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Abstract
Most methods for object class segmentation are formu-

lated as a labelling problem over a single choice of quanti-
sation of an image space - pixels, segments or group of seg-
ments. It is well known that each quantisation has its fair
share of pros and cons; and the existence of a common op-
timal quantisation level suitable for all object categories is
highly unlikely. Motivated by this observation, we propose
a hierarchical random field model, that allows integration
of features computed at different levels of the quantisation
hierarchy. MAP inference in this model can be performed
efficiently using powerful graph cut based move making al-
gorithms. Our framework generalises much of the previous
work based on pixels or segments. We evaluate its efficiency
on some of the most challenging data-sets for object class
segmentation, and show it obtains state-of-the-art results.

1. Introduction
Object class based image segmentation is one of the most

challenging and important problems in computer vision. It

aims to assign an object label to each pixel of a given image;

and can be seen as a generalisation of the object recognition

and localisation tasks. Over the last few years many dif-

ferent methods have been proposed for this problem, which

can be broadly categorised on the basis of their choice of

the quantisation (partitioning) of the image space1. Some

methods are formulated in terms of pixels [26] (representing

the finest quantisation), others used segments [1, 10, 32],

groups of segments [19], or intersections of multiple seg-

mentations [18], while some have gone to the extreme of

looking at the whole image in order to reason about ob-

ject segmentation [17]. We present a model together with

an efficient optimisation technique that contains the above

mentioned previous methods as special cases, thus allowing

for the use of holistic models that integrate the strengths of

these different approaches.

Pixel vs Segments Each choice of image quantisation

comes with its share of advantages and disadvantages. Pix-

els might be considered the most obvious choice of quan-

tisation. However, pixels by themselves contain a lim-

1We use the phrase “quantise the image” as opposed to “segment the

image” in order to emphasise that a ‘quantum’ of the image space need not

just be a collection of pixels. It could represent a sub-pixel division of the

image space.

ited amount of information. The colour and intensity of a

lone pixel is often not enough to determine its correct ob-

ject label. Ren and Malik’s [20] remark that ‘pixels are not
natural entities; they are merely a consequence of the dis-
crete representation of images’ captures some of problems

of pixel-based representation.

The last few years have seen a proliferation of unsuper-

vised segmentation methods [5, 8, 24], that perform an ini-

tial a priori segmentation of the image, applied to object

segmentation [1, 10, 32, 11, 22, 32], and elsewhere [13, 27].

These rely upon an initial quantisation over the image space,

typically based upon a segmentation of pixels based upon

spatial location and colour/texture distribution.

Based upon the assumption that the quantisation is cor-

rect a segment based conditional random field (CRF) is de-

fined over the image, and inference is performed to estimate

the dominant label of each segment. This quantisation of

the image allows the computation of powerful region-based

features which are partially invariant to scale [31].

Use of Multiple Quantisations Segment based meth-

ods work under the assumption that some segments share

boundaries with objects in the image. This is not always

the case, and this assumption may result in dramatic er-

rors in the labelling (see figure 1). A number of techniques

have been proposed to overcome errors in the image quan-

tisation. Rabinovich et al. [19] suggested finding the most

stable segmentation from a large collection of multiple seg-

mentations in the hope that these would be more consistent

with object boundaries. Larlus and Juri [17] proposed an

approach to the problem driven by object detection. In their

algorithm, rectangular regions are detected using a bag-of-

words model based upon affine invariant features. These

rectangles are refined using graph cuts to extract bound-

aries in a grab-cut [21] like approach. Such approaches

face difficulty in dealing with cluttered images, in which

multiple object classes intersect. Pantofaru et al. [18] ob-

served that although segments may not be consistent with

object boundaries, the segmentation map formed by taking

the intersections of multiple segmentations often is. They

proposed finding the most probable labelling of intersec-

tions of segments based upon the features of their parent

segments. This scheme effectively reduces the image quan-

tisation level. It results in more consistent segments but with
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Figure 1. Effect of image quantisation on object segmentation. (a) Original image. (b)-(d) Object class segmentations with different image
quantisations. (b), (c) and (d) use three different unsupervised segmentations of the image, in this case mean-shift with different choices
of kernel, to divide the image into segments. Each segment is assigned the label of the dominant object present in it. It can be seen that
quantisation (b) is the best for tree, road, and car. However, quantisation (d) is better for the left person and the sign board.

a loss in the information content/discriminative power asso-

ciated with each segment.

