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Abstract

With improved sensors, the amount of data available in

many vision problems has increased dramatically and al-

lows the use of sophisticated learning algorithms to per-

form inference on the data. However, since these algorithms

scale with data size, pruning the data is sometimes neces-

sary. The pruning procedure must be statistically valid and

a representative subset of the data must be selected without

introducing selection bias. Information theoretic measures

have been used for sampling the data, retaining its original

information content. We propose an efficient Rényi entropy

based subset selection algorithm. The algorithm is first val-

idated and then applied to two sample applications where

machine learning and data pruning are used. In the first ap-

plication, Gaussian process regression is used to learn ob-

ject pose. Here it is shown that the algorithm combined with

the subset selection is significantly more efficient. In the

second application, our subset selection approach is used

to replace vector quantization in a standard object recogni-

tion algorithm, and improvements are shown.

1. Introduction

Statistical learning methods are used extensively in many

fields including computer vision. With improved imaging,

the amount of data available for learning has increased by

many folds in the last decade. In order to efficiently learn

models from the acquired data, it is necessary to prune the

data in a statistically meaningful way. In other words, a

sparse subset of the original dataset must be selected for

learning in a way that ensures that the sparse subset does not

introduce any bias in the learning and retains the informa-

tion content of the original data. There are different ways

of extracting the subset retaining the information content.

The Support Vector Machine (SVM) [2] sparsifies the data

by retaining only the data close to the inter-class boundary.

The Relevance Vector Machine (RVM) [25] uses an EM-

based optimization to obtain a sparse representation. Vector

Quantization (VQ) divides a large data into clusters hav-

ing approximately the same number of data points closest

to them and uses the cluster centers as a sparse representa-

tion. Alternatively, information theoretic measures [4] like

entropy and divergences have also been used to prune large

datasets into a representative subset [5, 12]. We propose

another information theoretic approach that can efficiently

select a representative subset from a large dataset.

The most commonly used information theoretic measure

is the entropy which measures the amount of information

contained in a distribution. The widely used Shannon en-

tropy of a random variable X , with probability distribution

function (pdf) p(x), is given by

H(X) = −
∫

p(x) log p(x)dx. (1)

The Shannon entropy is a specific case of a more gener-

alized family of entropies called the Rényi entropy. The

Rényi entropy [4] of order α is given by

Hα(x) =
1

1 − α
log

∫
p(x)αdx. (2)

As α → 1, the Rényi entropy reduces to the Shannon

entropy (Eq. 1). While the entropy measures the infor-

mation content of a distribution, the divergence measures

inter-distribution distance and is also widely used. Some

popular divergence measures include the Kullback-Leibler

(KL) divergence (based on the Shannon entropy), the Bhat-

tacharya distance and the Rényi (or Jensen-Rényi) diver-

gence. The generalized Rényi divergence between two dis-

tributions with pdf p(x) and q(x) is given by

H(p‖q) =
1

1 − α
log

∫
p(x)α

q(x)(1−α)
dx. (3)

The KL divergence is obtained as α → 1 in Eq. (3) and is

DKL(p‖q) =

∫
p(x) log

p(x)

q(x)
dx. (4)

The Bhattacharya distance has α = 0.5 in Eq. (3), and is

DB = −2 log

∫ √
p(x)q(x)dx. (5)
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The case α = 1 is special since the entropy (and divergence)

of a joint probability distribution for this value can be sepa-

rated into the entropies (divergences) of the individual ran-

dom variables of the joint distribution [4]. This, coupled

with the tractability of the measures, have made the Shan-

non entropy and the KL-divergence the preferred choice for

many subset selection problems e.g. [5, 12].

However, the Shannon entropy has certain deficiencies.

For random data known only via samples, the Shannon mea-

sure is relatively expensive to calculate, and is often com-

puted via histograms or order statistics, which leads to bi-

ased estimates [10, 28]. Ref. [10] shows that Shannon en-

tropy estimation approaches do not converge to the actual

sample entropy even after bias compensation and further

show the need for 1 < α < 4 to achieve convergence to

actual entropy. This is also illustrated in [31], where it is

shown that the Bhattacharya and KL divergences computed

via histograms exhibit considerable bias.

