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Abstract

Multilinear algebra is a powerful theoretical tool for vi-
sual geometry, but widespread usage of traditional typo-
graphical notation often hides its conceptual elegance and
simplicity. As demonstrated in other scientific fields, we can
take full advantage of multilinear methods using graphical
notation. In this paper we adapt standard tensor diagram-
matic techniques to the specific requirements of visual ge-
ometry, so that geometric relations are represented by cir-
cuits which can be manipulated using simple rules.

The advantages of this approach are illustrated in sev-
eral constructions, including straightforward derivations of
the standard multiview relations (Fundamental Matrix, Tri-
focal and Quadrifocal Tensors), and nearly mechanical pro-
cedures for camera extraction.

1. Introduction
The geometry of multiple images can be naturally de-

scribed in terms of multilinear relations [1, 2]. Tensors and

Exterior Algebra [3, 4, 5] are appropriate tools for the study

of projective entities represented as subspaces [6, 7, 8]. Un-

fortunately, it is often difficult to take full advantage of the

power and elegance of multilinear methods using standard

typographical notation.

In contrast, graphical representations are remarkably

useful for visualization and manipulation of complex math-

ematical concepts, and have widespread usage in several

scientific fields, specially in Physics [9, 10, 11, 12, 13, 14,

15]. Feynman Diagrams, Spin Networks, Trace Diagrams,

and similar methods provide deep insight into mathemati-

cal structure, exposing interesting symmetries and manipu-

lation possibilities.

In this work we develop a diagrammatic approach suit-

able to analyze and solve a wide range of visual geome-

try problems. This technique has many advantages: for in-

stance, the multiview tensors can be directly derived from

the geometrical setting using meaningful building blocks.

Furthermore, visualization of the internal structure of the

tensors suggests effective procedures for extraction of com-

patible cameras. Diagrams can be simplified or rearranged

using straightforward transformation rules, much like work-

ing with electronic circuits or logic gates.

The paper is organized as follows. Sections 2 and 3 intro-

duce the diagrammatic notation and appropriate manipula-

tion rules for visual geometry. Then we apply the proposed

technique to obtain the multiview tensors (Section 4), and

to extract compatible cameras from their internal structure

(Section 5). The computational advantages of the approach

are discussed in Section 6. The last section contains some

concluding remarks.

2. Diagrammatic Notation

We adopt standard diagrammatic conventions [11, 10],

with minor modifications to easily keep track of the geo-

metric role of the different objects.

2.1. Tensors

For our purposes, a tensor of rank r is a multilinear func-

tion of r ≥ 0 arguments. The arguments can be either vec-

tors or covectors (scalar-valued linear functions), from pos-

sibly different vector spaces. Because of linearity, we can

partially apply 0 ≤ m ≤ r freely chosen inputs to obtain a

(r−m)-rank tensor. The role of the arguments is not fixed:

depending on how we use it, a vector input can play the

role of a covector output and vice versa. Rank r tensors are

represented by an r-dimensional array of coordinates. Co-

ordinates that transform as vectors in a change of basis are

called contravariant, while covariant coordinates transform

as linear functions. Application of arguments and compo-

sition of functions are equivalent concepts, carried out by

contraction of coordinates.

In diagrammatic notation tensor expressions are repre-

sented by graphs whose nodes are tensors and the edges are

contractions. The degree of a node is the rank of the corre-

sponding tensor. The number of open ‘legs’ in a diagram is

the rank of the resulting tensor. The standard notation typi-

cally uses a common node shape for all kind of tensors, and

the type of coordinate (covariant or contravariant) is labeled

by an arrow (Fig. 1).
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Figure 1. Standard tensor notation.

For clarity we use different shapes for the ‘slots’ of a

tensor: contravariant coordinates have a convex angle and

covariant coordinates have a concave one. Invariants have

‘straight’ sides. Fig. 2 shows node shapes of typical objects.

Figure 2. Tensor shape convention.

Using this notation open edges and arrows are usually

not necessary to identify the type of a tensor. Contractions

are represented by joining complementary ‘slots’ (Fig. 3).

