
Kernel Map Compression using Generalized Radial Basis Functions

Omar Arif and Patricio Antonio Vela
School of Electrical and Computer Engineering

Georgia Institute of Technology, Atlanta, GA 30332
omararif@gatech.edu, pvela@ece.gatech.edu

Abstract

The use of Mercer kernel methods in statistical learn-
ing theory provides for strong learning capabilities, as seen
in kernel principal component analysis and support vector
machines. Unfortunately the computational complexity of
the resulting method is of the order of the training set, which
is quite large for many applications. This paper proposes a
two step procedure for arriving at a compact and compu-
tationally efficient learning procedure. After learning, the
second step takes advantage of the universal approximation
capabilities of generalized radial basis function neural net-
works to efficiently approximate the empirical kernel maps.
Sample applications demonstrate significant compression
of the kernel representation with graceful performance loss.

1. Introduction

This paper presents a method for improving the compu-
tational and representational efficiency of algorithms based
on Mercer kernel methods. Mercer kernel methods gener-
ate powerful techniques for studying non-linear data [16].
Many useful linear algorithms involving dot products can
be made nonlinear by employing Mercer kernels. Two such
algorithms are kernel principal component analysis (KPCA)
[17] and support vector (SV) machines [18]. They have
been applied in numerous image processing and computer
vision applications, see for example [1, 10, 16, 22]. How-
ever, the superior performance of Mercer kernel-based al-
gorithms comes at a price of increased storage and compu-
tational requirements [14].

Accurately learning the desired functional relationship in
the training phase requires a large number of training sam-
ples. The large training set presents a difficulty, since it
requires that the whole input space associated to the train-
ing set be stored and processed at once. Methods have
been proposed for both the KPCA and the SV machines
to learn the space incrementally [5, 8, 21]. However, once
the space has been learned, either incrementally or in batch,

all subsequent computations in the high-dimensional space
are performed through the kernel in terms of linear com-
binations of all training vectors. For massive datasets this
still requires high storage requirements and computational
complexity, making kernel methods unfavorable for on line
computer vision applications.

Schölkopf et al [15] discuss two solutions to reduce
the execution space. The first, called reduce set selection
(RSS), finds a reduced set of expansion vectors from the
original space that approximates well the training set. RSS
has been shown to work well (see refs. in [9, 15]). The sec-
ond, called reduce set construction (RSC), identifies new
elements of the input space that approximate well the train-
ing set. RSC has improved compression versus RSS [15],
but has a more expensive upfront cost to find the reduced
set. Related methods applicable only to SVMs include [7],
which is a basis selection method, and [2], which extends
[15] to incorporate shared support vectors.

A related form of learning is neural networks [6, 12].
Neural networks have the property of universal approxima-
tion [11, 13]. Further, they are more efficient than kernel
methods [15]. Thus, in principal, neural networks should be
capable of providing efficient representations of the func-
tions or mappings arising from Mercer kernel methods,
however previous attempts have not been so fruitful [15].

Contribution. This work exploits the relation between
kernel methods, regularization theory and radial basis func-
tions to propose a novel method to reduce the computa-
tional complexity associated with kernel methods. The
work differs from previous efforts in that we approximate
the learned function in a manner more compatible with the
universal approximation capabilities of neural networks. In
particular, once the function or mapping is learned using
kernel methods, we identify the underlying algorithmic step
involving the empirical kernel map, which is the part most
suited to neural network approximation. The final algorithm
is a two-step process beginning with the learning procedure,
followed by the compression procedure. Efficient represen-
tations are achieved with minimal loss of performance.