Another interesting method, and one closely related to

ours was proposed by Kohli et al. [15]. By formulating the

labelling problem as a CRF defined over pixels, they were

able to recover from misleading segments which spanned

multiple object classes. Further, they were able to encour-

aged individual pixels within a single segment to share the

same label, by defining higher order potentials (functions

defined over cliques of size greater than 2) that penalised

inconsistent labellings of segment.Their method can be un-

derstood as a relaxation of the hard constraint of previous

methods, that the image labelling must follow the quanti-

sation of the image space, to a softer constraint in which a

penalty is paid for non-conformance.

Given the dependence of previous methods on the image

partitioning (quantisation), the key question to be asked is:

What is the correct quantisation of an image and how can
we find it? This is a difficult question to answer. As we

explore the quantisation hierarchy from coarse to fine, we

observe that while larger segments are perceptually more

meaningful and easier to label correctly, they are less likely

to lie inside a single object. Indeed pragmatically, it appears

that the finding of an ideal quantisation may not be possible,

and that segmentation of different objects in the image may

require different quantisations (see figure 1).

In this paper we propose a novel hierarchical CRF for-

mulation of object class segmentation that allows us to

unify multiple disparate quantisations of the image space,

avoiding the need to make a decision of which is most ap-

propriate. It allows for the integration of features derived

from different quantisation levels (pixel, segment, and seg-

ment union/intersection). We will demonstrate how many

of the state-of-the-art methods based on different fixed im-

age quantisations can be seen as special cases of our model.

Inferring the Maximum a Posteriori solution in this

framework involves the minimisation of a higher order

function defined over several thousand random variables,

as explained in section 2. We show that the solutions of

such difficult function minimisation problems can be effi-

ciently computed using graph-cut [3] based move-making

algorithms. However, the contribution of this paper is not

limited to the application of the novel hierarchical CRF

framework to object class segmentation. We also propose

new sophisticated potentials defined over the different lev-

els of the quantisation hierarchy, and evaluate the efficacy

of our framework on some of the most challenging data-sets

for object class segmentation, and show that it outperforms

state of the art methods based on individual image quanti-

sation levels. We believe this is because: (i) Our methods

generalise these previous methods allowing them to be rep-

resented as particular parameter choices of our hierarchical

model. (ii) We go beyond these models by being able to use

multiple hierarchies of segmentation simultaneously. (iii)
In contrast to many previous methods that do not define any

sort of cost function, or likelihood, we cleanly formulate the

CRF energy of our model and show it can be minimised.

Hierarchical Models and Context The use of context

has been well documented for object recognition and seg-

mentation. It is particularly useful in overcoming ambigui-

ties caused by limited evidence: this often occurs in object

recognition where we frequently encounter objects at small

scales or low resolution images [14]. Classical Markov and

Conditional Random Field models exploit context in a lo-

cal manner by encouraging adjacent pixels or segments to

take the same label. To encode context at different scales

Zhu et al. [33] introduced the hierarchical image model

(HIM) built of rectangular regions with parent-child de-

pendencies. This model captures large-distance dependen-

cies and is solved efficiently using dynamic programming.

However, it supports neither multiple hierarchies, nor de-

pendencies between variables at the same level. To encode

semantic context and to combine top-down and bottom-up

approaches Tu et al. [30] proposed a framework with which

they showed that the use of object specific knowledge helps

to disambiguate low-level segmentation cues.

Our hierarchical CRF model uses a novel formulation

that allows context to be incorporated at multiple levels of

multiple quantisation, something not previously possible.

