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Abstract

Unsupervised over-segmentation of an image into super-
pixels is a common preprocessing step for image parsing
algorithms. Superpixels are used as both regions of sup-
port for feature vectors and as a starting point for the fi-
nal segmentation. In this paper we investigate incorporat-
ing a priori information into superpixel segmentations. We
learn a probabilistic model that describes the spatial den-
sity of the object boundaries in the image. We then describe
an over-segmentation algorithm that partitions this density
roughly equally between superpixels whilst still attempting
to capture local object boundaries. We demonstrate this ap-
proach using road scenes where objects in the center of the
image tend to be more distant and smaller than those at the
edge. We show that our algorithm successfully learns this
foveated spatial distribution and can exploit this knowledge
to improve the segmentation. Lastly, we introduce a new
metric for evaluating vision labeling problems. We measure
performance on a challenging real-world dataset and illus-
trate the limitations of conventional evaluation metrics.

1. Introduction
Segmentation is a well studied problem and there has

been much recent progress in supervised/user guided al-

gorithms. However a solution to achieving good unsuper-

vised segmentation remains elusive and performance on

real-world datasets is low [5]. This is in part due to the

fact that it is difficult to separate the processes of segmen-

tation, detection and recognition: In the absence of sim-

ple metrics of homogeneity it is impossible to segment an

object in a scene without having first located it (detection)

and estimated some of its properties (recognition). While

some effort has been made on combining these separate pro-

cesses [11, 21] the variations that result from occlusion and

changes of pose and lighting make this a challenging task.

Despite this difficulty recent progress has been made

by oversegmenting the image. Small regions of the im-
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Figure 1. Scene shape priors. a) Street scene. Inset: cars in the

distance. b) Segmentation without boundary prior. Inset: Small

distant objects (cars) missed. c) Learned boundary distribution

prior. d) Foveated segmentation based on learned prior. Inset:

improved segmentation of distant objects.

age, or superpixels, can serve a dual purpose: first, they

act as a region of support for a feature vector. Second,

classifying only superpixels reduces the degrees of free-

dom of the image model and facilitates efficient inference.

There have been several different approaches using super-

pixels as a preprocessing step in state-of-the-art-vision al-

gorithms: Firstly, in a hierarchy. Here a segmentation con-

sists of a dendrogram and the relationship between seg-

ments can be used to facilitate recognition [11]. Secondly,

as a set of hypotheses. Multiple segmentations can be used

to find segments that are robust for detection and recogni-

tion [8, 18, 11]. Thirdly, as a sampling scheme. A fixed set

of regions are used to label the image [15, 7].

The use of oversegmentation as a preprocessing step re-

mains a bottom up process (although it may be subject to re-

vision, see [10]). However, other closely related areas such

as object detection and recognition have successfully ex-

ploited prior information. Examples include: object priors

[20, 9] and scene category priors [7, 13].
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In contrast there has been very little work on incorporat-

ing priors in the process of oversegmentation. For instance

while it is noted in [6] that it is possible to have the segmen-

tation method prefer components of certain size or shape

this is not exploited. In [15] uniform size superpixels are

encouraged using postprocessing regardless of where they

appear in the image. Similarly, the algorithm presented in

[14] implicitly assumes scenes that are largely frontoplanar

or that objects of interest are reasonably large in the im-

age. Alternatively there has been work placing priors on

superpixels [8, 12] without it guiding the segmentation pro-

cess itself. It remains to be seen whether it is possible to

achieve good recognition rates without performing segmen-

tation but in this paper we advocate an approach that uses

priors in the process of oversegmentation. An example of

one such spatial prior is shown in Figure 1.

The contributions of the paper are as follows: In Sec-

tion 3 we describe an algorithm that uses an estimate of the

distribution of boundaries in an image for foveation of the

segmentation. In Section 4 we learn a model for the dis-

tribution of boundaries in an image from training data. In

Section 5 we introduce a new metric for evaluating segmen-

tation algorithms.

2. Superpixel Lattices
We begin by describing an existing superpixel lattice al-

gorithm [14] and highlight its limitations. This motivates

the use of priors in over-segmentation. In Section 3 we

adapt this method to incorporate such prior information.

The superpixel lattice algorithm [14] divides the image

into a regular grid of superpixels. The input to the algo-

rithm is a boundary map. This is a 2D array containing a

measure of the probability that a semantically meaningful

boundary is present between two pixels. The boundary map

is then inverted to take a value of 0 where there is the most

evidence for a boundary and 1 where there is no evidence.