We derive a distance measure termed the kernelized

Rényi distance (KRD) based on the Renyi entropy with

α = 2. We simplify the resulting integral by using a

non-parametric kernel density estimate of the pdf, and then

speed up the distance evaluation by using a fast matrix vec-

tor product. The distance measure thus obtained is used

to develop a greedy algorithm to select a subset of a large

dataset. Throughout this paper, the term Rényi entropy

refers to α = 2.

The paper is organized as follows. In section 2, we de-

rive the proposed distance measure and introduce an effi-

cient way to evaluate the KRD. In section 3, we discuss the

required modifications to the proposed measure to use it as

a divergence measure and develop a greedy subset selection

algorithm based on it. We provide the results of various ex-

periments in section 4 along with our discussions. Section

5 concludes the paper and discusses some further work.

2. Rényi entropy and our distance measure

The Rényi entropy (for α = 2) is given by,

H2(x) = − log

∫
p(x)2dx. (6)

Here p(x) is the pdf of the random variable X . In many

practical scenarios, the density is not known, and needs

to be estimated from samples drawn from the distribution.

There are parametric and non-parametric ways of estimat-

ing the density function. In the parametric case, a partic-

ular form of the density is assumed and the parameters of

the density function are estimated from the samples. A

non-parametric approach to density estimation uses a kernel

window and estimates the density as a sum of kernel func-

tions of the available samples from the distribution. Using

kernel density estimation for p(x) as in [9], we get

p(x) =
1

N

N∑
i=1

K(x, xi), (7)

where K(x, xi) is a kernel function, often Gaussian,

K(x1, x2) =
1

h
√

2π
exp

(
−|x1 − x2|2

h2

)
, (8)

with h the bandwidth that must be selected according to the

data. Using Eq. (7) in Eq. (6),

H2(x) = − log

∫ (
1

N

N∑
i=1

K(x, xi)

)2

dx (9)

= − log
1

N2

N∑
i=1

N∑
j=1

∫
K(x, xi)K(x, xj)dx.

For a Gaussian kernel,∫
K(x, xi)K(x, xj)dx = K̂(xi, xj), (10)

where K̂ is also Gaussian with bandwidth equalling sum of

the bandwidths of the 2 Gaussian kernels [27]. Using this

in Eq. (9),

H2(x) = − log

⎛
⎝ 1

N2

N∑
i=1

N∑
j=1

K̂(xi, xj)

⎞
⎠ . (11)

Consider two distinct distributions with densities p and q,

defined by the datasets, Dp = {xp1, xp2, . . . , xpN} and

Dq = {xq1, xq2, . . . , xqM}. Then,

H2(p‖q) = − log

⎛
⎝ 1

NM

N∑
i=1

M∑
j=1

K̂(xpi, xqj)

⎞
⎠ (12)

is the distance between p(x) and q(x). We refer to this as

the Kernelized Rényi Distance (KRD) and is the measure

we will use for subset selection. A distance measure very

similar to the KRD (Eq. 12) has been used in [28] for track-

ing. However, the measure proposed in that paper is heuris-

tic. Here, we have derived this from information theory. It is

also interesting to note that, the Cauchy-Schwartz distance

[9] given by,

D(p‖q) = − log

∫
p(x)q(x)dx∫

(p(x))2dx
∫

(q(x))2dx
, (13)

can also be simplified into a form similar to the one in Eq.

(12). The advantages of the KRD are:

(1) because the KRD uses a non-parametric on-the-fly den-

sity estimation, it does not require any parametric approxi-

mation for distance evaluation;
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(2) the KRD is symmetric unlike the popular KL-divergence

measure and like the Bhattacharya distance;

(3) because it starts with Rényi entropy of α = 2 it is more

optimal than measures with α < 2 for sample based com-

putations [10, 28].

Efficient evaluation of the KRD: The evaluation of KRD

between two distributions, represented by O(N ) data-

points, would require O(N2) operations. It should be noted

that the core computation in the KRD evaluation with Eq.

