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Abstract

We propose a branch-and-bound algorithm to obtain the
globally optimal relative rotation between a camera and the
rotation sensor attached to it. Compared to previous meth-
ods, our approach directly minimizes the image space er-
ror related to the measurements which is very natural for
camera-based systems. Our algorithm is based on the ob-
servation that we may evaluate the residual when the ro-
tation matrix is known. We propose a feasibility test al-
gorithm for the branch-and-bound to efficiently reduce the
search volume of the rotation domain. Experimental results
are provided using synthetic and real data sets.

1. Introduction
This paper deals with the problem of optimally estimat-

ing the relative rotation between a camera and a rotation

sensor attached to the camera. A goal of this research is to

make use of a rotation sensor together with a camera and

thus employ the well-developed L∞ approaches.

Recent study on the L∞ norm minimization method has

opened a new way of geometric computation. In short, we

may obtain globally optimal solutions to various geometric

vision problems [3, 7, 8]. One major limitation of the L∞
method has been the assumption of known rotation among

the parameters to be estimated. For example, we need to

know the rotation of the camera to obtain the global solution

of the camera pose problem. This limitation is overcome by

Hartley and Kahl [4] now for some of the problems. Their

branch-and-bound algorithm provides an efficient method

to deal with rotation components, too, through a search over

the rotation space. It is now possible to obtain global solu-

tions to the problems of camera pose and the essential ma-

trix.

On the other hand, nowadays it is very common to
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have an external sensor that provides rotational information.

For example, many platforms for robotic applications are

equipped with hardware such as IMUs (Inertial Measure-

ment Units) or motor-encoders that provide the rotational

motion of the platforms. If we attach a rotation-sensor to

our imaging camera, then we do not have to compute the

rotation of the camera and it is then very natural to apply the

L∞ methods for geometric vision problems. However, the

coordinate axes of the sensor and the camera do not coin-

cide in practice. Therefore, we need to find the (rotational)

displacement before using the camera-sensor pair.

Indeed, this belongs to the so-called hand-eye calibra-
tion problem which has been widely considered for robotic

applications [12, 11, 2, 14, 1, 13, 6, 10, 9]. A solution

to the displacement X may be achieved from the equation

AX = XB where A and B are known rigid motions of the

camera and the sensor platform, respectively. In the previ-

ously proposed algorithms, the rotational component of X
is estimated based on the rotational components of A and

B. Translational component is estimated using the rotation

and then a nonlinear optimization is done to refine get the

whole solution. However, we observe that even though each

step of any of the previous algorithms uses an optimal ap-

proach it does not guarantee optimality with respect to the

re-projection error for the image measurements.

Our goal of this paper is to compute a globally opti-

mal estimate of the relative rotation of the camera and the

rotation-sensor. This paper exploits the fact that image cor-

respondences are directly related by homography when the

motion of the camera between two views is a pure rotation

or can be well approximated as a pure rotation [5]. In this

paper, we propose a branch-and-bound algorithm to over-

come this non-convex problem in obtaining the rotational

displacement based on Hartley and Kahl [4]. The method

directly minimizes the residuals in the image space and pro-

vides a globally optimal estimate in the L∞ sense.

Our paper is composed of several sections. Firstly, Sec-

tion 2 describes the problem formulation in detail and the

idea of the branch and bound algorithm. Section 3 de-

rives the feasibility test for the branch-and-bound algo-

1173 
 
2009 IEEE 12th International Conference on Computer Vision (ICCV) 
978-1-4244-4419-9/09/$25.00 ©2009 IEEE



rithm. Then, Section 4 shows how image space error can

be used instead of the angular error. The overall branch-

and-bound algorithm is explained in Section 5. Section 6

gives some experimental results and practical aspects of the

branch-and-bound algorithm. Finally, concluding remarks

are given in Section 7.

2. Problem Formulation
As a camera-and-rotation-sensor system, we consider a

calibrated camera equipped with a rotation sensor. We as-

sume that the internal parameters such as focal length of

the camera are known. In this case, the internal calibration

matrix is the identity and we may consider image points as

lying on a unit sphere rather than an image plane. An image

measurement is therefore a unit vector v representing the

direction from the camera center to its 3D point.