Figure 3. Contraction examples: a) Application of a linear function

on a vector. b) Composition of transformations. c) Transformation

of vectors (e.g. forward camera projection of points). d) Transfor-

mation of covectors (e.g., camera line reprojection).

The direct tensor product (without contraction) is repre-

sented by simple juxtaposition of nodes (Fig. 4).

Figure 4. The tensor product.

If desired, space dimensions can be made explicit as

small numbers, as in Fig. 3.c.

2.2. Exterior Algebra

Projective objects such as points, lines or planes in P
n

are subspaces of R
n+1. Subspaces of dimension r are con-

veniently represented by r-vectors, a special type of ten-

sor constructed using the exterior product, which is just

the antisymmetrization of the direct tensor product. Anti-

symmetrization is graphically represented using Penrose’s

crossing line convention [10] (Fig. 5). The full antisymmet-

ric contravariant tensor ε (also known as Levi-Civita sym-

bol) is the n-vector encoding the whole space. It is usually

represented in the diagrams as a small circle.

Figure 5. The exterior product (left) and the full antisymmetric

contravariant tensor in R
3 (right).

A linear transformation A on vectors induces a transfor-

mation A(p) on subspaces. It is achieved by applying the

transformation to all the slots of the p-vector, as shown in

Fig. 6. For instance, if A is a camera matrix, A(2) is the

corresponding forward projection for lines.

Figure 6. Transformation of 2-vectors.

Similarly, an inner product gij in a vector space (shad-

owed in the diagrams) induces an inner product on multi-

vectors (subspaces):

Figure 7. Inner product of multivectors.

This operation has an interesting geometric interpreta-

tion. If U is a p-vector and V is a q-vector, q ≤ p, then the

resulting (p− q)-multivector U · V is the orthogonal com-

plement of the projection of V onto U . This property will

be frequently used later. (It is also known as the contractive
inner product in geometric algebra [16].)

2.3. Dual

The dual ∗x of a p-vector x is the inner product of x
with the n-vector representing the whole space R

n (Fig. 8).

Its rank is n − p. Some objects (e.g. lines in the plane or

planes in space) are represented in a more economical way

in dual form.

Computing the dual requires an inner product to choose

an orthogonal direction in the complementary subspace. In

projective geometry this particular direction is immaterial,

but the inner product cannot be neglected because we must

keep track of the covariant/contravariant nature of all ten-

sor slots. To simplify notation the inner product required by

dualization will be embedded in the full covariant antisym-

metric tensor (Fig. 9).
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Figure 8. Dual of a 2-vector in R
4 (left), and R

3 (right), which is

the cross product. Note that the exterior product is automatically

performed by the dualization operation.

Figure 9. Dualization operator in R
3 � P

2.

3. Graph reduction rules
3.1. Basic rules

Since dualization is an involution, the composition of

two full antisymmetric tensors is the identity for multivec-

tors (Fig. 10).

Figure 10. First graph reduction rule, for 1-vectors in P
3.

Furthermore, the transformation of the whole space with

any non degenerate transformation has no effect (modulo a

projectively irrelevant scale factor equal to the determinant

of the transformation). This is the basis of a second reduc-

tion rule (Fig. 11).

Figure 11. Second graph reduction rule, for P
3.

The above rules can be used to obtain useful results in

elementary linear algebra. For instance, Fig. 12 shows a

diagram version of Cramer’s rule for the inverse of a (ho-

mogeneous) transformation (Fig. 12).

3.2. Preimage of a transformation

More interestingly, the inversion scheme in Fig. 12 also

makes sense when the transformation M maps vectors to

Figure 12. Inversor circuit.

spaces of lower dimension (e.g., a camera). In this case

the additional unconnected slots in the final dualization step

give rise to p-vectors of higher dimension, effectively ob-

taining the preimage subspace.

For example, Fig. 13 shows a circuit for reprojection of

image points. The preimage transformation, denoted by

M←, elegantly obtains the 3D line as a 2-vector.

Figure 13. Preimage transformation of camera M: Point-to-ray re-

projection.

Similarly, line reprojection can be expressed as the

preimage transformation for 2-vectors (Fig. 14):

Figure 14. Line-to-plane camera reprojection.

Since 2D lines and 3D planes are more economically

represented in dual form, line reprojection typically uses

just MT. In general, linear transformations work in the ‘op-

posite’ direction on dual objects.