12 is summation of the Gaussian kernel. A number of al-

gorithms have been proposed for fast computation of the

sums of Gaussians. A recent paper [17] combines the best

features of two of these methods, the improved fast Gauss

transform [20] and tree-based methods [13]. We used this

method (available as an open source software) to speed up

our KRD evaluation to linear time.

3. Subset selection algorithm

Existing algorithms for subset selection can be cate-

gorized into two types, greedy and clustering-based ap-

proaches. Greedy approaches [5, 12, 23] define a cost func-

tion to minimize and adds data to the subset that will min-

imize the cost. Clustering based approaches (eg. Vector

Quantization) cluster datapoints in non-overlapping clusters

and use the cluster centers as the low ranked representation.

Both these approaches are well known for sparsification in

learning and vision applications. Our objective is to use the

KRD to develop a greedy algorithm to select a representa-

tive subset of a large dataset.

If the original distribution is denoted as p(x), the subset

selection can be formulated as forming a distribution q(x)
using data-points from p(x) such that p(x) and q(x) are as

close to each other as possible. In other words, we would

want to add the next point in the subset to be drawn from

the original set in such a way that H2(p‖q) is minimized

by this addition. It is easy to see that for a direct use of

the measure in Eq. (12) the subset will be clustered around

the mode of the distribution. However for a subset to be

actually representative of the data, it would be desirable to

capture the significant outlier points as well. The distance

measure in Eq. (12) is therefore modified as,

H2(p‖q) = − log

⎛
⎝1 − 1

NM

M∑
j=1

N∑
i=1

(
K̂(xpi, xqj)

K̂(xpi, xpj)

)⎞⎠
(14)

As mentioned before, the requirement on the subset selec-

tion is that the pdf defined from the subset should be as

close as possible to the original distribution. Hence, in our

KRD based subset selection, we minimize the distance be-

tween the subset distribution and the data distribution rel-

ative to the distance of the distribution with itself. This is

done above by taking the ratio of the contribution of each

Algorithm for subset selection

Given: Data D = xN
i=1

Initialize subset I to be empty

Loop from 1 to M (input subset size)

Define set J = all elements in D not in I

Add an element (el) from J to I which minimizes

H(pD‖pI) using Eq. (14)

Remove el from J

End Loop

Output I

Table 1. The greedy algorithm for subset selection using the dis-

tance measure

training data element to the two distance measures. The

subtraction from 1 is done to to formulate subset selection

as a minimization. For numerical convenience, we clamp

all ratios
K̂(xpi,xqj)

K̂(xpi,xpi)
above 1 to 1 and set log 0 = 0.

Greedy algorithms for subset selection fall into two cat-

egories; they either singly add data-points from the original

set to a subset till the distance between the original and new

distribution is less than a pre-defined threshold, or they add

a pre-defined number of data-points incrementally. In this

paper we will use the latter approach. Suppose a subset

of size M needs to be extracted from a dataset of size N ,

the greedy algorithm would add the data points one-by-one.

For each point, the distance measure is evaluated for all the

points of the distribution from the distribution. Because of

the use of fast Gauss summations, this step has a complexity

of O(N ) and this is repeated for M points, thus leading to

an overall complexity of O(MN ). Without the fast-matrix-

vector product of [17], this would have costed O(MN ) for

each point selection and O(M2N ) for the entire algorithm.

The algorithm is shown in Table 1.

Here, we exploit the facts that the distance measure in

Eq. (14) is symmetric and that the influence of each sample

point is additive (log is a montone function). To minimize

the distance at each iteration, we consider the contribution

of each data-point in the original dataset to the distance, and

add the point to the subset that makes the largest relative

distance contribution.