As we will explain in section 4 it leads to improved seg-

mentation results, while keeping the inference tractable.
2. Random Fields for Labelling Problems

This section introduces the pixel-based CRF used for for-

mulating the object class segmentation problem. This for-

mulation contains one discrete random variable per image

pixel, each of which may take a value from the set of labels

740



L = {l1, l2, . . . , lk}. We use X = {X1, X2, . . . , XN} to

denote the set of random variables corresponding to the im-

age pixels i ∈ V = {1, 2, . . . , N}. The neighbourhood sys-

temN of the random field is defined by the setsNi,∀i ∈ V ,

where Ni denotes the set of all neighbours of the variable

Xi. A clique c is a set of random variables Xc which are

conditionally dependent on each other. Any possible as-

signment of labels to the random variables will be called a

labelling (denoted by x) which takes values from L = LN .

The posterior distribution Pr(x|D) over the labellings

of the CRF is a Gibbs distribution and can be written as:

Pr(x|D) = 1
Z exp(−∑

c∈C ψc(xc)), where Z is a normal-

ising constant called the partition function, and C is the set

of all cliques [16]. The term ψc(xc) is known as the poten-

tial function of the clique c ⊂ V where xc = {xi : i ∈ c}.
The corresponding Gibbs energy is given by

E(x) = − log Pr(x|D)− logZ =
∑
c∈C

ψc(xc). (1)

The most probable or Maximum a Posteriori (MAP) la-

belling x∗ of the random field is defined as

x∗ = arg maxx∈L Pr(x|D) = arg minx∈LE(x). (2)

Pairwise CRFs Most pixel labelling problem in vision

are formulated as a pairwise CRF whose energy can be writ-

ten as the sum of unary and pairwise potentials as

E(x) =
∑
i∈V

ψi(xi) +
∑

i∈V,j∈Ni

ψij(xi, xj). (3)

The unary potentials ψi(xi) of the CRF are defined as the

negative log likelihood of variable Xi taking label xi, while

the pairwise potential encode a smoothness prior which en-

courages neighbouring pixels in the image to take the same

label, resulting in a shrinkage bias [15].

The pairwise CRF formulation suffers from a number of

problems stemming from its inability to express high-level

dependencies between pixels. Despite these limitations, it

is widely used and very effective. Shotton et al. [26] applied

the pairwise CRF to the object class segmentation problem.

They defined the unary likelihoods potentials using the re-

sult of a boosted classifier over a region about each pixel,

that they called TextonBoost and were able to obtain good

results.

The Robust PN model The pairwise CRF formulation

of [26] was extended by [15] with the incorporation of ro-

bust higher order potentials defined over segments. Their

formulation was based upon the observation that pixels ly-

ing within the same segment are more likely to take the

same label. The energy of the higher order CRF proposed

by [15] was of the form

E(x) =
∑
i∈V

ψi(xi) +
∑

i∈V,j∈Nl

ψij(xi, xj) +
∑
c∈S

ψh
c (xc),

(4)

where S is a set of cliques (or segments), and ψc are higher

order potentials defined over them. Their higher order po-

tentials took the form of Robust PN model defined as

ψh
c (xc) = min

l∈L
(γmax

c , γl
c + kl

cN
l
c), (5)

satisfying γl
c ≤ γmax

c ,∀l ∈ L, where N l
c =

∑
i∈c δ(xi �= l)

is the number of inconsistent pixels with the label l.
The potential takes cost γl

c if all pixels in the segment

take the label l. Each inconsistent pixel is penalised with a

cost kl
c. The maximum cost of the potential is truncated to

γmax
c . By setting γl

c = 0 ∀l ∈ L this potential penalises in-

consistent segments and thus encourages label consistency

in segments. The weighted version of this potential is

ψh
c (xc) = min

l∈L
(γmax

c , γl
c +

∑
i∈c

wik
l
cδ(xi �= l)), (6)

where wi is the weight of the variable xi.

This framework enabled the integration of multiple

quantisations of the image space in a principled manner.

However unlike our work, their choice of potential was in-

dependent of the choice of label and only encouraged pixels

within the same segment to take the same label. Similarly,

their model is unable to encode the conditional dependen-

cies between segments. These potentials greatly increase

the expressiveness of our model, as detailed in section 3.