The null-space of a transformation (e.g., the camera cen-

ter) is the preimage of the trivial (zero) subspace (Fig. 15).

Figure 15. Null-space of a transformation.

3.3. Rank-deficient transformations

If the transformation is not of full rank, the second graph

reduction rule (Fig. 11) cannot be applied. The whole space

will be transformed into a null multivector (there are not
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enough linear independent components in the result). In

this case we can apply a more general reduction rule shown

in Fig. 16. It is based on two alternative expressions for the

dual of the null-space.

Figure 16. The general elimination rule, applied to M : R
4 → R

3,

with MKM = 0.

Finally, if we have a rank deficient transformation M :
R

n → R
n the diagram in Fig. 15 cannot be used. In this

case the null-space can be computed as in Fig. 17. This

construction is again based on the fact that the whole space

is transformed into a null multivector.

Figure 17. Null-space of a rank-deficient transformation. We may

connect any covector (not through the null-space) to the left M’s.

3.4. Geometric constructions

Exterior Algebra’s uniform treatment of points, lines,

planes, etc., in every dimension, is extremely convenient.

Many useful geometric constructions can be ultimately de-

scribed in terms of contractions with the full antisymmetric

tensor. The dual of the union of subspaces is obtained by the

covariant ε (similar to the NOR logical gate), and the inter-

section of duals is obtained by the contravariant one (there is

an analogy with De Morgan’s laws). This approach is found

in the literature under different terms: Double (Grassmann-

Cayley) Algebra, join and meet operators, etc. [7, 2, 16].

Fig. 18 shows diagrams for the plane defined by a line and a

point, and for the point of intersection of a plane and a line.

Figure 18. The join and meet operations in P
3.

Complex geometric constructions can be described in

terms of meaningful building blocks and then simplified us-

ing the above graph reduction rules. For instance, Fig. 19

shows a possible circuit for triangulation of points p and q
imaged respectively by cameras M and N.

Figure 19. Triangulation circuit based on direct composition of

geometrically meaningful building blocks.

This diagram is based on naive combination of the

preimage of p (as in Fig. 13), the preimage of any line pass-

ing through q (as in Fig. 14), and the intersection (meet)
circuit in Fig. 18. We observe that the first graph reduction

rule (Fig. 10) can be applied twice to cancel out four re-

dundant antisymmetric nodes. Fig. 20 shows the simplified

circuit and a geometric interpretation.

Figure 20. Simplified triangulation circuit. It can be interpreted as

the intersection of three planes.

Interestingly, by reversing the input/output role of the X
slot we get the homography induced by a plane (Fig. 21).

Figure 21. Homography between two views induced by a plane.

4. The Multiview Tensors
In this section we will apply the diagrammatic approach

to study the multilinear relations among multiple images.

The key fact is that the 3 degrees of freedom of a point

in space, which can be obtained from 3 ‘half-points’ dis-

tributed among two or three images, can be combined to

predict the image of the point in any other view without ex-

plicit 3D reconstruction.

4.1. Two views

Given two views obtained by cameras M and N, the Fun-

damental Matrix gives the image l (in dual form) in the sec-
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ond view of the reprojected ray (preimage) of a point x in

the first view (Fig. 22).

Figure 22. a) Stereo geometry. b) Epipolar line computation. c)

Epipolar constraint.

This operation can be implemented as the composition

of the preimage of M, the N(2) transformation of 2-vectors,

and a final dualization step. The circuit for F = ∗(N(2)M←)
is shown in Fig. 23.

Figure 23. The internal structure of the Fundamental Matrix.

The symmetry of this construction shows that the Fun-

damental Matrix works automatically in both directions.

4.2. Three views

The image l of a 3D line in a view is determined by the

images l′ and l′′ of that line in two other views (Fig. 24).

This relation is captured by the Trifocal Tensor T .

Figure 24. Trifocal geometry.

A diagram for T is shown in Fig. 25. The circuit com-

putes the 3D line as the intersection of two reprojected

planes from cameras M and N, and obtains its image (in dual

form) in the third view using P(2). The structure of T shows

the different roles of the views associated to l′ and l′′ and

the distinguished view associated to l.
Partial application of one argument induces two kind of

transfer homographies, as illustrated in Fig. 26. The di-

agrammatic convention for the slots immediately suggests

consistent usages of the tensor.