This inverted map is called the boundary cost map.

The construction of the superpixel lattice is incremental:

At each iteration the image is bi-partitioned in a vertical or

horizontal strip. The goal is to segment the image in places

where the boundary cost map is lowest, which is achieved

by finding a minimum weighted path through each strip.

This is illustrated in Figure 2 where four paths divide the

image into a total of nine superpixels. After each iteration

the weights along the chosen path in the boundary cost map
are updated with a large fixed cost. This prevents paral-

lel paths crossing and guarantees perpendicular paths cross

only once. In addition the weights in a band surrounding

each path are also increased to limit the minimum size of

superpixels and to prevent subsequent paths following the

same real-world boundary.

Although this algorithm has been shown to perform quite

well, it implicitly imposes a quasi-uniform segmentation on

Figure 2. Incremental construction of superpixel lattice. a) The

image is initially split left to right and top to bottom to form four

regions. In each case we seek the optimal path within a prede-

fined image strip. b) Adding one more vertical and horizontal path

partitions the image into nine superpixels. Future path costs are

modified in bands around previous paths (light colors) to prevent

multiple-crossings and set a minimum distance of approach be-

tween paths. Strip overlap is marked with arrows.

the image by two mechanisms: Firstly, the strips are dis-

tributed evenly throughout the image leading to a roughly

even distribution of paths. Second, the minimum cost path

metric favors shorter paths across the image which are con-

sequently relatively straight.

This quasi-uniform distribution is sensible if there is no

a priori knowledge of the distribution of boundaries in the

image. However, this is generally not the case. For many

classes of image non-uniform sampling would be superior.

For example, when a 2D image is a projection of a 3D

scene, perspective effects result in an uneven distribution of

the sizes of classes. In this paper, we segment road scenes

where it is common for vehicles and pedestrians at a dis-

tance, near the vanishing point, to appear in small clusters

in the center of the image. In this instance we would like

foveation of the segmentation to take account of the ex-

pected difference in the sizes of classes.

3. An Adaptive Regular Lattice
Prior information about the spatial distribution of bound-

aries can be captured in the form of a boundary distribution
image: each pixel takes a value between 0 and 1 represent-

ing the prior probability of observing a real-world boundary

at this position (see Figure 3). The goal of this section is to

show how to exploit the boundary distribution image to im-

prove segmentation in the superpixel lattice algorithm. We

first assume that we know this distribution and then learn

this from training data in Section 4.

To exploit the boundary distribution prior in the super-

pixel lattice algorithm we must solve two problems: first

we adapt the position and shape of the strips so that each

has approximately the same prior probability of containing

a boundary. This results in strips are no longer straight and

vary in width across the image. Second, we adapt the min-

imum cost path algorithm so that the best path will tend to

follow the shape of the strips.
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Figure 3. Construction of non-uniform strip a) Boundary distribu-

tion map representing probability of observing boundary at each

position. b) Normalized cumulative distribution in horizontal di-

rection. c) Normalized cumulative distribution in vertical direc-

tion. d) Boundaries of strips now follow iso-contours in these in-

tegral boundary maps. Compare with Figure 2a.

3.1. Non-uniform Strips

We aim to calculate a set of strips across the image so

that there is an equal chance of finding a boundary within

each. We first discuss the assignment of vertical strips. For

each row of the image we calculate the cumulative probabil-

ity of observing a boundary as we move from left to right.

This can be computed by integrating each row of the bound-

ary distribution image and dividing by the total probability

mass for that row. The result is a normalized cumulative

distribution image (Figure 3b).

We now allocate strips so that they partition the cumu-

lative distribution equally. In practice, this means that the

edge of the strips follow the iso-contours of the normal-

ized cumulative distribution image. For horizontal strips,

we integrate the boundary distribution image in the vertical

direction and normalize. We allocate strips that follow the

iso-contours of this vertical normalized cumulative distri-

bution. The result is a set of strips that are non-uniform -

they may meander through the image and vary significantly

in width depending on the position.

