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Abstract

A common design of an object recognition system has
two steps, a detection step followed by a foreground within-
class classification step. For example, consider face detec-
tion by a boosted cascade of detectors followed by face ID
recognition via one-vs-all (OVA) classifiers. Another exam-
ple is human detection followed by pose recognition. Al-
though the detection step can be quite fast, the foreground
within-class classification process can be slow and becomes
a bottleneck. In this work, we formulate a filter-and-refine
scheme, where the binary outputs of the weak classifiers in a
boosted detector are used to identify a small number of can-
didate foreground state hypotheses quickly via Hamming
distance or weighted Hamming distance. The approach
is evaluated in three applications: face recognition on the
FRGC V2 data set, hand shape detection and parameter es-
timation on a hand data set and vehicle detection and view
angle estimation on a multi-view vehicle data set. On all
data sets, our approach has comparable accuracy and is at
least five times faster than the brute force approach.

1. Introduction
We consider problems where foreground-background

classification (e.g., face detection, human detection) and

foreground within-class classification (e.g., face identifica-

tion, body pose recognition) are both of interest. Many

foreground state estimation methods [1, 4, 21] require lo-

calization of foreground objects as an essential preliminary

step. For such methods, a complete system has two dis-

tinct subsystems: a detection subsystem and a foreground

within-class classification subsystem.

While detection methods like boosted cascades [27, 33]

are very fast, the subsequent foreground within-class clas-

sification process can be a performance bottleneck. Con-

sider a face recognition system where each detected face is

compared with hundreds or thousands of face IDs. Com-

mon methods that employ nearest neighbor [29] or large

margin classifiers [7] can be slow. For instance, in our ex-

periments, face ID via one-vs-all (OVA) SVM classifiers of

535 subjects takes more than two seconds per detected face.

If we use this system to recognize terrorists at a train sta-

tion, the detection stage could easily output dozens of faces

per second during rush hours. A recognition speed of two

seconds/face means a long waiting list of detected faces or

dropping detected faces in a real time system.

In this paper, we devise a filter-and-refine strategy [3, 8]

to alleviate this critical bottleneck. Our formulation can be

employed when the foreground-background classifier sub-

system is a boosted-cascade detector. For a given detector

output, our method identifies a small number of plausible

foreground state hypotheses (filter step). The within-class

classification subsystem can then be applied only to evalu-

ate a small set of candidate hypotheses to decide the fore-

ground state (refine step). For instance, for the abovemen-

tioned face ID scenario, only a small subset of OVA classi-

fiers would be invoked.

Our approach can be applied to object recognition

schemes where multiple hypotheses are examined, for

example, multi-class classification processes and nearest

neighbor approaches. As demonstrated in the experiments,

the proposed filter step can yield an order of magnitude re-

duction in the number of data base examples to be com-

pared (for nearest neighbor approaches) or the number

of within-class classifiers that are invoked (for multi-class

classification approaches), with little or no impact on accu-

racy.

2. Related Work
Our work is related to fast multi-class classification

strategies [18]. In [18], a multi-class classifier is con-

structed by combining binary classifiers in a directed

acyclic graph. It employs the same number of binary clas-

sifiers as the OVA approach, but each binary classification

is much simpler than OVA; therefore it runs faster. How-

ever, for n classes, the total number of binary classifiers to

be trained is on the order of n2, which makes the method

impractical for problems with large numbers of classes.

The filter-refine strategy has been used in detection and

multi-class classification approaches, e.g., [27, 3]. In [27],

a cascade detector is constructed to make object detection
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much faster. Trivial background instances are rejected early

in the cascade. However, a cascade structured filter step will

not have the same advantage for within-class classification,

because an input will go through all filter stages anyway in

a within-class classification process. In [3], an embedding-

based approach was proposed to speed up multiclass classi-

fication. Patterns and classes are mapped to vectors in such

a way that patterns and their associated classes tend to get

mapped close to each other. Thus, an efficient filter step

can be employed in the embedded space to identify a small

number of candidate classes. This approach can be applied

to a variety of multiclass classification problems. However,

extra training is needed to learn the embedding in [3], which

usually implies a requirement for extra training data. Fur-

thermore, the learned mapping functions need to be calcu-

lated using classifiers from the refine stage, which are usu-

ally slow in speed.