1119

2009 IEEE 12th International Conference on Computer Vision (ICCV)
978-1-4244-4419-9/09/$25.00 ©2009 IEEE

2. Mercer Kernels and Existing Efforts.

The basic idea behind Mercer kernels is to map the in-
put space {x1, . . . , xn} ⊂ R

d into a high dimensional fea-
ture space F using a nonlinear mapping φ : R

d → F .
The feature space F is a Hilbert space whose dot prod-
uct is computed using Mercer kernels. A Mercer kernel
is a continuous, symmetric and positive definite function
k : R

d × R
d → R, such that

k(xi, xj) = (φ(xi) · φ(xj)) . (1)

Mercer kernels allow the computation of dot products in the
feature space, without computing the mapping φ. Exam-
ples of the Mercer kernels are Gaussian kernel k(xi, xj) =

exp
(
−
||xi−xj ||2

2σ2

)
and the polynomial kernel k(xi, xj) =

(xi ·xj)
p. Next, we summarize two popular kernel-based al-

gorithms followed by existing attempts to reduce the space.
Kernel principal component analysis (KPCA) carries out

PCA in the high-dimensional feature space by diagonaliz-
ing the kernel matrix K given by Kij = k(xi, xj), for

i, j = 1, . . . , n. Let αk = [
αk

1√
λk

, . . . ,
αk

n√
λk

]T be the kth

eigenvector of the kernel matrix K, with eigenvalue λk,
then the principal components in the feature space are rep-
resented by Vk =

∑n
i=1 αk

i φ(xi). A test point x is repre-
sented in the KPCA space by projecting it onto the eigen-
vectors. The projection of the kth eigenvector is

fk(x) =

n∑
i=1

αk
i k(xi, x). (2)

Support Vector Machines (SV) perform classification by
constructing a high-dimensional hyperplane that separates
the data into two categories. The nonlinear decision bound-
ary is given by

f(x) = sgn

(
n∑

i=1

αik(xi, x) + b

)
. (3)

The contributions with αi �= 0 are called support vectors
and are given by V =

∑n
i=1 αiφ(xi). For each class to

identify, there is a support vector, thus leading to a collec-
tion of support vectors {V1, ..., Vnc

} and coefficient vectors{
{α1

i }, . . . , {α
nc

i }
}

, where nc is the number of classes.

Reduced Set Methods. To carry out either the projections
(Equation (2)) or classification (Equation (3)), the computa-
tion depends on the entire input space {x1, . . . , xn} ⊂ R

d

(or support space for SV), leading to the high storage and
computational requirements. Schölkopf et al [15] propose
two solutions to reduce the space. The first, called reduce
set selection (RSS), deals with the problem of how to select
a reduced set of expansion vectors from the original space

so that the Equations (2) and (3) are represented in terms of
the reduced expansion vectors. The second, called reduce
set construction (RSC), constructs new vectors to achieve
high reduction rates. RSC gives better compression results
than RSS [15], but with a higher computation cost.

Both reduced set methods, RSC and RSS, obtain a re-
duced kernel mapping through the approximation of the
vectors Vk by

V́k =
l∑

j=1

βjφ(zj), (4)

where l < n (or in the SV case l < nc), zj ∈ R
d are

the new input vectors, and the βj ∈ R are their coefficients
[14]. The coefficients βj and new input vectors zj are found
by minimizing ∣∣∣∣∣∣Vk − V́k

∣∣∣∣∣∣2 . (5)

The procedure starts with l = 1 and, instead of minimizing
Equation (5), maximizes the following equivalent function:

(Ṽj · φ(zj))
2

(φ(zj) · φ(zj))
, (6)

where Ṽ1 = Vk, and the Ṽj for 1 < j ≤ l will be defined
shortly.

To find the pre-image, z1, fixed point or gradient based
optimization procedures are used [4, 14]. Once the op-
timal pre-image z1 is found, the coefficient β1 is deter-

mined by setting β1 = (Ṽ1·φ(z1))
(φ(z1)·φ(z1))

. To find the next pre-

image vector zj+1, define Ṽj+1 := Ṽj − βjφ(zj), where
Ṽj =

∑n
i=1 αiφ(xi) −

∑j−1
a=1 βiφ(ci), and z1 by zj+1. In

[4], once all the zj and βj are found, the procedure is fol-
lowed by simultaneous optimization over all zj and βj . The
procedure is performed to approximate all Vk, each with its
own set of pre-image vectors {zk

j } and coefficients {βk
j },

where the superscript of k specifies the connection to Vk.
Other methods that reduce the space include [20], where

a maximum-likelihood approach is used to obtain sparse
representation. However, the method is not general and is
used for KPCA only.