3.2. Non-Uniform Minimum Cost Path Algorithm

We now seek to find an optimal path for each strip that

remains within the strip boundaries and bipartitions the im-

age. The original superpixel lattice algorithm [14] used Di-

jkstra’s algorithm to find the minimum cost path across the

strip. The cost was determined by the boundary cost map

(the complement of the probability of an boundary being

present at each point). The algorithm hence tends to follow

boundaries as these are cheap, but also aims to minimize

Figure 4. Warping minimum cost paths. a) Minimum cost path

in unwarped strip. In the absence of boundary information paths

go straight across strip. b) Minimum cost path in warped strip.

Paths will follow the contour of the strip. Notice the difference in

position and size of a superpixel, marked by an arrow, generated

in warped and unwarped versions. c) Unwarped strip of boundary

cost map. Note here that the shortest path takes branch 2 of the

fork. d) Warped strip. In this strip the shortest path takes branch

1 of the fork. e) Minimum cost path in warped strip. d) Warped

minimum path in unwarped strip.

path length. Unfortunately, this presents a problem with

non-uniform strips. The path tends to take the straightest

route across the image (Figure 4a) rather than follow the

shape of the strip (Figure 4b). This effectively means that

the superpixel size will not vary according to the prior.

To solve this problem we take the following approach:

we warp the strip so that the average path along the warped

version is now straight. We find the minimum cost path

along the warped strip. Finally, we unwarp the path back to

the original space. In this way we effectively define a dis-

tance metric along the strip so that shorter distances follow

the shape of the boundaries (see Figure 4).

For a horizontal strip, the warping is achieved by apply-

ing a separate one dimensional affine warp to each column.

The warps are chosen so that the strip boundaries in that col-

umn are always mapped to the same position. The inverse

warp consists of applying the inverse one dimensional affine

transform to each column.

By repeatedly finding non-uniform strips and finding op-

timal paths through these strips, it is possible to segment

the image in such a way that it is influenced by the bound-

ary distribution image. In particular, the superpixels will

be smaller and more densely packed in regions where we

expect to find more image boundaries.

4. Boundary Distribution Prior

Until now we have assumed that we know the bound-

ary distribution image (BDI). In this section we describe an

algorithm to take an observed set of images and infer the
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most likely boundary distribution image. The image will

depend on both prior information about the spatial statistics

of boundaries (learnt from training data) and the observed

edge data from a particular image. In this section we de-

scribe the model before describing learning (Section 4.1)

and inference (Section 4.2) algorithms.

We wish to describe a probability distribution over ob-

served boundaries x = [x1 . . . xP ]T at the p pixels of an

image. Each element xp is binary and is 1 when a bound-

ary is present and 0 when it is absent. We assumes that xp

is drawn from a single observation of a binomial distribu-

tion with parameter yp. Our goal then is to model the joint

probability distribution of the vector of binomial parameters

y = [y1 . . . yP ]T . The vector y represents the boundary dis-

tribution image or BDI.

We assume that the distribution over y is determined by

an underlying mixture of K clusters with each cluster having

a subspace representation. We term this a “clustered latent

trait” or CLT model [1]. More precisely, we assume that

associated with image yi there is (i) a discrete hidden vari-

able c indicating which of K clusters generated the data and

(ii) a continuous hidden variable h that represents the po-

sition within the subspace associated with that cluster. The

variable hweights J basis functions f1k . . . fJk that form the

columns of a matrix Fk = [f1k . . . fJk] associated with the

k’th cluster.

We define the activation a = [a1 . . . aP ]T for the i’th im-

age to be a vector representing the propensity of each pixel

to contain a boundary and calculate it as a = μc + Fch
where μc is a mean vector that describes the average activa-

tion for cluster c. The activation a contains numbers defined

on the whole real axis, and we convert these to a probability

y by passing each element corresponding to pixel p through

the logistic sigmoid function:

yp = σ(ap) =
1

1 + exp(−ap)
(1)

Finally, we assume that the probability of observing a

boundary xp at pixel p is given by yp. We can summarize

this model concisely as:

Pr(c = k) = πk (2)

Pr(h) = Gh[0, I] (3)

Pr(a|h) = δa(μc + Fch) (4)

Pr(x|a) =
P∏

p=1

Binxp [σ(ap)] (5)

where Gα[β,Γ] represents a Gaussian in variable α with

mean β and covariance Γ. The function δα(β) denotes a

probability distribution over α where all of the mass is at β
and hence describes a deterministic relationship. The func-

tion Binα[β] denotes the binomial likelihood of observing

Figure 5. Graphical model. a) Clustered Latent Trait Model in

which the plate denotes a set of I images each with P pixels. Here

μ = {μk}, F = {Fk}. b) Example training data adapted from

publicly available road sequences [2].

value α given binomial parameter β. The term πk repre-

sents the prior probability of choosing the k’th cluster and

in Equation 3 we have also defined a prior over h. This

graphical model is illustrated in Figure 5.

