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Abstract

Segmentation problems are one of the most important

areas of research in computer vision. While segmentation

problems are generally solved with clustering paradigms,

they formulate the problem as recursive. Additionally, most

approaches need the number of clusters to be known before-

hand. This requirement is unreasonable for majority of the

computer vision problems. This paper analyzes the model

selection perspective which can overcome these limitations.

Under this framework multiple hypotheses for cluster cen-

ters are generated using spatially coherent sampling. An

optimal subset of these hypotheses is selected according to

a model selection criterion. The selection can be carried

out with a branch-and-bound procedure. The worst case

complexity of any branch-and-bound algorithm is exponen-

tial. However, the average complexity of the algorithm is

significantly lower. In this paper, we develop a framework

for analysis of average complexity of the algorithm from the

statistics of model selection costs.

1. Introduction

In the field of computer vision, solutions to various seg-

mentation problems such as image segmentation, motion

segmentation, disparity segmentation, and structure-and-

motion segmentation can be expressed as clustering prob-

lems. In a clustering problem, the data points have to be

assigned to various clusters by minimizing an assignment

cost. To compute this cost, cluster centers should be known

which can only be computed if the cluster assignments is

known. This “chicken-and-egg” dilemma leads to the con-

ventional iterative formulation for clustering. The cluster-

ing aims to optimize the assignment cost to achieve a (lo-

cally) optimal solution. If the number of clusters is in-

creased, the cost for the same data reduces. The degen-

erate case for this happens when one cluster corresponds to

one data point and the corresponding clustering cost is zero.

Clearly, such a scenario is undesirable. Thus the clustering

cost must be penalized for additional clusters. A variety of

model selection methods exist which incorporate this idea.

However, to apply model selection to clustering, candidate

models for varying number of clusters have to be gener-

ated sequentially and the best model according to a model

selection criterion can then be selected. Thus the problem

of clustering and model selection becomes iterative and se-

quential. Additionally, general formulation of clustering is

unaware of spatial relationships in the image and cannot uti-

lize them. The iterative and sequential problem of model

selection can be simplified to a one step optimization by us-

ing the knowledge that the clusters are spatially coherent.

Hypotheses for cluster centers can be generated by sam-

pling spatially coherent data points. Once the hypotheses

are known, a subset of these hypotheses can be selected by

optimizing a model selection criterion.

This idea is utilized in structure and motion segmenta-

tion approaches proposed recently [8, 9, 14]. Schindler and

Suter [9] carry out multi-body structure and motion seg-

mentation from two camera views. After the correspon-

dences are established, they are grouped together based

on the spatial coherence. From each group of correspon-

dences, a hypothesis for underlying structure and motion

is generated using random sample consensus (RANSAC)

[6]. A geometrically robust information criterion (GRIC)

[16] is optimized to select the best subset of hypotheses.

The optimization is carried out with Tabu search [5]. In

[8], Li solves the two-view motion segmentation problem

starting from a set of candidate motions generated by ap-

plying spatial coherence, prior distribution, chirality con-
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straints etc. The segmentation problem is then formed as

a facility location problem and solved with linear program-

ming relaxation [2, 7]. In our previous work [14], we gen-

erate hypotheses for structure and motion by applying local

sampling followed by nonmaximal suppression. We opti-

mize the Bayesian information criterion (BIC) [10] with a

branch-and-bound strategy.

In this paper, we analyze our framework in [14] for the

multi-hypothesis branch-and-bound model selection and its

average computational complexity. The average computa-

tional complexity of branch-and-bound algorithms which

search over random trees has been explored by a number of

researchers [4, 11, 12, 13, 17, 18]. The term “random” ap-

plies to the structure of the tree and weights of the tree edges

in general. However, for the multi-hypothesis branch-and-

bound model selection problem, the structure of the tree is

deterministic and only the weights of the tree edges are ran-

dom. Thus a separate treatment for the complexity of the

problem becomes necessary.