3. Kernel Map Compression

The previous section described the reduced set method
as an iterative procedure that identifies the input space
pre-image vectors {zk

j } and associated coefficients {βk
j },

j = 1 . . . l, that approximates well the original Hilbert space
vector(s), Vk. We propose a novel method to cull the input
sample space by exploiting the relationship between (neural
network) regularization theory and kernel methods [6, 19].
Rather than learn the eigenvectors in the Hilbert space (4)
as in the reduced set methods, we propose to learn the em-
pirical kernel maps, Vk : R

d → R, using generalized radial
basis functions (GRBFs).

1120

In the finite-dimensional feature sub-space ofF , we have
that the k-th coordinate of the image of xi is

yk
i = Vk(xi) =

n∑
i=1

αk
i (xi, x). (7)

This input-output equation is found in both KPCA (2) and
SV (3), and is determined during the KPCA and SV learn-
ing procedure. Further, the input-output relationship be-
tween xi and yi is much simpler than the xi and Vk. In what
follows, we describe how the collection of all {x1, . . . , xn}
and associated

{
yk
1 , . . . , yk

n

}
are learned for each k. In par-

ticular, we point out how the function in Equation (7) is of
the class of functions that are efficiently approximated by
generalized radial basis functions [13]. Without loss of gen-
erality, and for purposes of exposition, we will ignore the
superscript ·k in what follows, then introduce it again later.

3.1. Setup.

In regularization theory [12], the approximation problem
is: given n different points {xi ∈ R

d, i = 1, . . . , n} and
n real numbers, {yi ∈ R, i = 1, . . . , n}, find a function
f : R

d → R that minimizes

H[f] =

n∑
i=1

(yi − f(xi))
2

+ λ ||Pf ||
2
, (8)

where P is a constraint operator (usually a differential
operator), ||·|| is a norm on the function space, and λ is
the regularization parameter. If ||Pf ||

2 is rotationally and
translationally invariant, the regularized solution is given by
the expansion in radial basis functions,

f(x) =

n∑
i=1

wir(|xi − x|). (9)

where | · | is a norm on the input space and r is the ra-
dial basis function (RBF). The RBF r is a real valued func-
tion depending only on the distance of the input from the
origin. Commonly used types of RBFs include Gaussian,
multiquadric, thin plate spline and polyharmonic spline.
The function f is given by the sum of n RBFs, placed
at points {xi}

n
i=1 and weighted by coefficients {wi}

n
i=1.

The coefficients are found using the interpolation conditions
f(xi) = yi, i = 1, . . . , n. In many practical applications P
is rotationally and translationally invariant.

In the RBF approach, the function f is expanded on a set
of radial functions r centered at data points. The function is
then a point in a multidimensional space, whose dimension
is equal to the number of data points. This indicates that the
function f can be approximated by an expansion in a basis
with a smaller number of dimensions [12],

f∗(x) =

l∑
j=1

γjr(|cj − x|), (10)

where cj and γj are l < n center points and their coeffi-
cients. Now the problem consists of finding the optimal cj

and γj . Movable centers RBFs are called generalized radial
basis functions (GRBFs).

3.2. Procedure

In what follows, we describe the procedure for gen-
erating the GRBF approximation to the input-output set
{x1, . . . , xn} and {y1, . . . , yn}.