Some notations: A, B, R, and X denote 3× 3 rotation ma-

trices in SO(3); vi,ui ∈ R
3, ‖vi‖ = ‖ui‖ = 1, are, as the

i-th correspondence, from the two images whose relative

rotation of the sensor is B; the norm ‖ · ‖ represents the L2

or Euclidean norm; Bπ ⊂ R
3 is the ball of radius π, denot-

ing the angle-axis parameterization of SO(3); D(σ) ⊂ Bπ

is a cube whose side length is 2σ; finally, β,ω ∈ Bπ denote

points in Bπ .

A rotational motion A ∈ SO(3) of the camera moves the

measurement vector vn to un

un = Avn, n = 1, ..., N, (1)

where N is the number of matching pairs. Let X ∈ SO(3)
be the rotational displacement between the camera and the

sensor; let B be the rotation of the sensor that induces the

camera motion A. Then, we have the well-known equation

A = XBX� or AX = XB. (2)

Let us suppose that K pairs of images are given, and

each pair of images have N point correspondences. The

error enk between unk and XBkX�vnk is defined to be the

angle between the two vectors:

enk = ∠(unk, XBkX
�vnk), (3)

where Bk is the sensor rotation between the two view of the

pair. This paper minimizes the L∞ norm of the errors enk.

min
X

max
nk

∠(unk, XBkX
�vnk) . (4)

Since the minimization in (4) is performed over the rotation

matrix X, we could find the optimal rotation X if the error

was examined for every X. But, it is practically impossible

because there are infinitely many rotation matrices. An al-

ternative could be an algorithm like Levenberg-Marquardt.

But it would converge to a local minimum depending on

the initiation of the algorithm because of the non-linearity

of the rotation matrix itself as well as the error function.

Our strategy, given below, is to obtain the global opti-

mum through a branch-and-bound algorithm.

1. We choose a rotation X∗ = X0 and compute the cost

εmin = maxnk ∠(unk, X∗BkX∗�vnk).
2. The rotation space is divided into cubic blocks {Dj}
whose half-side length is σ; repeat the following two steps.

(bnb-1). For each block Dj , We determine by a test
whether there is a better rotation in Dj that may provide

an error less than εmin. If the answer is no, then Dj is ex-

cluded.

(bnb-2). Otherwise, we evaluate the cost function and up-

date the cost εmin and the solution X∗. Then, Dj is sub-

divided into eight smaller cubic sub-domains (σ ← σ/2).

Basically, the iteration of this algorithm is terminated

when the size of the remaining cubic blocks is sufficiently

small. The test problem in the third step is called the feasi-

bility problem, which is detailed in the next section.

3. Feasibility Test for Branch-and-Bound
Let us consider a point β ∈ Bπ representing the rotation

whose axis is β/‖β‖ and angle ‖β‖. The rotation matrix R
corresponding to β is given by the matrix exponential (exp :
β → B):

B = exp[β]× = I+
sin ‖β‖
‖β‖ [β]×+

1− cos ‖β‖
‖β‖ [β]2× (5)

where

[β]× =

⎡
⎣ 0 −β3 β2

β3 0 −β1

−β2 β1 0

⎤
⎦ . (6)

The inverse map is given by the matrix logarithm which

gives the 3-vector β corresponding to the rotation R.

[β]× = log B =
‖β‖

2 sin ‖β‖ (B− B�) (7)

where 1 + 2 cos ‖β‖ = Trace(B).
When a rotation B is obtained by taking the exponential

of a point β ∈ D, we use the notation B ∈ D to indicate

that B is the exponential map of a point β.

Lemma 1 An identity.

log(XBX�) = X[β]×X� = [Xβ]× . (8)

This is due to the fact that

XBX−1 = X exp([β]×)X−1 = exp(X[β]×X−1). (9)

Lemma 1 is the theoretical basis of the method by Park and

Martin [11] to solve the equation AX = XB.
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Our branch-and-bound algorithm makes a series of sub-

division of the rotation space Bπ into small cubes, for which

we enclose the ball Bπ in a cube Cπ = [−π, π]3 as does [4].

Even though this cube provides a redundant representation,

it does not matter for our branch-and-bound algorithm.

Now we provide an inequality for the feasibility prob-

lem. Let D(σ) represent one of the cubes obtained by a

subdivision of Cπ .