In another strategy [22], feature reuse has been proposed

to make detection processes more efficient. It is shown that

reusing features can improve the speed of cascade detectors

by 25%. This work speeds up detection, but does not ad-

dress a subsequent multiclass classification step. Reusing

features has an obvious advantage of minimum extra cal-

culations. In our work, we build the connection between

detection and foreground within-class classification, which

makes it possible to reuse features from detectors for fore-

ground within-class classification.

In addition, there has been previous work [9, 13] that

integrates detection and foreground classification, whereby

the detection result also reveals the foreground state, e.g.,

face view angle. The divide-and-conquer mechanism

achieves great improvement in detection accuracy. How-

ever, to achieve accurate foreground state estimation, fine

partitioning of the foreground space is needed; this implies

the need for a sufficiently large amount of training data with

foreground within-class state annotations to use in training a

classifier for each foreground subclass, or a feature sharing

approach [23] is necessary.

We should also mention that for foreground state recog-

nition, regression based methods [1, 4] can also be used. Al-

though our approach is not applicable to speeding up regres-

sion based methods, it can be applied to alternative methods

like the nearest neighbor method, which can solve general

foreground state estimation problems.

3. Our Approach
In our work, we assume that the detector is a boosted

cascade detector [27, 28, 33]. In addition, we assume that

there are foreground within-class classification strategies to

rerank foreground state hypotheses at the refine step, e.g.,

multiclass classifiers of face IDs, a database of annotated

foreground examples for a nearest neighbor approach, etc.

Our goal is to design a fast filter step to identify a small

number of foreground state hypotheses for a given input.

The basic idea is to reuse weak classifier evaluations from

the detector.

It may seem surprising that a boosted cascade detector’s

weak classifiers can also be helpful in foreground within-

class classification. Detector training only optimizes ac-

curacy in discriminating foreground vs. background. Yet,

as we will soon see, the weak classifier outputs from a

boosted cascade detector can be used to construct a Ham-

ming distance that performs well as a filter step for fore-

ground within-class classification. We first show how the

cascade detector’s weak classifiers are related to locality

sensitive hashing (LSH) [10] functions, which enable ap-

proximate nearest neighbor search in the feature space. We

then show how to construct a Hamming code using a sub-

set of the cascade detector’s weak classifier outputs that is

optimized for foreground within-class classification.

3.1. From Random Binary Weak Classifiers to LSH

In the traditional Adaboost-based method [20], a strong

binary classifier H(x) is constructed as a weighted combi-

nation of weak classifiers that are selected from a pool of

weak classifiers hi(x), with corresponding weights αi:

H(x) =
n∑

i=1

αihi(x) (1)

where x ∈ X is a feature vector, and hi(x) ∈ {−1, +1} can

be simple decision stumps [27] or linear classifiers [33]. In

our approach, each hi is assumed to be a domain biparti-

tioning classifier. Therefore, each hi is equivalent to a hy-

perplane that divides the feature space into two regions and

assigns the input x a binary value +1 or −1, depending on

which side of the hyperplane x locates.

We are going to show that those hi(x) that are random

bipartitioning hyperplanes follow the definition of hashing

functions in Locality Sensitive Hashing (LSH) [10]. Thus,

they can be used to construct a Hamming distance that ap-

proximates nearest neighbor search in the Euclidean feature

space. In LSH, a family H = {h : X → ±1} of func-

tions over X is called (r1, r2, p1, p2)-sensitive for a distance

measure Dx, if for any x1, x2 ∈ X

• if Dx(x1, x2) ≤ r1, then Pr(h(x1) = h(x2)) ≥ p1,

• if Dx(x1, x2) > r2, then Pr(h(x1) = h(x2)) < p2.

For a locality-sensitive family H to be useful, it must satisfy

r1 < r2 and p1 > p2.