Finding optimal coefficients γj: Starting from an initial
set of center locations cj , the coefficients γj , can be found
by imposing the constraints f∗(xi) = yi, leading to the
following system of over constrained linear equations:

yi =

l∑
j=1

γjr(|cj − xi|) , i = 1, . . . , n. (11)

The least square solution determines an approximate solu-
tion to the overdetermined system. The least squares for-
mula is written as

γ = (RT R)−1RT y, (12)

where γ = [γ1, . . . , γl]
T is an l-dimensional coefficient

vector, R is the n× l matrix with entries Rij = r(|xi−cj |),
and y = [y1, . . . , yn]T . The l×l matrix RT R is nonsingular
[12] and therefore invertible.

Finding optimal center location cj: To find the opti-
mal center locations cj , minimize the Equation (8), with f
replaced by f∗. Different optimization algorithms can be
used for this purpose. We show here calculations using gra-
dient descent and setting λ = 0. We start with the initial
estimation of l center points and use the following equation
to find the update:

cj(t + 1) = cj(t) + δt
∂H[f∗]

∂cj

j = 1, . . . , l, (13)

where δt is the time step and ∂H[f∗]
∂cj

is given by

∂H[f∗]
∂cj

= −4γj

n∑
i=1

(yi − ŷi)r(|cj − xi|)(cj − xi), (14)

where ŷi = f∗(xi).
Since the method described above is based on gradient

descent, the starting locations of cj need to be estimated.
We can start from equally spaced center locations spread
over the original space, or use the center locations found as
a result of RSS [15] as the starting center locations. Here, k-
means applied to the original space to find l cluster locations
will identify the starting locations.

Algorithm: In summary, the following steps are taken
to find the reduced space:

1121

1: use k-means to find the l initial centers cj .
2: use Equation (12) to find the coefficients γj .
3: iterate Eqs. (12) and (13) until the error given by Eq.

(8) goes below some threshold value.

Applied to Equation (7). The procedure applies to each
of the functions Vk and their associated input-output sets
{x1, . . . , xn} and {yk

1 , . . . , yk
n}. Note that all center loca-

tions and coefficients are optimized simultaneously. This
contrasts with Schölkopf [14], where optimization is per-
formed over one point at a time. In Burges method [4], op-
timization is performed over one point at a time, followed
by a second phase with all parameters optimized jointly.

3.3. Approximating Several Functions at Once

Typical applications require approximating more than
one function in the feature space. For example, we would
like to efficiently compute all the functions Vk(x), corre-
sponding to fk(x) in Equation (2), and the collection of
binary classifiers Vk(x) arising from Equation (3). Ap-
proximating each function separately using the method de-
scribed in Section 3 may not result in adequate compres-
sion. The procedure will return a pair of center locations
and their coefficients for each function Vk, {ck

j , γk
j }

l
j=1,

where k = 1, . . . , m and m is the total number of functions
to be approximated (varies based on KPCA vs SV). A more
efficient approach is to share center locations cj for all the
functions Vk with different coefficients γk

j . The functions
Vk are then approximated by

V ∗k (x) =
l∑

j=1

γk
j r(|cj − x|). (15)

The combined optimization gives a different update
method for the coefficients and center locations. To find the
coefficients γk

j , Equation (12) is used except that the γ and
y are l×m matrices, where l is the total number of centers
and m is the number of functions to be approximated.

To find the optimal center locations cj , the functional to
be minimized is of the form

H[f∗] =
m∑

k=1

n∑
i=1

(yi − f∗k (xi))
2
. (16)

3.4. Achieving Further Compression

The method achieves compression by only optimizing
over the location and the weights of the basis functions,
with all other parameters of the basis functions equal. For
Gaussian RBFs, additional modifiable parameters include
the positive symmetric operator defining the norm | · | for
each RBF, which affects the orientation and anisotropy as-
sociated to the RBF. Optimizing over these parameters may
lead to further reductions in the number of RBFs needed.