Lemma 2 Let X̄ be the rotation corresponding to the center
of the cube D(σ), and β be a 3-vector (representing a point
in Bπ , in particular). For any rotation X ∈ D(σ), we have
the following inequality

‖Xβ − X̄β‖ ≤ 2‖β‖ sin(
√

3σ/2) . (10)

Proof. Note that ‖Xβ − X̄β‖ = ‖X(β − X�X̄β)‖ = ‖β −
X�X̄β‖ because X is an isometry. The maximum possible

rotation angle of X�X̄ is
√

3σ which is the distance from

the center of D(σ) to the farthest corners. Therefore, the

maximum distance between the two vectors β and X�X̄β is

given by lmax/2 = ‖β‖ sin(
√

3σ/2). See Fig.1. 
�

β

X�X̄β
√

3σ

lmax

2

log X�X̄

Figure 1. The maximum possible distance lmax induced by X�X̄.

Let B1 and B2 be two rotations. The distance d∠(B1, B2)
is the angle θ of the rotation B�1 B2, lying in the range of

0 ≤ θ ≤ π. The following two lemmas are from [4] where

their proofs are provided.

Lemma 3 For any vector v,

∠(B1v, B2v) ≤ d∠(B1, B2). (11)

Lemma 4 Let Bi = exp[βi]× be the rotation correspond-
ing to the vector βi ∈ Bπ . Then

d∠(B1, B2) ≤ ‖β1 − β2‖ (12)

with equality only when β1 = β2.

Now let us consider our feasibility problem for a small

domain D(σ).

Problem 1 Do there exist any X ∈ D(σ) such that

max
nk

∠(unk, XBkX
�vnk) ≤ εmin? (13)

This asks the possibility of existence of any rotation X in the

domain D(σ) that may result in the L∞ error less than εmin.

It is not easy to give an answer to this problem directly.

Instead we consider the following problem.

Problem 2 Is the inequality below valid?

max
nk

∠(unk,X̄BkX̄
�vnk)

≤ εmin + 2βmax sin(
√

3σ/2), (14)

where βmax = maxk ‖βk‖, X̄ ∈ D(σ) is the rotation at
the central point of D(σ), σ the half-side length of the cube
D(σ), and βk = log Bk.

Lemma 5 The two feasibility problems (Problem 1 and
Problem 2) are related as follows.
1. If Problem 1 has an affirmative answer then so does
Problem 2.
2. If Problem 1 has a negative answer, then D can be split
into subdomains Di of sufficiently small half-side length
such that Problem 2 has a negative answer on every Di.

Proof. The proof for the first part of the lemma is given. Let

Xopt ∈ D(σ) is a feasible solution for Problem 2. Then, we

have the following result.

max
nk

∠(unk, X̄BkX̄
�vnk)

≤ max
nk

∠(unk, XoptBkX
�
optvnk)

+ max
nk

∠(XoptBkX
�
optvnk, X̄BkX̄

�vnk) (15)

≤ εmin + max
nk

d∠(XoptBkX
�
opt, X̄BkX̄

�) (16)

≤ εmin + max
nk

d∠
(
exp(Xoptβk), exp(X̄βk)

)
(17)

≤ εmin + max
nk
‖Xoptβk − X̄βk‖ (18)

≤ εmin + 2 max
k
‖βk‖ sin(

√
3σ/2) (19)

The second part of the proof is almost identical to the one

provided in Hartley and Kahl [4] and omitted.

4. Minimizing the Pixel Space Error
The error norm in the inequality in Eq.(14) is defined by

the angle between the two vectors u and û = X̄BX̄�v. In

practice, instead of the angle distance we usually deal with

the pixel distance which is defined by

dp(u, û) = f‖u/u3 − û/û3‖ (20)

where f is the focal length of the camera. We may use ei-

ther the L2 norm or L∞ norm for the pixel distance dp. In

this paper, we adopt the L∞ norm for the pixel distance
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Figure 2. From angular error bound to the pixel error bound.

of a correspondence (u,v). Because the vector in the im-

age plane is obtained by extending the unit-length vector,

the pixel space distance can be attained accordingly. Fig.2

shows a two dimensional illustration for this geometrical

relationship. Lemma 6 is achieved based on this drawing.