Figure 25. The internal structure of the Trifocal Tensor.

Figure 26. Transfer homographies arising from the Trifocal Tensor

Incidence conditions (e.g. required for the estimation of

T from point or line correspondences) can also be easily

constructed (Fig. 27). The full antisymmetric tensor is used

here as an homogeneous equality detector.

Figure 27. Some trifocal incidence relations.

4.3. Four views

The image of a point in a fourth view is determined by

three ‘half images’ of that point in three different views.

This relation is captured by the Quadrifocal Tensor Q. A

diagram forQ can be constructed by taking the intersection

of the planes reprojected from lines going through the point

in three views, and projecting the reconstructed 3D point in

the fourth view (Fig. 28).

The internal structure of Q shows that the Fundamental

Matrix and the Trifocal Tensor are just particular cases, in

which some of the cameras appear more than once. For two

views, two ‘half-points’ are taken from the same camera

(M = A = B), and the third one is taken from the second

camera, which is also the view in which we project the 3D
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Figure 28. The internal structure of the Quadrifocal Tensor.

point (N = C = D). In the three-view case the image of the

3D point is obtained on one of the views which provided

one half point.

5. Camera Extraction
The internal structure of the multiview tensors can be

easily manipulated for extraction of compatible cameras us-

ing graph reduction rules.

5.1. Two views

Consider the internal structure of the Fundamental Ma-

trix (Fig. 23). Any full-rank transformation of the scene will

cancel out in the central ε, in accordance with the projective

ambiguity of 3D reconstruction. Therefore, we are free to

arbitrarily choose the first camera (typically M = [I|0]). In

order to get a cancellation configuration we connect M on the

left slot and revert the dualization on the N side (Fig. 29).

Figure 29. The structure of εFM.

If M were invertible we could apply the first graph reduc-

tion rule (Fig. 10), leaving just the second camera (in N(2)

form). Since cameras map to a lower dimension space we

must apply instead the general elimination rule (Fig. 16),

obtaining the result shown in Fig. 30.

Figure 30. Simplification of Fig. 29. C is the center of M.

This can be interpreted as a ‘semicamera’, which pro-

duces epipolar lines instead of image points (Fig. 31) .

At first sight it seems difficult to extract a compatible

camera from the above antisymmetrized mixture. However,

it can be easily done by applying the restricted dualization

operation described in Fig. 7. We connect one of the outputs

Figure 31. εFM obtains epipolar lines.

to an arbitrary covector v (Fig. 32), obtaining a point x̃′ in

the epipolar line which is different from v.

Figure 32. The ‘covering’ step.

The epipole e′ = vT is typically used to guarantee that

the obtained point is never e′ itself. This is the only condi-

tion for a compatible camera N′.
(The epipole is just the right null-space of F. It can be

obtained using the method in Fig. 17, which can be also in-

terpreted as the intersection of two epipolar lines (Fig. 33).)

Figure 33. A circuit for the epipole.

In a sense, N′ tries to imitate the true N by mapping the

3D space into the second view indirectly through the first

one. Unfortunately, in this route N′ suffers an additional

rank loss: the null-space of N′ contains the centers of both

cameras. The baseline cannot be projected (Fig. 34).

Figure 34. Double rank loss in camera extraction.

To solve this problem we additively combine N′ with a

rank-1 auxiliary camera which maps C to its image in the

second view (the epipole e′). A complete diagram for cam-

era extraction from F is shown in Fig. 35. This is actually

a diagrammatic version of the standard expression for the

canonical cameras M = [I|0] and N = [[e′]×F|e′].

5.2. Three views

Compatible cameras can also be extracted from the Tri-

focal Tensor T by a sequence of graph manipulation steps

based on intuitive geometric reasoning. The structure of this
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Figure 35. Complete diagram for a second camera N compatible

with the Fundamental Matrix.

tensor is particularly adequate for camera extraction due to

the direct availability of transfer homographies.