3.5. Computational Cost

The proposed method iterates between finding the up-
dated coefficients γi and the centers ci, until the error given
by Equation (8) goes below some threshold. The equations
to iterate are Equations (12) and (13). Equation (12) re-
quires taking the inverse of one l × l matrix, with the com-
putational cost of O(l3), where l is the number of reduced
center points ci. The computation cost updating the center
positions for each ci (Equation 13) is O(l × n). This is the
same cost as the RSC methods, since Equation (4) and the
discussion following Equation (6) indicate that the princi-
pal computations of the RSC method are also of the order
of O(l × n) and O(l3) for optimizing the center locations
and coefficients. However when RSC method is followed
by phase 2, in which the optimization is performed over all
parameters, the computational complexity of RSC method
increases to about two orders of magnitude [15].

4. Application

4.1. Synthetic Dataset

We first apply the kernel map compression to a simple
2D example. The first three eigenvectors obtained as a re-
sult of applying KPCA to a synthetic dataset of 400 points
are approximated using [6, 8, 12, 15, 20] points. For KPCA
the Gaussian kernel is used with σ = 1. The same ker-
nel is used for the kernel map compression (KMC) method
proposed in this paper. The results are shown in Figure 1.
In Figure 1(a), 400 data points shown in red, while the re-
construction with 10 eigenvectors using full space and us-
ing only 8 points is shown in blue, green (KMC) and black
(RSC). Figure 1(b) shows the errors in projecting the space
onto each of the 10 eigenvectors. Similarly, Figure 1(c)
shows the error in reconstructing the data set using the re-
duced space. The figures show that the KMC method is
better able to approximate the eigenvectors.

4.2. Speeding up SV Decision Rules

We applied the algorithm to the USPS database of hand-
written digits [15]. The same database was used to gauge
the performance of RSC methods in [4, 15]. The data con-
sists of 9298 handwritten digits of dimensions 16 × 16,
which was randomly shuffled and divided into training and
test sets consisting of 4649 cases each. Ten binary classi-
fiers were trained, one for each digit.

For classification, Gaussian kernel with σ = 10, was
used. The classifiers were approximated using the proposed
method (KMC) and RSC method [4]. The RSC method
utilized the Matlab code publicly available for download
at www.kyb.tuebingen.mpg.de/bs/people/spider/. The pro-
posed method (KMC) was also implemented using Matlab.

The results for USPS hand written database are shown in

1122

0 2 4 6 8 10 12 14
−1.5

−1

−0.5

0

0.5

1

1.5

2

Data points
Recon full
Recon KMC
Recon RSC

(a) Data set and reconstructed data set using
10 eigenvectors, each one approximated using
8 points.

1 2 3 4 5 6 7 8 9 10

−3

−2

−1

0

Eigenvectors

P
ro

je
ct

io
n

E
rr

or
 (

lo
g

sc
al

e)

p=6
p=8
p=12
p=15
p=20

(b) Projection errors for 10 eigenvectors, each
one approximated using p points. Solid line:
KMC, dashed line: RSC

6 8 10 12 14 16 18 20

−3

−2

−1

0

1

Number of reduced points

R
ec

on
st

ru
ct

io
n

er
ro

r
(lo

g
sc

al
e)

KMC
RSC

(c) Reconstruction error vs the number of
points the space is reduced. Solid line: KMC,
dashed line: RSC

Figure 1. Performance comparison for the synthetic 2D example.

Table 1. USPS handwritten digit. Top: number of SVs for the original SV and the number of test errors for each classifier. Bottom: number
of test errors for each reduced classifier. KMC-p and RSC-p mean that, for each classifier, the space was reduced to p points. Third last
column shows error rate across all classifiers and the second last column shows the compression ratio which is the ratio of the full space to
the reduced space. The last column shows the degradation in performance.

digit 0 1 2 3 4 5 6 7 8 9 Error C.ratio Degradation

#SV 160 80 262 220 243 252 145 144 247 160 ave ave ave
SV 29 9 37 36 38 36 25 19 29 25 6.08% 1 -