Before we introduce the result, let ωu be the angle of u with

respect to the viewing direction Z = [0, 0, 1]�. Then, we

have the following identity:

tanωu =
√

(u1/u3)2 + (u2/u3)2 . (21)

Now let us use a new notation δ for simplicity:

δ = 2‖βmax‖ sin(
√

3σ/2) . (22)

Lemma 6 The inequality for the feasibility test in the pixel
space is given by

max
nk

dp(unk, X̄BkX̄
�vnk) ≤ εmin,pixel + fεσ (23)

where εmin,pixel is the L∞ residual for the current estimate
X∗, and εσ is the maximal deviation in the pixel space due
to the variation of the rotation, given by

εσ = max
nk

εσ,unk
(24)

= max
nk
{tan(ωunk

+ δ)− tanωunk
} (25)

= max
nk

{
tanωunk

+ tan δ

1− tanωunk
tan δ

− tanωunk

}
. (26)

Note that we may easily compute the constant εσ which is

necessary for the feasibility test. This lemma allows us to

use the pixel distance instead of the angle distance.

5. The branch-and-bound Algorithm
To start the branch-and-bound algorithm, we need an ini-

tial rotation X∗ to obtain εmin. But we can choose any rota-

tion for this initialization. Practically, we may choose the

identity matrix X∗ = I. In the loop of the branch-and-

bound, we subdivide cubes {Dj(σ)} into eight sub-cubes

and therefore the number of cubes for the feasibility test in-

creases eight times. Note that the population of remaining

cubes does not explode by the octal subdivision because in-

feasible cubes are not considered in the next phase. Finally,

the loop stops when the size of the cube is sufficiently small.

Algorithm 1 The B&B for the camera-r-sensor calibration.

Input: X∗ = X0, εmin = e∞(X∗)
1: repeat
2: Octal subdivision (σ ← σ/2) of every Dj .

3: for each of {Dj} do
4: Check the feasibility by using (14) or (23).

5: if infeasible then
6: discard the domain Dj .

7: else
8: update εmin and X∗ = X̄j if εmin < e∞(X̄j) .

9: end if
10: end for
11: until σ < σmin

6. Experiments
6.1. Experiments with synthetic data

To see the performance of our algorithm, we generated

synthetically sets of image coordinates. Ten pairs of views

were generated to test the calibration algorithm; the relative

motion for each pair was a random rotation whose angle

was chosen in the range of [0, 8] degrees for both x and y
axes. The unknown rotational displacement X was deter-

mined randomly in the range of [0, 5] degrees for each of

the three rotation axes. An image had 100 points, each of

which were contaminated by a Gaussian noise of standard

deviation τ = 0.5 pixels

Fig. 3 shows the evolution of the εmin,pixel for a data

set of ten pairs of views. Initially, we chose X = I3×3 to

compute the starting value of εmin,pixel. We kept X̄ through

the branch-and-bound iteration that yielded the smallest

εmin,pixel as the best solution. The experiment shown in

Fig.3 resulted in 1.84 pixels as the final estimation residual

and took 21 seconds for the whole computation.

1 2 3 4 5 6 7 8 9 10
10�1

100

101

102

103

104

105

106 Evolution of the maximum residual and the feasibility bound

phase index

pi
xe

l

Feasibility bound

maximum residual

1.84 pixel

Figure 3. The evolution of the maximum residual εmin,pixel (blue

line) and the maximum of the feasibility bounds fεσ (black line)

through the branch-and-bound iteration. The ordinate is in log-

scale.

Then, we generated a hundred sets of ten pairs of views
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and ran the branch-and-bound algorithm to see the statistics

of the computation results. Figure 4 shows two histograms

of residuals obtained. Left is the histogram of the maximum

residuals εmin,pixel; its average is 1.8 pixels even though

some data set resulted in the maximum residual as large as

2.4 pixels. The level of the synthetic noise is τ = 0.5,

and the average maximum residual is around 3.6τ . Con-

sidering the distribution of the values of the random noise,

we believe that this value is in a reasonable range. Right

is the histogram of the rms (root-mean-squared) values for

the computation. Even though we minimize the maximum

residual to computed the L∞ estimate X∗, we want to see

its rms performance. The rms is computed by using every

residual due to X∗. The average rms is 0.75 pixel and again

we believe it is a reasonable result considering the noise

level injected to each of the image coordinates.