We use the following observation: in an Euclidean space,

the probability p that two points x1 and x2 are separated

by a random hyperplane increases monotonically with their

Euclidean distance d = D(x1, x2). Thus, we have p =
f(D(x1, x2)), where f is a monotonically increasing func-

tion and its value is in the range [0, 1].
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If we define h∗(x) = ±1 according to which side of the

random hyperplane x is located, we have,

Pr(h∗(x1) �= h∗(x2)) = f(D(x1, x2)). (2)

Thus, for any r1 < r2, we have

• if D(x1, x2) ≤ r1, then Pr (h∗(x1) = h∗(x2)) = 1 −
Pr (h∗(x1) �= h∗(x2)) ≥ 1 − f(r1),

• if D(x1, x2) > r2, then Pr (h∗(x1) = h∗(x2)) = 1 −
Pr (h∗(x1) �= h∗(x2)) < 1 − f(r2).

Let p1 = 1 − f(r1) and p2 = 1 − f(r2), then we have

(r1, r2, p1, p2) that satisfy r1 < r2 and p1 > p2. Therefore,

h∗(x) is a valid hashing function for LSH.

We define a binary string representation B(x) as the col-

lection of binary outputs of the weak classifiers:

B(x) = {h1(x), h2(x), . . . , hn(x)}. (3)

We define Dr(x1, x2) as the Hamming distance between

two binary strings B(x1) and B(x2), when hk are random

weak classifiers. Retrieval with Dr and a distance threshold

dH is a special case of LSH, that approximates the nearest

neighbor search in the Euclidean feature space.

Although the weak classifiers collected for a detector are

not purely random, it has been noticed [27, 24] that in a

bootstrap training process of a cascade detector, the back-

ground training samples are more and more similar to the

foreground samples, as the cascade stage goes deeper and

deeper. The weak classifiers tend to have accuracies close

to 50%, similar to random partitions. The Adaboost training

process also makes the selected weak classifiers less cor-

related, because a weak classifier selected in an Adaboost

iteration focuses more on training examples that cannot be

correctly classified in previous iterations. We define Dc as

the Hamming distance that uses weak classifiers from the

detection stage. In our experiments, filter-refine with Dc

achieves retrieval accuracy close to or even better than the

Hamming distance Dr that is based on random partitions.

On the other hand, some hk included in a cascade detec-

tor may not be useful for foreground within-class classifi-

cation. We therefore propose optimization schemes that ex-

tract useful hk from those in a detector for specific within-

class classification tasks.

3.2. Optimized Hamming Distance Measure

In this section we propose boosting algorithms to opti-

mize selections of hk for a specific within-class classifica-

tion task. The optimized distance measure is a Hamming

distance, or a weighted Hamming distance, where each bit

is weighted by a real value. Either of these two distance

measures can be used in a fast filter step to eliminate im-

plausible foreground state hypotheses quickly.

Intuitively, a good distance measure puts preferable

neighboring objects closer to a query than unpreferable

ones. For instance, consider continuous parameter estima-

tion problems, like pose estimation [1, 4] or model align-

ment [15]. These problems can be defined as ranking prob-

lems when nearest neighbor approaches [2] or gradient de-

scent methods [30] are applied. When a nearest neighbor

approach is used, the parameter of a more preferable neigh-

bor is closer to the true parameter of the query than a less

preferable one. Whereas in discrete classification problems,

like face recognition [17], the preferable neighbors of a

query are those items that have the same class label.

To optimize a distance measure for ranking problems,

previous work [2, 30] proposes using triples (q, a, b) as

training examples, where q, a and b are samples from the

foreground training set. In each triple, a is a more prefer-

able neighbor to q than b. In training, a distance function is

optimized to always put a closer to q than b. Another pre-

vious work [14] proposes using pairs (q, a) as training ex-

amples for discrete classification problems. Each pair (q, a)
is assigned a label +1 or −1 to indicate whether a is from

the same class as q or not. In training, a distance function is

optimized to always put pairs of the same class closer than

those of different classes. The method of [14] is only rele-

vant to discrete classification. Therefore, we adopt training

with triples in our solution, because it can be applied to both

parameter estimation and discrete classification problems.