3.1. Validation

Gaussian mixture recovery: In order to confirm that the

proposed algorithm is able to extract a representative sub-

set, data were sampled from a mixture of Gaussians and a

subset of this data was obtained using the algorithm. Then

the original data and the subset were clustered to determine

the means and the variances within each cluster (the number

of clusters was chosen as the number of mixtures). In order

to further substantiate our algorithm, we selected a random

subset of the data and performed clustering. This was re-

peated for different number of mixtures and in each case

20% of the the data was selected. For a random sampling,
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# of mixtures Mean Variance

1 0.0087(0.0672) 0.0305(0.0254)

2 0.0314(0.0786) 0.0303(0.0392)

3 0.0769(0.0445) 0.0194(0.0137)

4 0.109(0.2229) 0.0259(0.012)

5 0.0805(0.3834) 0.0493(0.0465)

Table 2. Subsets were selected from data generated from mixtures

of Gaussians using our approach and random sampling. The mean

error in the mean and variance of each cluster for different mix-

tures is shown here. The value inside the braces gives the corre-

sponding error for a random sampling.

it can be shown using Chernoff bounds that the sampling

may yield a representative subset for large enough subset

size, but with some uncertainty. The objective of this vali-

dation is to show that our approach is consistent against the

uncertain random sampling. The results are shown in Ta-

ble. 2. As can be seen, our algorithm performs consistently

against the random sampling which did not give low error

consistently.

Kernel density comparison: In order to further validate

our approach to subset selection, we drew 2000 samples

from the 15 normal density mixtures in [16]. We estimated

the underlying density using the standard kernel density es-

timation, utilizing the entire set of drawn samples. We then

used our KRD based subset selection to reduce the number

of samples to 20% of the sample size, and estimated the

kernel densities using this low ranked representation. The

results for 6 of the 15 distributions are shown in Fig. 1.

It can be seen that our low ranked estimates are similar to

those obtained from the entire samples thus validating our

approach further. Notice that the KDE on the entire dataset

also misses some fine features because of the sample size.

3.2. Applications

There are numerous applications where the KRD (Eqs.

(12) and (14)) can be used. For example, it can be used

as a similarity measure in tracking as in [28] or for image

search as in [11]. However, we limit our experiments and

discussion to the subset and discuss two applications.

As mentioned earlier, the complexity of using learning

algorithms increases along with the amount of data avail-

able. Hence sparse learning algorithms, which use sophisti-

cated approaches with very few exemplar points, are popu-

lar, e.g. Support Vector Machines [2] (SVM). Probabilistic

algorithms like Relevance Vector Machines [25] (RVM) and

Gaussian Process Regression [19] (GPR) which not only

provide the predictions, but also a confidence value for the

prediction are also gaining popularity and is the first appli-

cation considered. Particularly, since Gaussian Process Re-

gression has a non-parametric formulation, it is considered

to be a robust learning approach. However, the application

of GPR is hindered by its cubic computational complexity.

In order to overcome this problem, sparse approaches and

fast algorithms are used. Sparse approaches fall in three

classes;

(1) learning from a subset of the original data like in

[12, 5, 23];

(2) a low rank approximation (chapter 8 in [19]);

(3) using mixture of experts. Our subset selection approach

can be directly used in the first class - sparse GPR learning.

Vector quantization is used in object recognition (e.g.

[8]) for learning a dictionary of codewords, which can later

be used for forming histograms from objects. The his-

togram of the codewords are then used for training and clas-

sification of object categories. Another application of vector

quantization is in speaker identification (text dependent and

independent) [29]. The key idea in the utilization of VQ in

these applications is to find cluster centers which are then

considered as representatives of the set. It is possible to use

our subset selection approach in place of VQ as is shown in

the section 4 for object recognition.

4. Experiments

In the first experiment, we tested the performance of the

proposed algorithm with GPR and compared it with exist-

ing sparse GPR approaches. We then apply the regression

approach to estimate the head pose in human faces and com-

pare the performance with other popular sparse approaches

namely RVM and SVM based regression. In our second ex-

periment, we used our subset selection approach with the

bag-of-features method to perform object class recognition.

We compared our approach using the Vector Quantization

based approach.