Figure 5 shows histograms of computation time (left)

and angle deviation (right), respectively. It took 13.5 sec-

onds on the average and 32 seconds at the maximum. The

deviation Δ of the rotational angle of the best estimate X∗

with respect to X is defined as:Δ = cos−1((trace(X�X∗)−
1)/2) . Right figure shows the histogram of Δ’s Maximum

deviation here is 1.6 degrees.
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Figure 4. Histograms of the maximum residuals (left) and the rms

residuals (right).
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Figure 5. (Left) Histogram of the computation times in second.

(Right) Histogram of the angles of X�X∗ in degree, computed by

Δ = cos−1((trace(X�X∗)− 1)/2).

6.2. Experiments with Real Data Sets

Calibration using a real data set. In order to test our

camera-sensor calibration algorithm for a set of real images,

we first calibrated the internal parameters of the camera. As

the pair of camera and rotation-sensor system, we used a

camera mounted on a pan-tilt. The rotation angle applied

to the pan-tilt between two views was recorded and used to

calculate the corresponding rotation matrix Bi. In total, we

took five pairs of images for the calibration. Figure 6 shows

a pair of images among them. We tried to keep the distance

from the camera to the scene as far as possible to achieve

a configuration of the pure-rotation. Our branch-and-bound

algorithm resulted in the L∞ residual 10.7pixels. The aver-

age of residuals using the estimated parameters were calcu-

lated to be 8.1pixels. Figure 7 shows a histogram of all the

residuals, enk = dp(unk, XBkX�vnk) defined in (20). We

observe that the residual level of this experiment is rather

high compared to the results attained in the synthetic exper-

iments. However, when we used this result for a 3D recon-

struction with the metod of the L∞ structure and motion,

the recoved scene and the re-projection level were both sat-

isfactory. It is provided below.

The L∞ 3D reconstruction using the calibration. We

then captured another triplet of images for a three-

dimensional reconstruction with the method of the L∞
structure and motion. We chose these images (Figure 8)

because the result of 3D reconstruction could be examined

easily due to its planar structure. The camera-pan-tile sys-

tem was moved so that no extra rotation was induced be-

tween the views except for the rotation given by the con-

trol command to the pan-tilt. Extracted were the match-

ing points among the three views, and the scene points and

the camera location were reconstructed using the L∞ re-

construction algorithm [7]. The camera rotations were set

as XBiX� where Bi was the rotation obtained from the rota-

tion sensor between view 0 and view i. The first camera’s

rotation term was set to I3×3. Figure 9 shows a histogram

Figure 6. A pair among five of input images used for the calibration

of rotational displacement.
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Figure 7. Histogram of residuals obtained from a real data set.
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of the re-projection errors of the reconstruction. The maxi-

mum residual was obtained to be 11.9pixels and the average

of the residuals was 4.3pixels as shown in the figure.

Figure 10 shows two three-dimensional views of the re-

constructed scene points and the three locations of the cam-

era. Note that all the scene points are aligned in a planar

shape. Especially, the bird-eye view shows that the recov-

ered scene points form a linear structure when viewed from

above.

Figure 8. The three input images used for the L∞ structure and

motion reconstruction.

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

60

70

80

90 Mean : 1.1411
Standard Deviation : 0.591
Max : 2.3468
Min : 0.026849

Histogram of the re�projection distance 

pixel

Th
e 

nu
m

be
r o

f t
he

 p
oin

ts 

Figure 9. Histogram of residuals produced by the L∞ structure

and motion. The rotation matrices XBiX
� of the camera were pro-

vided as input (Bis were from pan-tilt control commands and X

were given by our branch-and-bound algorithm).
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Figure 10. Three dimensional views of the result of the L∞ recon-

struction. One may observe that the reconstructed scene points are

all contained in a plane. The bird-eye view shows that the the re-

constructed 3D points are all aligned along a line, which provides

the accuracy qualitatively of the camera-rotation-sensor calibra-

tion.

7. Conclusion
This paper proposed a method for globally optimal esti-

mation of the relative rotation between a camera and the ro-

tation sensor attached to it. For this, we employed a branch-

and-bound algorithm in the L-infinity sense. Compared to

previous methods, our approach minimizes the image space

error directly related to the measurements and provides the

global opimum. Our algorithm is based on the observation

that the residual function can be evaluated when the rotation

matrix is known. To efficiently reduce the search volume in

the rotation space, we proposed a novel feasibility test for

the branch-and-bound algorithm based on the theory of Lie-

algebra. The experimental results show that our algorithm

reliably finds the optimal solutions on both synthetic and

real data sets.
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