PN -Based Hierarchical CRFs As shown in [23], the

higher-order PN potentials of (6) are equivalent to the min-

imisation of a pairwise graph defined over the same clique

Xc and a single auxiliary variable yc, that takes values from

an extended label set LE = L ∪ {LF }. The cost function

over Xc ∪ {yc}takes the form

ψp
c (xc, yc) = φc(yc) +

∑
i∈c

φc(yc, xi). (7)

where the unary potential over Y , φc(yc) associates the cost

γl
c with yc taking a label in L, and γmax

c with yc taking the

free labelLF . The pairwise potentials φc(yc, xi) are defined

φc(yc, xi) =

{
0 if yc = LF or yc = xi

wik
l
c otherwise, where l = xi.

(8)

Then

ψh
c (xc) = min

y
ψp

c (xc, yc). (9)

By ensuring that the pairwise edges between the auxiliary

variable and its children satisfy the constraint
∑

i wik
l
c ≥

2φc(l),∀l ∈ L, we can guarantee that the labels of these

auxiliary variable carry a clear semantic meaning. If this

constraint is satisfied an auxiliary variable may takes state

l ∈ L in a minimal cost labelling, if and only if, the

weighted majority of its child nodes take state l. State LF
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Figure 2. Existing models as special cases of our hierarchical model. The lowest layer of the image represents the pixel layer, the middle
layer potentials defined over super-pixels or segments, and the third layer represents our hierarchical terms. (a) shows the relationships
permitted in a pixel-based CRF with Robust P N potentials. (b) shows relationships contained within a super-pixel-based CRF (the directed
edges indicate the one way dependence between the labellings of pixels and super-pixels). (c) Our hierarchical CRF. See section 3.

indicates a heterogeneous labelling of a segment in which

no label holds a significant majority. We now extend the

model to include pairwise dependencies between auxiliary

variables

E(x) =
∑
i∈V

ψi(xi) +
∑

i∈V,j∈Nl

ψij(xi, xj)

+ min
y

(∑
c∈S

ψp
c (x, yc) +

∑
c,d∈S

ψcd(yc, yd)
)
. (10)

These pairwise terms can be understood as encouraging

consistency between neighbouring cliques. This frame-

work can be further generalised to a hierarchical model [23]

where the connection between layers take the form of (7)

and the weights φc(yc, x) are proportional to the number of

the pixels in the “base layer” belonging to the clique c.
The energy of our new hierarchical model is of the form

E(0)(x) =
∑

i∈S(0)

ψi(x
(0)
i ) +

∑
ij∈N (0)

ψij(x
(0)
i , x

(0)
j )

+ min
x(1)

E(1)(x(0),x(1)), (11)

where E(1)(x(0),x(1)) is recursively defined as:

E(n)(x(n−1),x(n))

=
∑

c∈S(n)

ψp
c (x(n−1)

c , x(n)
c ) +

∑
cd∈N (n)

ψcd(x(n)
c , x

(n)
d )

+ min
x(n+1)

E(n+1)(x(n),x(n+1)). (12)

Where x(0) refers to the state of the base level, and x(n)|n ≥
1 the state of auxiliary variables. Under certain reasonable

conditions [23], the auxiliary variables retain their semantic

interpretation and this energy can be solved with graph-cut

based move making algorithms [4].

3. Relation to Previous Models
In this section, we draw comparisons with the current

state of the art models for object segmentation [10, 18, 19,

32] and show that at certain choices of the parameters of our

model, these methods fall out as special cases (illustrated in

figure 2). Thus, our method not only generalise the standard

pairwise CRF formulations over pixels, but also the previous

work based on super-pixels and (as we shall see) provides a

global optimisation framework allowing us to combine fea-

tures at different quantisation levels.

We will now show that our model is a generalisation of

two classes of pre-existing model: (i) CRFs based upon dis-

joint segments [1, 10, 32] (see section 1 and figure 2(b)),

and (ii) CRFs based upon the intersection of segments [18].

energy of this model is given in (10), and further assume

that there are no unary or pairwise potentials defined over

individual pixels.