The inputs to our training approach are the following:

1. A training set S = {(q1, a1, b1), . . . , (qt, at, bt)} of t
triples of foreground examples. qi, ai and bi are all

foreground examples. In each triple, ai is a more

preferable neighbor of qi than bi.

2. A set of binary functions B = {h1, . . . , hn}, where

hk(x) ∈ {−1, 1}.

Each hk induces a distance measure

dk(x, y) = |hk(x) − hk(y)|/2 (4)

and a weak classifier fk (Note fk is defined on triples, dif-

ferent from hk):

fk(qi, ai, bi) = dk(qi, bi) − dk(qi, ai), (5)

where dk(x, y) ∈ {0, 1} and fk(qi, ai, bi) ∈ {−1, 0, +1}.

Our goal in training is to find a strong classifier

F (q, a, b) =
∑

βjfj(q, a, b), (6)

such that F (q, a, b) > 0 for all triples (q, a, b). If we define

a new distance measure

Dw(x, y) =
∑

βjdj(x, y), (7)
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and plug Eqn.(5) in Eqn.(6), we have

F (q, a, b) =
∑

βjfj(q, a, b)

=
∑

βj(dj(q, b) − dj(q, a))

= Dw(q, b) − Dw(q, a) > 0. (8)

Eqn. (8) shows that a F that always assigns a positive value

to a triple (q, a, b) implies a perfect Dw that always puts

a more preferable neighbor a closer to q than b. Thus, we

can obtain an optimized distance measure Dw for a specific

foreground classification task. The training process to find

optimal βj and fj in Eqn. (6) follows a standard Adaboost

algorithm. The process stops when no more weak classifiers

can be added to reduce the training error. If the same fj

are selected multiple times, their weights are summed to a

single βj to keep all fj in F distinct.

There is a one-to-one correspondence between fk and

hk. We call B̂(x) an optimized binary string representation,

B̂(x) = {hj(x), where fj is selected for F} ⊆ B(x). (9)

We call the distance Dw in Eqn. (7) an optimized weighted
Hamming distance, since each dimension hj(x) is weighted

by a real number βj .

We are also able to obtain an optimized Hamming dis-

tance without real weights βj . There are only two things

that we need to modify in the training process. First, there

is a new constraint that βj = 1. In each iteration, we select

an fj that reduces the training error most, but fix its weight

βj = 1. Second, at the end of each boosting iteration, the

selected weak classifier fj is removed from the pool of all

weak classifiers for following iterations. We denote this op-
timized Hamming distance as Dh.

The above distance optimization scheme considers only

those weak classifiers that were included in the cascade de-

tector. We could instead construct our optimized distance

by selecting weak classifiers from the entire set that was

available for training the detector. It would be expected

that this distance measure might perform better in filter-and-

refine retrieval, since distance construction is not limited

only to those classifiers included in the detector. We de-

fine Da to be the weighted Hamming distance obtained by

selecting a subset from all weak classifiers.

In our experiments, the training process of Da is very

slow. The bottleneck is weak classifier selection in each it-

eration, as noted in [16, 31]. Speedup strategies [16, 33] that

find the best weak classifier deterministically using statis-

tics of training examples cannot be applied, since the same

training example can be a in one triple, but b in another

triple. On the face data set, we tried a fast feature selec-

tion strategy proposed in [31] that stores weak classifier re-

sponses of all training samples in a table, which are reused

in each iteration. Furthermore, the feature set was reduced

to 1/10 of its original size by uniform sampling. The train-

ing process of Da still runs for about eight hours, in contrast

to 25 seconds if we only consider those weak classifiers that

were include in a trained detector.

3.3. Implementation

We train a cascade detector of the foreground class by

Adaboost. Then, an optimized binary string representation

B̂(x) is obtained as described in the previous section.

A table T is constructed to store binary strings B̂(x) of

foreground training examples. Each row corresponds to a

unique binary string. If multiple foreground training sam-

ples have the same binary string, they are stored in the same

row, along with the corresponding groundtruth annotations,

e.g., face IDs.