First note that T can be used to simulate the behavior of

the Fundamental Matrix of any image pair. For example, we

can compute epipolar lines by joining the images in the sec-

ond view of a point x1 in the first view transferred through

two different lines a and b in the third view (Fig. 36).

Figure 36. Simulation of a Fundamental Matrix from T .

This operation in itself does not generate F12, since it is

quadratic in x, but it can be used to compute the epipole e′

by intersection of the epipolar lines induced by two points.

Then F12 can be obtained as an arbitrary transfer joined to

the epipole.

The first camera P can be arbitrarily chosen. A second

camera M′ can be obtained by composition of P and any

transfer homography from the first view, as shown in Fig. 37

(left), with the necessary rank recovery procedure based on

the epipole described in the previous section (Fig. 35).

Figure 37. Extraction of compatible cameras from the Trifocal

Tensor (the rank recovery step is not displayed).

The camera M′ so obtained maps 3D points to the sec-

ond view in a way which is compatible with T . (This is of

course equivalent to camera extraction from the fundamen-

tal matrix F12 extracted from T .)

The third camera N′ can be obtained in a similar way, but

it must be carefully chosen to match the projective frame

defined by the first two. This can be done by finding an ap-

propriate correcting homography H. A particularly elegant

method is presented in [1], where transfers are induced by

the epipoles, and H = e′e′′T − I is derived from algebraic

considerations.

5.3. Four views

Purely algebraic methods for camera extraction from the

Quadrifocal Tensor have been proposed by several authors

[17, 18]. They are based on a reduced form ofQ with P1 =
[I|0] and the observation that some elements in the camera

matrices can be deduced from the algebraic structure of the

quadrifocal constraints.

This task is difficult for a purely diagrammatic approach

because the structure ofQ has very little redundancy. In any

case, compatible cameras can be extracted from Q using

algorithmic techniques described in the next section.

6. Diagrams as computational devices
Fig. 38 shows a circuit for simulation of T from Q. It

obtains the line l induced by l′ and l′′ as the join of the

points induced by two different planes reprojected from the

fourth view.

Figure 38. Simulation of T from Q.

Conversely, Fig. 39 shows a circuit to simulateQ from a

pair of Trifocal Tensors with two common cameras.

Figure 39. Simulation of Q from two Trifocal Tensors.

(This beautiful construction admits the suggestive inter-

pretation (Fig. 40) that one of the channels is simultane-

ously used as input (l′) and output (AX).)

Some inputs must be connected to two different slots, so

the above circuits are quadratic functions that cannot be col-

lapsed into genuine tensors. In any case, we obtain effective

algorithms which can be used for any desired purpose.

More importantly, diagrams automatically give straight-

forward implementations for the associated algorithms. For
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Figure 40. Geometric interpretation of data flow in Fig. 39.

example, the circuit for T in Fig. 38 can be ultimately re-

duced to a simple 5-dimensional array with 35 = 243 entries.

The computational engine is essentially based on contrac-

tions.

The tensor circuits described in this work have been

checked using a freely available library for multilinear alge-

bra [19]. The website contains updated material, including

a tutorial and additional illustrative constructions.

7. Conclusion

We have developed diagrammatic tensor manipulation

techniques for the specific requirements of Visual Geom-

etry. The approach has been successfully applied to the

analysis of several interesting situations. For example, we

obtain circuits for the Fundamental Matrix and the Trifocal

and Quadrifocal Tensors directly from geometrically mean-

ingful building blocks. The diagrams expose the internal

structure of the tensors, so they can be partially disassem-

bled using mechanical graph reduction rules, providing ef-

fective procedures for camera extraction.

Tensor circuits also have practical computational advan-

tages. They actually are direct implementations of the al-

gorithms in terms of simple array contractions. Special lin-

ear algebra subroutines (for pseudoinversion, computation

of null-spaces, etc.) are not required.

Diagram techniques must often be complemented with

ordinary algebraic manipulation, but even in these cases

the graphical approach is valuable, showing the steps in a

derivation which arise from symmetries or redundant sub-

structures.

In summary, the proposed diagrammatic approach is a

powerful analysis tool for Visual Geometry applications.

This technique can also be adapted to other Computer Vi-

sion fields based on multilinear algebra.
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