Equivalence to CRFs based on Segments In this case,

c ∈ S are disjoint (non-overlapping)2. To insure that

yc �= LF ,∀c ∈ C, we assign a high value to γmax
c ,∀c ∈ C.

As only the potential ψp(xc, yc) acts upon xi : i ∈ c, all

pixels in c will take the same label. In this case, the opti-

mal labelling will always be segment consistent (i.e. the la-

belling of pixels within any segment is homogeneous) and

the potential ψp
c (xc, yc) can now be considered as a unary

potential over the auxiliary (segment) variable yc. This al-

lows us to rewrite (10) as:

E(y) =
∑
c∈S

ψc(yc) +
∑

cd∈N (1)

ψcd(yc, yd) (13)

which is exactly the same as the cost associated with the

pairwise CRF defined over segments with ψc(yc = l) =
γl

c as the unary cost and ψcd as the pairwise cost for each

segment. In this case, our model becomes equivalent to the

pairwise CRF models defined over segments [1, 10, 19, 32].

Equivalence to Models of Segment Intersections The

model is defined as above, but allowed to contain multiple

overlapping segmentations. If we set wik
l
c = γmax

c , ∀i ∈
V, l ∈ L, c ∈ S, then yc �= LF only if xi = yc,∀i ∈ c. In

this case, only the potentials
∑

c�i ψ
p
c (xc, yc) act on xi.

Consider a pair of pixels i, j that lie in the same intersec-

tion of segments i.e. {c ∈ S : c 	 i} = {c ∈ S : c 	 j}.
Then, in a minimal labelling, either ∃yc = xi, and hence

xj = yc = xi, or ∀c 	 i : yc = LF . In the second case

there are no constraints acting on xi or xj , and a minimal

cost labelling can be chosen such that xi = xj .

Consequentially, there is always a minimal cost labelling

consistent with respect to the intersection of segments, in

this sense our model is equivalent to that proposed in [18].

4. Hierarchical CRF for Object Segmentation
Having described the definition and intuition behind the

PN -based hierarchical CRF framework, in this section we

2This is equivalent to the case where only one particular quantisation

of the image space is considered.
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describe the set of potentials we use in the object-class

segmentation problem. This set includes unary potentials

for both pixels and segments, pairwise potentials between

pixels and between segments and connective potentials be-

tween pixels and their containing segments.

Robustness to Misleading Segmentations As discussed

before, the quantisation of image space obtained using un-

supervised segmentation algorithms may be misleading -

segments may contain multiple object classes. Assigning

the same label to all pixels of such segments will result in an

incorrect labelling. This problem can be overcome by using

segment quality measures proposed by [19, 20] which can

be used to distinguish the good segments from misleading
ones. These measures can be seamlessly integrated in our

hierarchical framework by modulating the strength of the

potentials defined over segments. Formally, this is achieved

by modifying the potentials ψh
c (xc, yc) according to a qual-

ity sensitive measure Q(c) for any segment c.
In the previous section we decomposed the energy (12)

into a set of potentials ψc(xc). In this section we will de-

compose them further, writing ψc(xc) = λcξc(xc), where

ξc is a feature based potential over c and λc its weight. Ini-

tially we will discuss the learning of potentials ξc(xc), and

later discuss the learning of the weights λc

Potentials for Object Class Segmentation For our appli-

cation we used potentials defined over a three levels hierar-

chy. We refer to elements of each layer as pixels, segments

and super-segments respectively.

The unary potentials at the pixel level are computed us-

ing a boosted dense feature classifier (described below),

while the pairwise terms ψij(·) take the form of the clas-

sical contrast sensitive potentials. These encourage neigh-

bouring pixels in the image (having a similar colour) to take

the same label. We refer the reader to [2, 21, 26] for details.

Unsupervised segments are initially found using multi-

ple applications of a fine scale mean-shift algorithm [5].

The pixels contained within such a segment, are typically of

uniform colour, and often belong to the same object class.