During detection, if an input is accepted by the cascade

detector, its binary pattern B̂(x) is compared with all the

rows in table T by a fast distance measure (Dw or Dh)

proposed in Section. 3.2. The foreground state hypotheses

associated with top k nearest neighbors (or those within a

distance threshold) of the input are passed to the refine step.

The following is a summary of the online stage for the

example application of face detection and recognition:

1. Detect: x is input to the cascade detector, which uses

a standard “sliding window” approach.

2. Filter: If x is detected as a face, B̂(x) is compared

with all rows in table T by a proposed optimized dis-

tance measure (Dw or Dh). Candidate face IDs are

those of top k nearest neighbors of x or those within a

certain distance threshold from x. These are candidate

face IDs for the refine step.

3. Refine: Apply OVA classifiers of the candidate face

IDs on the corresponding feature representation of x.

The face ID of the classifier that achieves the highest

score is assigned to the input.

4. Experiments
We evaluate our method on three data sets: the FRGC

version 2 data set [17], a hand image data set [32] and a ve-

hicle data set [12]. The experiments are run on a 2.6GHz

AMD Opteron 852 processor in Matlab. Approaches that

are compared include: our methods (filter-refine using Dw

and Dh), ClassMap [3], filter-refine with Dr ,Dc and Da,

brute force approaches (OVA classifiers or nearest neigh-

bor), and support vector regression.

4.1. Face Data Set

In this experiment, we use the same face data set as

in [3], which contains all 2D face images in the FRGC ver-

sion 2 data set. Example face images from this data set are

shown in Fig. 1. 36,817 face images from 535 subjects (i.e.,
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Figure 1. Example face images in the FRGC data set [17].

classes) are partitioned into three subsets, half for training,

1/4 for ClassMap embedding (which is not used in our ap-

proach), 1/4 for test. The 535 one-vs-all (OVA) face classi-

fiers are trained using SVMs with RBF kernels as in [3].

We want to mention that nearest neighbor ap-

proaches [25, 29] that use similarity functions are also pop-

ular methods in practical face recognition systems. Near-

est neighbor approaches are better choices than multi-class

classifiers when few examples of a face ID are provided in

the database. However, on this FRGC version 2 data set,

sufficient training examples are provided for most of the

face IDs. Thus, a nearest neighbor method will be slower

due to a large number of database face images to compare

with given an input. We therefore choose an OVA multi-

class classification method as a baseline approach.

For comparison on the face data set, the most re-

lated works to speed up multi-class classification are

DAGSVM [18] and ClassMap [3]. However, for DAGSVM

the total number of binary classifiers is too large to

train (
n(n−1)

2 where n is the number of classes). Thus,

we compare following seven approaches, brute force where

all 535 OVA face ID classifiers are applied on an input

face, filter-refine with ClassMap [3], filter-refine with Dw

which is the optimized weighted Hamming distance, filter-

refine with Dh which is the optimized unweighted Ham-

ming distance, filter-refine with Dc which uses outputs of

all weak classifiers in the detector cascade, filter-refine with

Da, which is trained with all possible weak classifiers, and

filter-refine with Dr, which is the Hamming distance with

random partitions on 50 trials.

The brute force approach takes two steps, face detection

followed by face ID recognition. The other approaches take

three steps, face detect, face ID filter and face ID refine. In

the refine step, only those OVA classifiers for the remaining

face IDs from the filter step are applied.

A cascade face detector is trained with 2,500 face im-

ages randomly sampled from the training subset. We use

the same set of Haar wavelet features as in [27]. The final

cascade detector has nine stages and 449 weak classifiers

in total. It achieves a detection accuracy of 96% at a false

positive rate of 10−5 on the test set.

The training set for distance optimization comprises

20,000 triples. For all boosting based methods, the boost-

ing processes stops when the reduction of training error in

an iteration is less than the threshold 10−4. In training, 128

Table 1. Comparison of filter step with different distance measures.