RSC-5 33 17 148 162 156 123 58 47 273 305 28.44% 38.26 367.76 %
KMC-5 29 11 65 71 77 76 33 25 54 40 10.35% 38.26 70.23%
RSC-10 29 8 48 54 74 66 33 31 38 52 9.31% 19.13 53.13%
KMC-10 29 8 41 40 52 44 32 20 43 25 7.18% 19.13 18.09%
RSC-15 27 9 46 42 49 57 29 27 38 32 7.66% 12.75 25.99 %
KMC-15 31 9 41 41 43 42 24 19 37 25 6.71% 12.75 10.36 %
RSC-20 29 9 46 40 47 46 27 25 31 28 7.05% 9.56 15.95%
KMC-20 30 10 36 38 37 39 27 21 35 24 6.38% 9.56 4.99%
RSC-25 31 9 40 38 46 46 28 22 31 28 6.86% 7.65 12.83%
KMC-25 32 8 39 38 41 36 26 19 31 28 6.25% 7.65 2.80%
RSC-30 32 8 43 38 46 41 28 22 33 27 6.84% 6.37 12.50%
KMC-30 29 9 41 38 37 39 26 21 30 27 6.15% 6.37 1.15%

Table 1. The first row shows the letter being classified, with
the second row giving the original number of, and the third
row indicating the number of misclassified digits. KMC-p
and RSC-p indicate that each binary classifier was reduced
to p points using the corresponding method. As can be seen
from the table, KMC approximates well the original SVM
with graceful degradation for high compression levels (at
compression ratio of 9.56, KMC-20 degrades less than 5%).
This is seen more easily in Figure 2(a), where the degrada-
tion versus compression curve for the proposed method is
lower than the RSC method. The runtime for compressing
the classifiers for the case p = 20 is shown in Figure 2(b).

4.3. Efficient Sign Language Recognition w/KPCA

To test KPCA compression, we used the sign language
database [3] for sign language recognition. The database
consisted of 2040 images of a hand performing the different

10 15 20 25 30 35

50

100

150

200

250

300

350

Compression Ratio

%
 D

eg
ra

da
tio

n

RSC1
KMC

(a) % degradation vs. compres-
sion curves.

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

120

140

160

180

Digits

T
im

e
in

 s
ec

on
ds

(b) Runtimes for each classifier
in the case of p = 20.

Figure 2. Performance comparison for the USPS data set.

static signs used in the international sign language alphabet.
The images were cropped and down-sampled to dimensions
20 × 15. The images were randomly divided into training
and testing images, with the training set containing about
2/3 of the total images. KPCA was performed on the train-

1123

Table 2. Sign language recognition: 1 success rate of identifying
all the 2040 images. 2 success rate for test cases. RSC-p and
KMC-p mean that for each eigenvector the space was reduced to
p points using the corresponding method. The last column shows
the compression ratio.

Algorithm S. Rate1 S. Rate2 C.Ratio Deg
KPCA 99.12% 98.55% 1 -
RSC-2 76.62% 74.14% 155 23.73%
KMC-2 98.92% 97.93% 155 .41%
RSC-5 91.37% 90.73% 61 7.88%
KMC-5 99.5% 97.98% 61 0%
RSC-8 98.63% 97.93% 40 .56%
KMC-8 99.25% 98.23% 40 0%

ing images. For classification, the training and test images
were projected on the first 5 eigenvectors and k−nearest
neighbour rule with k = 5 was evaluated. The space was
reduced using KMC and the results are shown in Table 2.
At a compression ratio of 61, the performance is equal to
using the full space. At the same compression ratio, the
degradation for the case of RSC method is more than 7%.

5. Conclusion

This paper proposed a technique for achieving computa-
tional reductions in Mercer kernel methods, such as kernel
principle component analysis (KPCA) and support vector
(SV) machines. The technique takes advantage of the uni-
versal approximation characteristics of generalized radial
basis function neural networks to approximate the empiri-
cal kernel map associated to KPCA or SV machines. Com-
putational savings of an order of magnitude or more were
achieved with minimal to no loss of performance.

References

[1] S. Avidan. Support vector tracking. In IEEE CVPR, vol-
ume 1, pages 184–191, 2001.