Consequentially, they contain little novel local information,

but are strong predictors of consistency. As such, the unary

potentials we learn at this level are uniform, due to the lack

of unique features, however as they are strongly indicative

of local consistency, the penalty associated with breaking

them is high. To encourage neighbouring segments with

similar texture to take the same label, we used pairwise po-

tentials based on the Euclidean distance of normalised his-

tograms of colour (ξcd(yc, yd)) between corresponding aux-

iliary variables.

“Super-segments” are based upon a coarse mean-shift

segmentation, performed over the result of the previous

segmentations. These super-segments contain significantly

more internal information than their smaller children. To

take advantage of this, we propose unary segment potential

based on the histograms of features (described below). This

potential can be also be used in the segment-based CRF ap-

proaches as a unary potential.

Unary Potentials from Dense Features This unary po-

tential is derived from TextonBoost [26], and allows us

to perform texture based segmentation, at the pixel level,

within the same framework. The features used for con-

structing these potentials are computed on every pixel of

the image which is why we call them dense. TextonBoost

estimates the probability of a pixel taking a certain label

by boosting weak classifiers based on a set of shape filter

responses. The shape filters are defined by a [texton t, rect-

angular region r] pair and their feature response v[t,r](i)
for given point i is the number of textons t in the region

r placed relative to the point i. Corresponding weak classi-

fiers are comparisons of shape filter response to thresholds.

The most discriminative shape filters are found using multi-

class Gentle Ada-Boost [29].

We observed that textons were unable to discriminate be-

tween some classes of similar textures. This motivated us

to extend the TextonBoost framework by boosting classifiers

defined on multiple dense features (such as colour, textons,

histograms of oriented gradients (HOG) [6], and pixel loca-

tion) together. The dense-feature shape filters are defined

by triplets [feature type f , feature cluster t, rectangular re-

gion r] and their feature response vf
[t,r](i) for given point

i is the number of features of type f belonging to cluster

t in the region r placed relative to the point i. The pool

of weak classifiers contains a comparisons of responses of

dense-feature shape filters against a set of thresholds θ. See

[26] for further details of the procedure. Our results show

that the boosting of multiple features together results in a

significant improvement of the performance (note the im-

provement from the 72% of [26] to 81% of our similar

pixel-based CRF in figure 4). Further improvements were

achieved using exponentially instead of linearly growing

thresholds and Gaussian instead of uniform distribution of

rectangles around the point. The potential is incorporated

into the framework in the standard way as a negative log

likelihood.

Histogram-based Segment Unary Potentials We now

explain the unary potential defined over segments and

super-segments. For many classification and recognition

problems, the distributions of dense feature responses are

more discriminative than any feature alone. For instance,

the sky can be either ‘black’ (night) or ‘blue’ (day), but is

never ‘half-black’ and ‘half-blue’. This consistency in the

colour of object instances can be used as a region based

feature for improving object segmentation results. The

unary potential of an auxiliary variable representing a seg-

ment is learnt (using the normalised histograms of multi-

ple clustered dense features) using multi-class Gentle Ada-

Boost [29], where the pool of weak classifiers is a set of
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Original Image Pixel-based CRF Segment-based CRF Hierarchical CRF Ground Truth

Figure 3. Qualitative, results on the MSRC-21 data set, comparing non-hierarchical(i.e. pairwise models) approaches defined over pixels
(similar to TextonBoost [26]) or segments (similar to [32, 18, 22] described in section 3) against our hierarchical model. Regions marked
black in the hand-labelled ground truth image are unlabelled.
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[25] 72 67 49 88 79 97 97 78 82 54 87 74 72 74 36 24 93 51 78 75 35 66 18
[26] 72 58 62 98 86 58 50 83 60 53 74 63 75 63 35 19 92 15 86 54 19 62 07
[1] 70 55 68 94 84 37 55 68 52 71 47 52 85 69 54 05 85 21 66 16 49 44 32
[32] 75 62 63 98 89 66 54 86 63 71 83 71 79 71 38 23 88 23 88 33 34 43 32