4.1. Learning

Our goal is to learn the parameters θ =
{π1...k, μ1...k,F1...k} of the CLT model based on I

binary training images x1...I where the value at each pixel

represents the presence of a boundary. In particular we will

maximize the joint log likelihood of all of the variables

L =
I∑

i=1

[logPr(xi|hi, ci,F1...K , μ1...K) + logPr(hi)

+ logPr(ci)] +
K∑

k=1

[logPr(Fk) + logPr(μk)]

(6)

where we have defined Gaussian priors over the matrices of

basis vectors F1...K and the means μ1...K so that

Pr(Fk) =
J∏

j=1

Gfjk
[0, λL−1] (7)

Pr(μk) = Gμk
[0, λL−1] (8)

where fjk is the j’th column of matrix Fk, L is the discrete

approximation to the Laplacian operator and λ is a constant

that was set by hand and controls the influence of the prior.

These priors encourage spatial smoothness.

To describe the learning algorithm, first assume that the

discrete variable c1...I representing the cluster assignments

for each image are known. For each cluster, we use a Viterbi

approach where we alternately maximize L with respect to

the hidden variables hi and the parameters θ. After sev-

eral iterations, we reassign cluster assignments by finding

the cluster ci ∈ {1 . . . K} under which the data xi is most

likely. This conditional likelihood is calculated using the

optimal value of the hidden variable hi for each cluster. We
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Algorithm 1 Learn Clustered Latent Trait Model

1: for t1 = 1 to T1 do
2: \\ Reassign data to clusters
3: for all i do
4: ci,hi ← argmaxci,hi

logPr(xi,hi, ci, θ)
5: end for
6: \\Update parameters for each cluster
7: for t2 = 1 to T2 do
8: for all k do
9: θk ← argmaxθk

∑
s∈{s:cs=k} logPr(xs, θ, cs,hs)

10: end for
11: for all i do
12: hi ← argmaxhi logPr(xi,hi, θ, ci, )
13: end for
14: end for
15: end for
16: return θ1...K

also re-estimate the prior probability π1...K of each cluster.

Having reassigned the points, we then relearn each cluster

separately and so on. Algorithm 1 describes this process

more formally. The maximization over the discrete param-

eters ci was done exhaustively. The maximization over the

continuous parameters θ and h1...I was performed using a

quasi-Newton method. The update for π1 . . . πk is calcu-

lated in closed form:

πk =
1
I

I∑

i=1

δ(ci = k) (9)

Examples of the boundary distribution image y associated

with each cluster mean are illustrated in Figure 6.

4.2. Inference

In this section we describe how to predict the boundary

distribution image that was most likely to have been respon-

sible for a new observed image. We calculate a binary edge

map for the new image and use this as a proxy for the un-

seen boundary map xt. We then find the the cluster ct and

hidden variable ht that were most likely to have created it:

ct,ht ← argmax
ct,ht

logPr(xt,ht, ct, θ) (10)

Figure 6. Learned cluster means. Each mean has a strong peak in

the center of the image (a common boundary distribution for road

scenes) but there are subtle changes in the distribution around this

point. For instance the black ‘sky’ region shifts from the left of the

image in b) to the right in c).

Figure 7. Sampling from one cluster during inference. Image pairs

consist of output of a unary classifier, x̂t, and maximum likelihood

yt. Notice the shift from right to left from a) to f) as the direction

of the road changes suggesting the sub-space model is a useful

representation.

We use the generative model to calculate the activation

at = μct + Fct
ht associated with these variables. Finally,

the elements of the binomial probability vector yt are cal-

culated using Equation 1. This process is illustrated in 7.

5. Evaluation Methodology
Before presenting results, we first introduce a new met-

ric for evaluating superpixel algorithms. A frequently-used

existing measure is pixel segmentation performance using

precision (P = TP
TP+FP ) and recall (R = TP

TP+FN ). These

standard measures are a conservative estimate of perfor-

mance as neither is normalized by the true negative count.