4.1. Gaussian Process Regression
Gaussian process regression is a probabilistic kernel re-

gression approach which uses the prior that the regression

function (f(X)) is sampled from a Gaussian process. For

regression, it is assumed that a set of datapoints D =
{X, y}N

i=1, where X is the input and y is the correspond-

ing output such that y = f(X) + ε. ε is the observation

noise, ∼ N(0, σ2). For GPR, the prior is that the samples

are drawn from a Gaussian process with zero mean and a co-

variance defined by a kernel function K(x, x′) (which is the

covariance between x and x′), i.e. f(x) ∼ GP (0, K(x, x′))
[19]. It is shown in [19] that with this Gaussian process

prior, the posterior of the output y is also Gaussian with

mean and covariance given by m and V as below,

m = k(x∗)
T (K + σ2I)−1y, (15)

V = K(x∗, x∗) − k(x∗)
T (K + σ2I)−1k(x∗))(16)

where x∗ is the input at which prediction is required, K

is the covariance matrix using the kernel function and

k(x∗) = [K(x1, x∗), K(x2, x∗) . . . , K(xN , x∗). Here m

gives the prediction at x∗ and V gives the variance of pre-

diction. The core complexity in Gaussian processes in-

volves solving a linear system involving the kernel covari-
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Figure 1. Density estimates of the normal density mixtures in [16] using the entire samples and our low rank subset

(a) Mean Absolute Error

(b) CPU Time

Figure 2. Result with the toy data in [12]; 2(a): The mean abso-

lute error in the prediction of the output variable by several sparse

Gaussian process regression approach along the full Gaussian pro-

cess regression on the toy data. 2(b): The time taken by several

sparse Gaussian process regression approach along the full Gaus-

sian process regression on the toy data

ance matrix and hence is O(N3). One approach to over-

come this is to obtain a sparse representation (subset) of

the original dataset which retains the information contained

in the original data. For example, Online Gaussian Pro-

cess (OGP) [5] uses a set of Basis Vectors (BVs) to train

and predict the GP model. Similarly, the Informative Vec-

tor Machine (IVM) [12] uses a KL-like distance measure to

select a representative subset by approximating the poste-

rior. Sparse Pseudo-input Gaussian processes (SPGP) [23]

performs a sampling on the training points to obtain pseudo

training data which is then used for training and prediction.

Each of these approaches has a computational complexity

of O(MN ), where N is the size of the original data and M

is the size of the subset. Along the same lines, we propose

the use of our subset selection algorithm to obtain a sub-

set of the training data, by using a combined input-output

space, an idea inspired by [6] where a joint feature-spatial

space is used for tracking. Once the subset was selected, we

trained and predicted the Gaussian Process model [19].

In order to test the proposed algorithm with Gaussian

process regression, we first compared the performance on

a toy dataset in [12] against IVM [12], OGP [5] and SPGP

[23] along with the Gaussian process regression on the full

dataset (Full GP). We used the Gaussian kernel for the co-

variance function in all the experiments with GPR. In each

of these methods, the size of the subset was set and the

mean absolute error between prediction and actual output

were measured along with the time taken by each of these

method to make the predictions. The results are shown in

Fig. 2. It can be seen that our method performs comparably

with all of the sparse Gaussian process methods. Further, it

is important to note that the error in prediction using sparse

approaches converges to that of full GPR with the use of

proper subset size. It was also observed that OGP does not

perform any better than full GP in training because it per-

forms an online update of the kernel matrix, however the

prediction is sped up because of the use of basis vectors.

Further, we also tried to apply the Gaussian Process Re-

gression with subset selection approach with two standard

datasets, Abalone and PumaDyn8NH [1]. We compared

the performance with other sparse data selection methods

- IVM and SPGP. Fig. 3 shows that although all the three

algorithms had the same asymptotic complexity (O(MN )),

our algorithm performed much faster than the other meth-

ods when applied to large datasets thus indicating the con-
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(a) Mean Absolute Error for Abalone (b) CPU Time for Abalone

(c) Mean Absolute Error for PumaDyn8NH (d) CPU Time for PumaDyn8NH

Figure 3. Comparison of the performance of the training and prediction with our approach, Informative vector machine and Sparse Pseudo-

input Gaussian Process with standard datasets; 3(a): Mean absolute error for Abalone (4177 datapoints, each with 7 dimensions) dataset;

3(b): Time taken for training and prediction with Abalone dataset; 3(c): Mean absolute error for PumaDyn8NH (8192 datapoints, each

with 7 dimensions) dataset; 3(d): Time taken for training and prediction with PumaDyn8NH dataset

stants in complexity is very less in our method.