The filter time is the average per test example.
Distance measure Dw Dh Dc Da Dr

# weak classifiers 128 135 449 115 150

filter time (10−3 sec) 7 7 11 6 8

training time 25 s 30 s N/A 8 h N/A
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Figure 2. Recognition and retrieval accuracy on the face data set.

weak classifiers are selected for Dw, 135 for Dh and 115 for

Da. For fair comparison, we use 150 random weak classi-

fiers for Dr in each trial. In the filter step, in which nearest

neighbor retrieval is employed, each test example is com-

pared with all 18,409 training examples. In Table. 1, the

five different distance measures Dw, Dh, Dc, Da and Dr

are compared by number of weak classifiers used and the

total time spent in the filter step for all 9,076 test examples.

The brute force approach applies all 535 OVA classifiers on

a test input. On average it takes 2.17 seconds to classify an

input with 535 classifiers.

The graph in Fig. 2 shows the final face recognition re-

sults obtained on the face data set. The curve for Dr is

the average over 50 trials. At the cost of 50 OVA classi-

fier evaluations per query, filter-and-refine using Dh, Dw

and Da achieves accuracies of 90.5%, 91.8% and 93.0%

respectively. In contrast, at the cost of 178 OVA classi-

fier evaluations per query, the ClassMap method achieves

an accuracy of 91.6%. The brute force approach that eval-

uates all OVA classifiers achieves an accuracy of 92.0%. In

terms of speed, the methods Dw and Da are 3.5 times faster

than the ClassMap approach with better classification accu-

racies, and 10 times faster than the brute force approach.

The optimized Hamming distances Dw and Dh are con-

sistently better than the Hamming distance based on random

weak classifiers Dr. We also notice that about one third of

the random weak classifiers only separate a very small por-

tion of foreground examples from the rest, or do not parti-

tion the foreground class at all. This may partially explain

why purely random partitions are not as good.

Interestingly, the proposed methods also achieve slightly

better accuracies than the brute force approach. For in-
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Figure 3. Examples from the hand data set [32].

stance, at the cost of 100 OVA classifier evaluations per

query, filter-refine using Dh, Dw and Da can achieve accu-

racies of 92.5%, 93.1% and 93.0% respectively. One plau-

sible explanation is that a face misclassified via brute force

can be avoided in our filter-and-refine steps if the OVA clas-

sifiers producing false alarms are not considered after the

filter step. The same effect was also observed in [3].

Although Da achieves better accuracy, it does not reuse

weak classifiers from the detector, and as noted in Sec. 3.2,

training is very slow. Moreover, training Da is intractable

when the potential weak classifiers are too many to enu-

merate, e.g., linear discriminants in a high dimensional Eu-

clidean space as in the following experiments.

4.2. Hand Image Data Set

The second application is hand detection and hand shape

estimation. We use a hand image data set [32] in which the

hand shape is parameterized by two angles: θ1 is the angle

of the index finger with respect to the palm and θ2 is in-

plane orientation. θ1, θ2 ∈ [0, 90]. Example hand images

are shown in Fig. 3. In the experiment setup of [32], 1,605

hand images are used for training and 925 for test.

We adopted a two step process to recognize the hand

shape. First, a boosted cascade is used to detect the hand.

Then nearest neighbor retrieval with Euclidean distance in

HOG feature space is used to recover two hand parameters.

We use the same HOG features as in [32]. The detector

is trained with linear discriminants as weak classifiers, as

in [33]. The candidate weak linear discriminants are ob-

tained on subsampled (30%) sets of HOG feature compo-

nents at each iteration, via Fisher linear discriminant analy-

sis [6].

We randomly partition the hand data (1605+925 exam-

ples) into training and test sets for 20 trials. In each trial

we train a cascade detector and measure the performance

of brute force nearest neighbor retrieval, filter-refine with

Dw, Dh, Dc and Dr. All approaches are compared by

their average accuracy at different speedup factors. Note

ClassMap [3] is not included in this experiment; ClassMap

is intended for multi-class classification and inappropriate

for parameter estimation.