The F-measure [17]:

F =
RP

(αR+ (1− α)P )
(11)

is the harmonic mean that captures the trade off between

true signal (Recall) and noise (Precision) for a segmenta-

tion, Fs, and in these experiments we set α = 0.5.

A second possible performance metric is detection. This

is the measure of how many separate instances of an ob-

ject of a particular class are found in an image. We cal-

culate object detections from our superpixel segmentation

by merging together neighboring pixels where the modal

ground truth class is the same (see Figure 8). We greedily

associate segmented objects to the ground truth objects and

define a correct detection (hit) when the bounding boxes of

the segmented (Bp) and ground truth (Bgt) objects overlap

by more than 50%. Misses constitute ground truth objects

with no sufficiently overlapping segmented object. False

detections constitute segmented regions that do not corre-

spond or sufficiently overlap to ground truth regions. The

overall quality of detection Fd is calculated by taking the

harmonic mean of precision and recall using Equation 11.

Neither segmentation nor detection alone completely

captures our ability to parse a scene (see Figure 9). We
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Figure 8. Detection with Oversegmentation. a) Ground truth data

b) Segmentation with each superpixel labeled with mode class of

ground truth data. c) Combined superpixels with true positive re-

gion highlighted. d) Bounding box overlap between ground truth

and detected region.

therefore propose a new metric, that treats both segmenta-

tion and detection as independent measures of performance,

and use the harmonic mean of the two separate F-measures
as our summary statistic:

Fsd =
2FsFd

(Fs + Fd)
(12)

Equation 12 will tend to 1 when the scene is parsed ex-

actly. It takes into account the accuracy of the segmentation

while penalizing those that split, merge or miss objects in

the ground truth data1.

6. Quantitative Results
Our evaluation is based on video sequence stills and

human-labeled ground truth from the CamVid database [2].

This consists of road scene sequences taken from the pas-

senger seat of a moving car. This is a challenging dataset

that includes 32 classes and ego-motion. We follow [3] and

focus on 11 of the most common classes shared between

training (06R0,16E5) and test (05VD) sets. The boundary
cost map is based on the output of the boosted edge learn-
ing algorithm (BEL) [4]. To learn the model presented in

Section 4 we construct training data from the set of 406 bi-

nary ground truth boundary images by down-sampling from

720× 960 to 36× 48 using an OR operation. As the spatial

prior only influences the distribution of strips, not the final

minimum paths, it is possible to use very low resolution im-

ages. We learn the CLT model with 3 factors and either 1

or 4 clusters, set by hand. For inference with a new image

we threshold the output of the BEL algorithm at 0.5, down-

sample and vectorize this binary image to form xt. We use

a 20× 25 lattice with a strip overlap of 0.49. In implement-

ing the analysis described in Section 5 we ignore regions

smaller than 10 pixels to mitigate some of the variability in

the ground truth data.

Results using the CLT model with the adaptive lattice

can be seen in rows 6-7 of Table 1. We can see that there

is a modest improvement when using the clustered model

rather than a single factor matrix but 75% of samples are

drawn from one cluster. We note that the test data is less

varied than the training data and the true benefit of using

1Code will be made publicly available from http://pvl.cs.ucl.ac.uk/

Figure 9. Segmentation vs. Detection. Four illustrative examples.

a) Hit. Good detection but poor segmentation. b) Miss. Good seg-

mentation but poor detection. c) Merge. Good segmentation but

poor detection. d) Split. Good segmentation but poor detection.

the cluster model may be underestimated using this parti-

tion of the data. Similarly to [14] it is possible to relax

the restriction of the fixed topology of the lattice by sub-

sequently merging superpixels. We improve results of the

CLT model for a fixed number of 500 superpixels by start-

ing with a higher resolution grid 23× 28 and then greedily

merging based on the boundary cost map along the shared

edge. When the merging order is tied, we prioritize merges

in areas that the CLT model assigns a low boundary proba-

bility to. This usually results in sky and road being grouped

before other regions. Results for the merged lattice can be

seen in rows 8-9 of Table 1. Increasing the lattice resolution

and merging pixels sacrifices the benefits of a regular grid,

but improves the results and makes comparison with other

algorithms that have no topological constraint more fair.