This paper is organized as follows: Section 2 formulates

the framework to estimate the expected complexity of the

branch-and-bound search for the problem. Section 3 out-

lines the computational complexity estimation. The com-

putation of various quantities involved in the estimation of

complexity of the algorithm is discussed in section 4. Sec-

tion 5 presents the results achieved for the expected com-

plexity and conclusions are presented in section 6.

2. Branch-and-bound as an edge-weighted tree

search problem

Under sampling based clustering formulation, given a set

of Nh hypotheses H = {H1, H2, . . . , HNh
} for cluster pa-

rameters, we have to choose a subset Θ which optimizes the

model selection criterion.

C(Θ) = − log(LΘ) + α · K, (1)

where α is a positive constant and LΘ gives the likelihood

of the data for a model Θ.

From this cost function and the corresponding bounds,

a branch-and-bound algorithm can be implemented in vari-

ous ways [1]. For complexity analysis, we adapt a generic

queue based tree search implementation of the branch-and-

bound procedure from [11]. The solution tree for the prob-

lem can be explored using various search strategies. We list

a few of these methods here[11],

• Best bound first (BBF)

• Ordered depth first

• Generation order depth first

• Ordered breadth first

• Generation order breadth first

These methods prioritize the search of nodes in different

ways. We concentrate on the BBF approach which explores

the least number of nodes before it reaches the optimal so-

lution [11]. In a BBF implementation, child nodes of the

currently popped node are inserted in a queue and the min-

imum cost node is popped out of queue. The algorithm ter-

minates when the first leaf node is popped out.

According to our formulation in [14], each node of the

solution tree has cost C(Θ) which represents a node as a

solution and a lower bound on cost leading from the cur-

rent node CLower(Θ) which represents a node as a partial

solution for the problem. This gives rise to a binomial tree

[3] of order Nh as the representation of the model selec-

tion problem (see figure 1(a)). However, in a typical tree

search problem only the leaf/terminal nodes can represent

a solution. To incorporate this, we modify the original tree

structure and add a “twin” node to each internal node of the

binomial tree. The original and the updated tree structure

are shown in figure 1(a) and (b) respectively. The circled

nodes in (b) are the newly added twin nodes. In the updated

tree, the terminal nodes (i.e., terminal nodes from the origi-

nal tree and newly added twin nodes) represent the solutions

and the internal nodes represent the partial solutions.

To represent each node uniquely, we devise a binary rep-

resentation for each node. In this Nh bit wide representa-

tion, if a node includes a hypothesis h then (Nh − h)th bit

of the representation is one and if it does not include the

node h then (Nh − h)th bit is zero. For the internal nodes

it also includes an additional symbol X which indicates a

hypothesis that can be included in future. The (Nh − h)th
bit is set to X if any child nodes can include the hypothesis

h. One can quickly get the “twin” node of an internal node

by replacing Xs with zeros.

Each edge of the updated tree has a nonzero positive

weight associated with it. The cost of reaching a node can

be computed by adding costs of all the edges along the path

from the node to the root of the tree. For such a tree, the

cost of all the child nodes is greater than the cost of their

parent nodes. This agrees with the property of the branch-

and-bound tree according to which the cost of any solution

leading from a node is always greater than the cost of the

node under consideration. The cost associated with a ter-

minal node is the cost of the solution C(Θ) associated with

the terminal node. On the other hand, the cost associated

with an internal node is the bound on the cost of the par-

tial solutions represented by the internal node CLower(Θ).
The least cost terminal node in the edge-weighted tree cor-

responds to the optimal solution for the branch-and-bound

process. Thus, our branch-and-bound approach can be seen

as a least cost leaf search problem for the updated edge-

weighted tree.
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Figure 1. (a) Original branch-and-bound tree for Nh = 3, (b) Its arc-weighted equivalent, (c) Binary coding for the tree nodes

3. Average complexity

The worst case computational complexity of any branch-

and-bound search algorithm is same as the complexity of

the brute force search. However, a branch-and-bound ap-

proach is generally applied to an NP hard global optimiza-

tion problem for which the worst case complexity gives a

little or no insight into the performance of the approach.