In each trial, we train two distance measures Dw and

Dh, with 20,000 triples. Each training triple (qi, ai, bi) is

constructed such that bi is farther away from qi than ai by

Euclidean distance in (θ1, θ2) space. There is one more con-

straint that the parameter (θ1, θ2) of ai is within 10 degrees

difference from q in each dimension, since it is meaning-

less to maintain an order between ai and bi when they are
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Figure 4. Results of parameter estimation on the hand data set.

both far from qi. On average, 50 binary weak classifiers are

selected for Dw and 53 for Dh. For fair comparison, we

randomly sample 50 linear boundaries for Dr and 50 linear

weak classifiers from the detector for Dc in each trial.

Fig. 4(a) and Fig. 4(b) show the comparison of pa-

rameter estimation errors. At a speedup factor of seven,

the proposed approach using Dh obtains mean absolute

errors (MAE) 4.0 and 3.4 for θ1 and θ2, respectively.

The brute force approach using nearest neighbor retrieval

achieves MAEs 4.0 and 3.2 for θ1 and θ2, respectively. The

MAEs of Dw and Dh are consistently lower than Dr and

Dc at speedup factors greater than two for θ1 and at speedup

factors greater than seven for θ2.

Recall that the basic assumption of this work is a two

stage process, detection followed by foreground within-

class classification. If the foreground within-class classi-

fication problem is continuous parameter estimation, a re-

gression based method can be used. For the sake of com-

parison, we test support vector regression (SVR) [26] from

SVMlight [11]. SVR exploits sparsity of the data, so it also

has certain advantages in speed. The SVR models use the
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Table 2. Mean absolute error (MAE) in degrees, and average fil-

ter+refine time spent on each test example, on the hand data set.

“RBF” is radial basis function and “Poly2” is polynomial kernel of

degree 2. Dw and Dr report MAEs at a speedup factor of seven.
Approach MAE θ1 MAE θ2 Time (10−4sec)

SVR-RBF, γ = 0.5 4.4±0.13 3.4±0.09 35±1

SVR-Poly2 4.5±0.10 3.5±0.09 13±4

SVR-linear 7.1±0.15 5.0±0.12 4±1

Brute force NN 4.0±0.13 3.23±0.08 70±0.2

Filter-Refine Dw 4.0±0.11 3.4±0.11 10±1

Filter-Refine Dh 4.0±0.13 3.4±0.11 10±1

Figure 5. Example images and masks in the data set from [12].

the same training and test sets as our method. The learn-

ing parameters (RBF kernel parameter γ , cost upper bound

C) are both searched within the range [10−3,100] via cross

validation to find the best setting.

Table. 2 summarizes the performance of all approaches.

Compared with the lowest error achieved by SVR, the pro-

posed filter-refine method Dh reduces the error of θ1 by 0.4

and obtains the same error of θ2, while maintaining a speed

only slightly slower than SVR with a linear model.

4.3. Vehicle Image Data Set

We also test our method on a multi-view vehicle data

set [12], which contains 1,297 vehicle images from the

LabelMe [19] database. Each vehicle image has a binary

segmentation mask converted from the LabelMe annotation

polygon. In [12], the data is split into seven view point sub-

categories, approximately 30 degrees apart. Because of ve-

hicle symmetry, the labelled angles cover a half circle from

approximately -30 to 180 degrees. For better comparison of

view angle estimation accuracy, we manually labelled 472

out of all 1,297 vehicle images 5 degrees apart. We random

partition the annotated vehicle images into a test set of 200

and a training set of 272 images in 10 trials. In each trial,

a random sample of 700 images from the remaining 1,097

unlabelled vehicle images is added into the detector training

set (but not for view angle estimation training).

HOG features are used in this experiment. Each vehicle

image is normalized to 90 by 90, which is divided into 225

cells of size 6 by 6. Bins in each cell are normalized with the

surrounding 3 by 3 cells using the 2-norm as in [5]. There

are 2,025 features extracted from each image.

A cascade detector is trained in the same way as in the

hand experiment in each trial, where linear discriminants

are used as weak classifiers. On average the cascade detec-

tor has 480 weak classifiers in total.