It should be noted here that the error shown were abso-

lute and not normalized. In the toy-data, the errors in all

the methods were of the order of 0.025− 0.03 beyond 10%
of the data. Also, the output variable in Abalone is its age

and the errors obtained were of the order 1.5 − 2. At these

scales, our performance can be asserted to be comparable

with other approaches. Further, the approaches with which

we compared our method were tuned low-ranked approxi-

mations designed specifically for Gaussian process regres-

sion, thus our untuned subset selection performs on par with

the other tuned approaches.

Pose Estimation: Motivated by the superior performance

of the KRD-based sparse GPR, we applied our approach to

learn the head pose from human face images. Sparse re-

gression based pose estimation has been done in several pa-

pers, for example, [15] uses RVM to train images to learn

poses, [18] uses an online Gaussian process algorithm to

learn head pose from images. For this experiment, we used

the PIE dataset [21] after annotating the image. For the pur-

pose of this experiment, we considered only the horizontal

orientations of the human face. The images were annotated

with a score between −1 (left) to +1 (right) based on the

horizontal orientation of the human face. A randomly se-

lected class from the dataset is shown in Fig. 4 along with

the score assigned to them.

Each image was projected onto a 30 dimensional sub-

space using PCA and were trained to learn the scores as-

Figure 4. This is a randomly chosen class of pose images from the

PIE dataset. The images were assigned scores of {-1,-0.75,-0.5,-

0.25,0,0.25,0.5,0.75,1} from left-to-right

signed to the image. Further, we also compared the results

with popular sparse learning methods RVM (from [24] and

SVM (from [3]. The error in prediction and performance

are tabulated in table 3. In all the experiments, 90% of the

images were used for training and the learning method was

tested on the remaining 10%. 20% of the training data were

selected by our method which was then used for training the

GP model. It can be seen that our method with Gaussian

process makes it comparable or better than the SVM used

in [3] both in time and error while providing confidence in-

formation as well.

To summarize this experiment, we first used KRD based

subset selection approach with Gaussian process regres-

sion and compared it with other sparse GP approaches and

showed comparable error performance on a toy dataset.

We then extended the experiment with standard regression

datasets and compared our approach with other popular sub-

set selection approaches in GP and showed that our algo-

rithm performs faster than other approaches for larger data

size. Finally we applied our approach to pose estimation

and comparing with popular sparse approaches, showed that
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Mean Absolute Time taken

Method Error in for prediction

prediction (seconds)

GPR 0.0421 6.0469

RVM 0.0431 37.8281

SVM 0.0755 4.5781

Table 3. Comparison of performance of our method with SVM

and RVM for pose estimation. Each error entry gives the mean

absolute error between the predicted face pose score and the actual

score assigned to the image. Note that the prediction using RVM

and GPR involved the evaluation of the variance (confidence) also,

whereas the SVM computed only the predictions

our approach has comparable performance with the popular

methods as well.

4.2. Visual words and object recognition
We then applied our subset selection algorithm to ob-

ject recognition. The bag-of-features approach [22, 8] have

been widely used for object categorization because of its

simplicity and good performance. The basic steps in bag-

of-feature based object recognition can be summarized as:

1. Features are extracted from an image by either diving

it into grids or using interest point detectors.

2. The features are then represented by a set of descrip-

tors. One of the popular descriptors are the Scale-

Invariant Feature Transform (SIFT) [14].

3. The next step is to generate a codebook from the de-

scriptors. In this step, the feature descriptors are Vector

Quantized (VQ) and the centers of the clusters are de-

fined to be the codewords of the dictionary of object

categories.

4. Features from the images can now be expressed as a

histogram of all codewords in the dictionary.

5. The histogram is used to train a classifier for object

categorization.

6. For an unlabeled image, the histogram of codewords

is extracted, and then the trained classifier is used for

classification.