[2] T. Benyang and D. Mazzoni. Multiclass reduced-set support
vector machines. In Proc. of Int. Conf. on Machine Learning,
pages 921–928, 2006.

[3] H. Birk, T. B. Moeslund, and C. B. Madsen. Real-time recog-
nition of hand alphabet gestures using principal component
analysis. In Conference on Image Analysis, pages 261–268,
1997.

[4] C. J. C. Burges. Simplified support vector decision rules.
In Proc. of Int. Conf. on Machine Learning, pages 71–77.
Morgan Kaufmann, 1996.

[5] T.-J. Chin and D. Suter. Incremental kernel principal com-
ponent analysis. IEEE Transactions on Image Processing,
16:1662–1674, 2007.

[6] T. Evgeniou, M. Pontil, and T. Poggio. Regularization net-
works and support vector machines. In Advances in Compu-
tational Mathematics, pages 1–50. MIT Press, 2000.

[7] S. S. Keerthi, O. Chapelle, and D. Decoste. Building support
vector machines with reduced classifier complexity. Journal
of Machine Learning Research, 7:1493 – 1515, 2006.

[8] P. Laskov, C. Gehl, , S. Krüger, and K.-R. Müller. Incre-
mental support vector learning: Analysis, implementation
and applications. Journal of Machince Learning Research,
7:1909–1936, 2006.

[9] Q. Li, L. Jiao, and Y. Hao. Adaptive simplification of so-
lution for support vector machine. Pattern Recognition,
40(3):972–980, 2007.

[10] J. Meltzer, S. Soatto, M.-H. Yang, and R. Gupta. Multi-
ple view feature descriptors from image sequences via ker-
nel principal component analysis. In ECCV, pages 215–227,
2004.

[11] J. Park and I. Sandberg. Approximation and radial-basis-
function networks. Neural Computation, 5(2):305–316,
1993.

[12] T. Poggio and F. Girosi. A theory of networks for approxi-
mation and learning. Technical Report 1140, Massachusetts
Institute of Technology, 1989.

[13] I. Sandberg. Gaussian radial-basis functions and inner-
product spaces. In International Conference on Artificial
Neural Networks, pages 177–182, 2001.

[14] B. Schölkopf, P. Knirsch, A. Smola, and C. Burges. Fast ap-
proximation of support vector kernel expansions, and an in-
terpretation of clustering as approximation in feature spaces.
In Annual Symposium of the German Association for Pattern
Recognition (DAGM), 1998.

[15] B. Scholkopf, S. Mika, C. Burges, P. Knirsch, K. Muller,
G. Ratsch, and A. Smola. Input space vs. feature space in
kernel-based methods. IEEE Transactions on Neural Net-
works, pages 1000–1017, 1999.

[16] B. Schölkopf and A. Smola. Learning with Kernels: Support
Vector Machines, Regularization, Optimization, and Beyond.
The MIT Press, 2001.

[17] B. Scholkopf, A. Smola, and K.-R. Muller. Nonlinear com-
ponent analysis as a kernel eigenvalue problem. 10:1299–
1319, 1998.

[18] J. Shawe-Taylor and N. Cristianini. Support Vector Ma-
chines. Cambridge University Press, 2000.

[19] A. J. Smola, R. Chaussee, and B. Schölkopf. From regular-
ization operators to support vector kernels. In In Advances
in Neural information processings systems, pages 343–349.
MIT Press, 1998.

[20] M. Tipping. Sparse kernel principal component analysis.
In Neural Information Processing Systems, pages 633–639,
2000.

[21] C. Williams and M. Seeger. Using the Nyström method to
speed up kernel machines. In Advances in Neural Informa-
tion Processing Systems, pages 682–688. MIT Press, 2001.

[22] L.-H. Zhao, X.-L. Zhang, and X.-H. Xu. Face recognition
based on kpca with polynomial kernels. In International
Conference on Wavelet Analysis and Pattern Recognition,
pages 1213–1216, 2007.

1124