In such a situation, the average or expected computational

complexity would give a more reasonable estimate of the

performance of the approach. In this section, we formulate

a framework to estimate the expected computational com-

plexity for the branch-and-bound model selection approach

based on the representation in the previous section.

The first leaf node popped from the priority queue dur-

ing BBF search is the optimal solution[11]. This also means

that the complexity, i.e. the number of nodes popped out

before the optimal node, is same as the number of internal

nodes which have their costs less than the optimal cost. Ad-

ditionally, the optimal node has the cost less than all the

other leaf nodes by definition.

Let T denote the set of all leaf/terminal nodes of the tree

and I denote the set of all internal nodes of the tree. The op-

timality probability of the node i, Pro(i), denotes the prob-

ability that the node i is optimal, i.e. it has the least cost

among the terminal nodes.

Pro(i) =
∏

∀j∈T\i

Pr(W (i) < W (j)) (2)

The cost probabilities Pr(W (i) < W (j)) are probabilities

of comparison of the sum of edge weights leading to nodes

i and j. These can be seen as probabilities of comparison

between two sums of random variables and thus are given

by PrT (Sm < Sn). Here Sm and Sn are the sums of m and

n random variables respectively (1 ≤ n ≤ Nh, 1 ≤ m ≤
Nh). Note that it is not necessarily true that m = depth(i)
and n = depth(j). One has to remove the common edges

along the path to the root node from the node depth to get

values of m and n. If the number of common edges is l

then m = depth(i) − l and n = depth(j) − l. We define

these nodes to have a relationship of order (m, n). In graph

theory terms, the relationship between nodes can be seen as

the simple path between them and (m + n) gives the length

of the simple path.

Due to the recursive structure of the tree, the weight rela-

tionships repeat themselves. Thus Pro(i) can be expressed

as,

Pro(i) =

Nh∏
m=1

Nh∏
n=1

PrT (Sm < Sn)Oi(m,n) (3)

Here Oi is the optimality matrix for the node i and its

(m, n)th element indicates the number of times the relation-

ship (m, n) (and hence the term PrT (Sm < Sn)) appears

in the computation of Pro(i).

N(i) denotes the number of nodes explored if the node i

is optimal. When the node i is optimal, the internal node j

is explored only if its cost is less than the cost of the optimal

node i. Thus the complexity when the node i is optimal is,

N(i) =
∑
∀j∈I

Pr(W (j) < W (i)) (4)

Similar to the optimality probability Pro(i), the complexity

N(i) of the node can be expressed as,

N(i) =

Nh∑
m=1

Nh∑
n=1

PrI(Sn < Sm) · Ri(m, n) (5)

Here Ri is the complexity matrix for the node i and its

(m, n)th element indicates the number of times relationship

(m, n) (and hence the term PrI(Sm < Sn)) repeats in com-

putation of N(i). Note that different subscripts are used for

probabilities PrT and PrI , as the sums compared by these

probabilities differ slightly. For PrT , one of the weights

in both sums is for an edge from an internal node to a leaf

node while all the other weights are for edges between in-

ternal nodes. For PrI , all the weights correspond to edges

between internal nodes. If we assume that this difference is
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negligible then,

Pr(Sm < Sn) = PrT (Sm < Sn) = 1 − PrI(Sn < Sm).
(6)

With the optimality probability Pro(i) and the complex-

ity N(i), the expected complexity N can be estimated as,

N =

∑
∀i∈T Pro(i)N(i)∑

∀i∈T Pro(i)
. (7)

4. Computing cost probabilities, optimality

matrix and complexity matrix

The optimality matrix Oi and the complexity matrix Ri

are different for nodes which do not have relationship (1, 1)
and also change with the order of the tree. However, the

probabilities PrT (Sm < Sn) and PrI(Sn < Sm) are only

determined by the distribution of edge weights.

For a typical model selection problem, the distribution

for the sums does not have a closed form solution or it

is unknown. In such a case, a close approximation of

PrT (Sn < Sm) and PrI(Sn < Sm) or Pr(Sn < Sm) can

be generated with sampling.