We propose to replace the VQ step above with the KRD-

based subset selection approach to get a representative set of

the collection of descriptors. We show that by this approach,

for comparable accuracy, there is a marked improvement in

the time taken for dictionary formation. We used a standard

k-means based vector quantizer for this experiment.

We use the SIFT descriptors of the image extracted after

running an interest-point detector using the toolbox from

[26]. In order to provide a basis for comparison, we also

use a VQ based dictionary. Once the dictionaries are ob-

tained, the histogram of codewords are extracted from the

image. We use a 5-Nearest Neighbor classifier to compare

the performance of the two dictionaries. The images used

for the training and testing were obtained from the Caltech-

101 dataset [7].

VQ-based Our method based

2-class 77.8 (27.3s) 71.3 (29.7s)

3-class 62.3 (280.3s) 63.8 (75.8s)

4-class 78.4 (310.1s) 78.4 (249.8s)

5-class 61.4 (3651.5s) 62.7 (729.7s)

6-class 63.4 (3765.9s) 59.3 (1307.2s)

10-class 47.8 (∼ 5hrs) 52.7 (∼ 1hr)

Table 4. Accuracy of classification when objects from different

number of classes were trained and predicted. The size of the

dictionary was set to be 30 times the number of classes of ob-

ject present. Each entry here indicates the over-all percentage of

correct prediction, and the time taken for dictionary formation is

given within braces

In the first part of this experiment, we randomly choose

5 classes from the dataset and extracted dictionaries using 5
images from each class with the two approaches mentioned.

The size of the dictionary was set at 300 in all cases. The

dictionaries were used to obtain codeword histogram from

each image. The trained histograms are then used to classify

unseen test images using a 5 nearest neighbor search. We

achieved an overall accuracy of 56.7% with our approach

compared to the 49.5% accuracy from the Vector Quanti-

zation based approach. 5-class confusion matrix for VQ-

based approach is given by,⎛
⎜⎜⎜⎜⎝

0.3333 0.2083 0.0213 0 0.0105
0.0500 0.4375 0 0 0
0.3333 0.1667 0.9362 0.7000 0.5079
0.0500 0.0208 0 0.3000 0
0.2333 0.1667 0.0426 0 0.4817

⎞
⎟⎟⎟⎟⎠ ,

and for our KRD-based approach is given by⎛
⎜⎜⎜⎜⎝

0.3833 0.2083 0 0 0.0209
0.0833 0.6250 0 0 0
0.1667 0.0417 0.8723 0.4667 0.4293
0.0667 0.0208 0 0.5000 0.0052
0.3000 0.1042 0.1277 0.0333 0.5445

⎞
⎟⎟⎟⎟⎠

In the confusion matrix, along each columns is the predicted

labels and each row shows the true label. Except for the

3rd class, the classification accuracy of the other classes is

better by using our algorithm. Also the overall accuracy

was also better than the VQ based approach. We further

repeated the experiment for 2, 3, 4, 5, 6 and 10 class pre-

diction, in each case the size of the dictionary was set at 30
times the number of classes trained. Table 4 shows the over-

all accuracy and time taken for dictionary formation for our

approach and VQ based approach.

It can be seen that, with comparable accuracy, our ap-

proach is much faster than the VQ based approach, espe-

cially as the number of classes increases. We have thus
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shown that the dictionary based on our method has com-

parable performance with the VQ based approach, but takes

lesser time for dictionary formation.

5. Conclusion

We developed a new information-theoretic distance mea-

sure and used it to develop a subset selection algorithm. The

form of the distance function allowed the use of an O(N)

fast Gaussian summation algorithm and allowed a speed

up of the distance evaluation to linear time. The subset

selection algorithm was successfully applied to both syn-

thetic and real problems (Gaussian process regression, and

to replace vector quantization). Our approach, while being

much more efficient, performed comparably or better than

approaches previously used.

Further work: Inspite of the good performance of our

approach, one open question that still remains is the size of

the subset that could be chosen. It would be interesting to

explore the possibility of extending the proposed method to

automatically tune the size of the subset based on a defined

information theoretic error criteria.
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