene categorization. Technical Report GIT-GVU-09-05,

GVU Center, Georgia Institute of Technology, 2009.

[36] L. Yang, R. Jin, R. Sukthankar, and F. Jurie. Unifying dis-

criminative visual codebook generation with classifier train-

ing for object category recognition. In CVPR, 2008.

637