Figure 6. Example results of view angle estimation by HOG fea-

ture matching. Test inputs are in the top row, and corresponding

nearest neighbors from training images are in the bottom row. The

rightmost three pairs are incorrect matches.
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Figure 7. Comparison of different distance measures on car view

angle estimation accuracy vs speedup factors.

To estimate the view angle of a detected vehicle, we use

a simple nearest neighbor approach. The similarity measure

is the dot product between HOG feature vectors of two ex-

amples. Vehicle masks of training examples are used to zero

out feature components outside hypothetical foreground re-

gions. The dot product is normalized by the number of ac-

tual vector components that are inside the mask. With this

similarity measure, the view angle of the nearest annotated

training example is assigned to the test input as an angle

estimate. Example matching results are shown in Fig. 6.

In our approach, we add a filter step to speed up the

view angle estimation process by selecting candidate train-

ing examples before HOG feature matching. Dw and Dh

are trained with 5,000 triples of annotated training exam-

ples. Each triple (q, a, b) is constructed such that a is closer

to q on the view angle axis than b, and a is within 10 degrees

from q. During boosting based optimization in 10 trials, on

average Dw added 44 weak classifiers and Dh added 47

weak classifiers. For fair comparison, Dr and Dc uses 45

weak classifiers in each trial.

Because there exists strong confusion between frontal

and rear views of vehicles, there is a spike around 180 de-

grees in the distribution of absolute errors, which dominates

mean of the absolute errors (MAE). For better understand-

ing of the errors, we measure the median of absolute er-

rors (Median-AE) at different speedup factors in each trial.

In Fig. 7, distance measures Dw, Dh, Dc and Dr are com-

pared with brute force nearest neighbor approach on aver-
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Table 3. Median of absolute error (Median-AE) in degrees and the

total filter+refine time spent on 200 test examples. Dw and Dr

report Median-AEs at a speedup factor of ten.
Approach Median-AE Time (10−2sec)

SVR-Poly2 25.7±2.7 11.0±1.6

SVR-RBF γ = 0.01 24.2±1.8 10.3±0.7

Brute force NN 9.5±0.8 12±0.3

Filter-refine Dw 11.5±1.2 1.2±0.1

Filter-refine Dh 11.0±1.1 1.2±0.1

age Median-AE vs speedup factors. Note the results are av-

erages over 10 trials. The brute force approach achieves an

average Median-AE of 9.50 degrees. The proposed filter-

refine approach using Dw and Dh achieve average Median-

AEs of 11.5 and 11.0 respectively, at a speedup factor of

10. In contrast, the filter-refine approach with Dr which

uses random partitions achieve an average Median-AE of

25.0, at a speedup factor of 5.

We also test the SVR methods on view angle estimation.

Unlike the HOG feature matching approach, regression

methods (e.g., SVR) require that all inputs have the same

feature dimensions. There is no straightforward way to ap-

ply image masks with regression methods. Consequently,

the features from background regions outside the image

masks are also included during training, which becomes a

major disadvantage for regression methods on this data set.

In Table. 3, we summarize the performance of SVR meth-

ods, in comparison with the proposed approaches. Filter-

refine with Dw and Dh reduce Median-AE by half with a

speedup factor of about nine over the SVR approaches.

5. Discussion
In the experiments, filter-refine using the optimized

Hamming distances (Dw and Dh) constructed from weak

classifier outputs of a boosted cascade detector does bet-

ter than random partitions Dr. This seems to indicate

that these weak classifiers, while explicitly chosen to op-

timize foreground-background discrimination, are also rel-

evant for foreground within-class classification. In compar-

ison with Dr, our formulation improves recognition accu-

racy by about 10% with a speedup factor of ten on the face

data set, and reduces parameter estimation error by at least

15% at speedup factors larger than seven on the hand and

vehicle data sets.

An interesting side-effect noticed in the experiments is

that the foreground within-class classification accuracy can

be improved over the brute force approach by including the

filter step. One possible explanation is that those foreground

state classifiers that produce the false positives are removed

in the filter step, which is also noted in the filter step of [3].
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