6.1. Comparison to other algorithms

To directly assess the effect of the learned spatial prior,

we first compare our results to the original superpixel lattice

algorithm [14]. Examples of segmentations with and with-

out the prior are shown in Figure 11. In Figure 10a we can

see a significant improvement when comparing the mean

performance over test images. We can also see from Figure

10e that poor performance outliers are completely removed

by incorporating the prior. While this is encouraging we

can gain greater insight by evaluating the performance per

class. In Table 1 we can see that the class average Fsd in-

creases from 0.52 to 0.55. When gauging the sensitivity

of this new metric it is worth noticing that simply down-

sampling the ground truth labeling by a factor of 2 results

in an average 10% drop in performance. If we consider

particular classes, rather than the average, there is a large

improvement in classes that vary in size due to perspective
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Figure 10. Plots of Fs, Fd and Fsd for algorithms 1-5. Test set

contains 171 images. Key: [1+] Our best CLT model with 500

superpixels. [2�] 20 × 25 superpixel lattice [14]. [3�] Imple-

mentation of normalized cuts using Pb boundary map with average

510 superpixels [15]. [4×] Minimum spanning tree with average

558 superpixels [6].[5•] 20× 25 uniform sampling. a) Algorithm

1 vs. 2. b) Algorithm 1 vs. 3 c) Algorithm 1 vs. 4. d) Plot

of Fs against Fd showing cluster means and standard errors. e)

Box plot for each algorithm using combined Fsd score. f) Clus-

ter means and standard error for Fsd. Our best method using a

spatial prior significantly increases performance over superpixel

algorithms without spatial prior.

effects with a 4%, 8% and 9% increase for bicyclist, car and

pedestrian classes respectively.

We also compare our best method to other competing al-

gorithms. Firstly, we compare to an implementation of nor-

malized cuts [19] using the Pb boundary map with an av-

erage of 510 superpixels [15]. Due to memory constraints

this was run on a down-sampled 360 × 480 image. The ef-

fect of this downsampling can be evaluated in row one of

Table 1. In addition we compare to the minimum spanning

tree algorithm [6] with an average of 558 superpixels. As

regions smaller than 10 pixels are ignored from the analy-

sis the small regions that this algorithm can generate do not

degrade its measured performance. Using our analysis we

can see from Figure 10d that the algorithm performs second

best for detection but last for segmentation. This is high-

lighted again in Table 1 where it scores highest for smaller

object categories Column/Pole and Sign/Symbol but has the

poorest average score. It also scores very well for the Sky

class which has reasonably uniform appearance. Finally, we

include the result of simply down-sampling the image into

a regular 20× 25 grid of square superpixels.

From Figure 10f we see that there is no significant dif-

ference in performance amongst the competing algorithms.

However, our best model outperforms all other algorithms

and paired t-tests with the Bonferroni correction indicate

that this difference is statistically significant (p<0.05). The

final column of Table 1 shows that these differences are not

clearly revealed if we only consider the global pixel accu-

racy metric used in [14].

7. Discussion and Conclusions
In this paper we have introduced a novel boundary den-

sity prior for superpixel algorithms. We have shown how

to adapt an existing superpixel algorithm to take this den-

sity into account. We have also introduced a more sensitive

metric for evaluating performance in image labeling prob-

lems and used this to demonstrate that the use of our prior

improves segmentation performance.

Our study reveals the inadequacy of using simple pixel

accuracy to assess over segmentation algorithms: we are us-

ing the ground truth data as a ideal classifier and therefore

performance on individual pixels is very high for all meth-

ods. Results for our proposed metric suggest that despite

this high accuracy there is plenty of room for improvement.

In this paper we have learnt a prior for the segmentation

from real-world boundaries in training data. However, we

note that other methods would be possible. For example, [9]

estimated surface geometry and camera viewpoint to deter-

mine a prior over object sizes and a similar approach could

be used to influence segmentation. Essentially, our model

has learnt that road scenes tend to be foveated without high

level information about the perspective projection process.

The use of low resolution priors for guiding segmenta-

tion also has interesting analogies to other work. While

our method is based on the local unary classifier and there-

fore not directly comparable the title “scene shape” is moti-

vated by the notions of “shape envelope” [16] used for scene

recognition. Our results are achieved without any explicit

object knowledge, object location priors or even class spe-

cific edges. In future work, we hope to explore the use of a

temporal model and semi-supervised techniques for learn-

ing when the availability of labeled data is limited.
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