Pixel-based CRF 81 72 73 92 85 75 78 92 75 76 86 79 87 96 95 31 81 34 84 53 61 60 15

Robust P N CRF 83 73 74 92 86 75 83 94 75 83 86 85 84 95 94 30 86 35 87 53 73 63 16

Segment-based CRF 75 60 64 95 78 53 86 99 71 75 70 71 52 72 81 20 58 20 89 26 42 40 05

Hierarchical CRF 86 75 80 96 86 74 87 99 74 87 86 87 82 97 95 30 86 31 95 51 69 66 09

Figure 4. Quantitative results on the MSRC data set. The table shows % pixel accuracy Nii/
P

j Nij for different object classes. ‘Global’

refers to the overall error
P

i∈L NiiP
i,j∈L Nij

, while ‘average’ is
P

i∈L
Nii

|L| P
j∈L Nij

. Nij refers to the number of pixels of label i labelled j.

triplets [f, t, θ]. Here f is the normalised histogram of the

feature set, t is the cluster index, and θ a threshold. Aside

from a larger set of features being considered, the selection

and learning procedure is identical to [26].

The segment potential is incorporated into the energy us-

ing Robust PN potentials (5) with parameters

γl
c = λs|c|min(−Hl(c) +K,αh), (14)

where Hl(c) is the response given by the Ada-boost clas-

sifier to clique c taking label l, αh a truncation threshold

γmax
c = |c|(λp + λsα

h), and K = log
∑

l′∈L e
Hl′ (c) a nor-

malising constant.

For our experiments, the cost of pixel labels differing

from an associated segment label was set to kl
c = (γmax

c −
γl

c)/0.1|c|. This means that up to 10% of the pixels can take

a label different to the segment label without the segment

variable changing its state to free.

Model Details For both dense unary and histogram-based

segment potentials 4 dense features were used - colour with

128 clusters, location with 144 clusters, texton and HOG

descriptor [6] with 150 clusters. 5000 weak classifiers were

used in the boosting process.

Learning Weights for Hierarchical CRFs Having learnt

potentials ξc(xc) as described earlier, the problem remains

of how to assign appropriate weights λc. This weighting,

and the training of hierarchical models in general is not an

easy problem and there is a wide body of literature deal-

ing with it [12, 11, 28]. The approach we take to learn

these weights uses a coarse to fine, layer-based, local search

scheme over a validation set

We first introduce additional notation: V(i) will refer

to the variables contained in the ith layer of the hierarchy,

while x(i) is the labelling of V(i) associated with a MAP es-

timate over the truncated hierarchical CRF consisting of the

random variables v′ = {v ∈ V(k) : k ≥ i}. Given the

validation data we can determine a dominant label Lc for

each segment c, such that LF = l when
∑

i∈l Δ(xi = l) =
0.5|c|, if there is no such dominant label, we set Lc = LF .
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Figure 5. Qualitative results on the VOC-2008 data set. Successful segmentations (top 3 rows) and standard failure cases (bottom) -
from left to right, context error, detection failure and misclassification.

We note that at a given level of the hierarchy, the label

of a clique x
(i)
c must correspond to the dominant label of

of this clique in the ground truth (or LF ) for its containing

pixels to be correctly labelled. Based on this observation,

we propose a simple heuristic which we optimise for each

layer.

At each layer, we seek to minimise the discrepancy be-

tween the dominant ground truth label of a clique LC , and

the value x
(i)
c of the MAP estimate. Formally, we choose

parameters λ to minimise

C(x(i)) =
∑

c∈V(i)

Δ(x(i)
c �= Lc ∧ Lc �= LF ). (15)

We optimise (15) layer by layer. The full method is given

in algorithm 1, where we use λ
(i)
1 to refer the weighting of

unary potentials in the ith layer, for λ
(i)
2 the weight of the

pairwise terms and λ
(i+1)
h a scalar modifier of all terms in

the (i+ 1)th layer or greater. Θ is an arbitrary constant that

controls the precision of the final assignment of λ.

for i from n down to 1 do
Let s1, s2, sh, d1, d2, dh = 1;

while s1, s2 or sh ≥ Θ do
for t ∈ {1, 2, h} do

λ
′(i)
t ← λ

(i)
t + dtst;

Perform MAP estimate of xi using λ′
t instead of

λt;

if C(xi) has decreased then
λt ← λ′

t

else
st ← st/2, dt ← −dt

Algorithm 1: Weight Learning Scheme.

An alternative and elegant approach to this is that of [9]

which we intend to investigate in future work.

5. Experiments
We evaluated our framework on two data sets: PASCAL

VOC 2008 [7] and MSRC-21 [26].

Generation of multiple nested segmentations Normally

generation of multiple segmentations is performed by vary-

ing the parameters controlling unsupervised segmentation

methods [5, 8, 24]. In our experiments, we used mean-

shift [5] to generate each set of nested segmentations with

both fine and coarse mean-shift kernels. Firstly, a fine ker-

nel based mean shift is applied to create the finest segmenta-

tion and then a coarse kernel based mean-shift is performed

over the previous result. Multiple nested segmentations can

be obtained by varying parameters of both kernels.

MSRC-21 The MSRC segmentation data set contains 591
images of resolution 320× 213 pixels, accompanied with a

hand labelled object segmentation of 21 object classes. Pix-

els on the boundaries of objects are not labelled in these

segmentations. The division into training, validation and

test sets occupied 45% 10% and 45% the images. Meth-

ods are typically compared using global criteria or average-

per-class criteria (see figure 4 for details). For these experi-

ments, the hierarchy was composed of 3 pairs of nested seg-

mentations. The parameters of the mean-shift kernels were

arbitrarily chosen as (6, 5), (12, 10); (6, 7.5), (12, 15); and

(6, 9), (12, 18). The first value refers to the planar distance

between points, and the second refers to the distance in the

LUV colour space.

PASCAL VOC 2008 This data set was used for the PAS-

CAL Visual Object Category segmentation contest 2008. It

is especially challenging given the presence of significant

background clutter, illumination effects and occlusions. It

contains 511 training, 512 validation and 512 segmented

test images of 20 foreground and 1 background classes.

The organisers also provided 10, 057 images for which only

the bounding boxes of the objects present in the image are

marked. We did not use these additional images for training
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UIUC / CMU 19.5 79.3 31.9 21.0 8.3 6.5 34.3 15.8 22.7 10.4 1.2 6.8 8.0 10.2 22.7 24.9 27.7 15.9 4.3 5.5 19.0 32.1
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Figure 6. Quantitative analysis of VOC2008 results [7] based upon performance criteria (
P

i∈L Nii

|L|(−Nii+
P

j∈L Nij+Nji)
). Note that all other

methods used classification and detection priors trained over a much larger data set that included unsegmented images.

our framework. For this data set we used a two-level hier-

archy. The methods are evaluated using average-per-class

criteria [7] that penalises the performance of classes i and j
given a mislabelling of i as j (see figure 6). Note that it is

not equivalent to the percentage of pixels correctly labelled.

Quantitative and Qualitative Results Comparisons of

our performances against other methods is given in figures

4 and 6. The results on the MSRC data set clearly show

that our hierarchical CRF framework outperforms all exist-

ing pixel and segment-based methods. Similar results were

obtained on the VOC2008 data set, where the only compara-

ble methods used classification and detection priors trained

over a much larger set of images.

6. Conclusions and Future Work
We have presented a generalisation of many previous

super-pixel based methods within a principled CRF frame-

work. Our approach enabled the integration of features and

contextual priors defined over multiple image quantisations

in one optimisation framework that supports efficient MAP

estimation using graph cut based move making algorithms.

In order to do this, we have examined the use of auxiliary

variables in CRFs which have been relatively neglected in

computer vision over the past twenty years.

The flexibility and generality of our framework allowed

us to propose and use novel pixel and segment based poten-

tial functions and achieve state-of-the-art results on some

of the most challenging data sets for object class segmen-

tation. We believe that the use of the hierarchical CRF will

yield similar improvements for other labelling problems.
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