The arc weighted tree can be seen as a binomial tree with

an added “twin” node for all the internal nodes. The opti-

mality matrix Oi is computed by comparing each leaf node

i with all the other leaf nodes. Recursive properties of the

binomial tree can be used in computation of Oi. To com-

pute Oi, we transform the cost weighted tree back to the

binomial tree by merging the twin nodes with the internal

nodes and retaining the binary representation of the twin

nodes after merging.

Computation of Oi relies on the observation that a simple

path between two nodes of a binomial tree includes the root

node of only the smallest subtree including both the nodes.

Note the following important properties before proceeding

to compute Oi.

• Depth of a node, i.e. d(i), is equal to the number of

ones in the binary representation.

• Each node i belongs to a unique combination of bi-

nomial subtrees T0, T1, . . . , Td(i) and location of ones

in the representation indicates the order of binary sub-

trees, e.g. the most significant bit indicates a binary

subtree of order Nh − 1 and the least significant bit

indicates a binary subtree of order 0. Note that all the

nodes belong to a subtree T0 of order Nh.

• The number of nodes belonging to a subtree Tt at depth

k is given by,

Nt(k) =

{ (
Tt

k−t

)
, if 0 ≤ k − t ≤ Tt;

0, otherwise.
(8)

where k = 0, 1, 2, . . . , Nh and t = 0, 1, 2, . . . , d(i).

Since a node i only belongs to subtrees T0, T1, . . . , Td(i),

to compute Oi, we have to analyze these subtrees alone.

The binomial tree can be split into these subtrees and can be

analyzed subtree by subtree, starting with the largest subtree

T0. For each subtree, we select the nodes which exclusively

belong to the subtree under consideration. This can be done

by simply removing the nodes belonging to the next largest

subtree from the subtree under consideration. Finally, one

has to offset the result of merging of the “twin” nodes. The

merging leads to relationships of order (m, 0) and (0, n)
which would have been of the order (m + 1, 1) and (1, n +
1) otherwise. Also, we have to remove relationship (0, 0)
which corresponds to comparison of the node i with itself.

The algorithm to compute the optimality matrix Oi fol-

lows.

1. Initialize T = {T0, T1, . . . , Td} = the subtree mem-

bership of the node i, d(i) = depth of the node i, set

Oi(1, 1) = −1 and all the other elements of Oi equal

to zero.

2. Set t = 0 such that current subtree Tt = T0.

3. For subtree Tt, at each depth k = 0, 1, . . . , Nh com-

pute Mt(k) the number of nodes which belong exclu-

sively to subtree tree Tt.

Mt(k) =

{
Nt(k) − Nt+1(k), if t < d(i);
Nt(k), Otherwise.

4. If k > 0 and d(i) − t > 0, set Oi(d(i) − t, k) =
Oi(d(i)−t, k)+Mt(k) else set Oi(d(i)−t+1, k+1) =
Oi(d(i) − t + 1, k + 1) + Mt(k).

5. Set t = t + 1. If t ≤ d(i), then go to step (3), else

terminate the algorithm.

To compute the complexity matrix Ri, each leaf node i

has to be compared with internal nodes of the cost weighted

tree only. After the “twin” node merging, one has to com-

pare each node i of the merged tree with all the internal

nodes of the tree. Note that internal nodes of the binomial

tree of order Nh form a binomial tree of order Nh−1. Thus

similar to (8), the number of internal nodes belonging to

subtree Tt at depth k is given by,

Lt(k) =

{ (
Tt−1
k−t

)
, if 0 ≤ k − t ≤ Tt − 1;

0, otherwise.
(9)

With this variation the complexity matrix Ri can be calcu-

lated similar to Oi.

5. Experimental results

The multi-hypothesis branch-and-bound model selection

with branch-and-bound was implemented for multiple mo-

tion and segmentation (MSaM) problem and its expected
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Figure 2. PrT (Sm < Sn) for the structure and motion segmenta-

tion problem.
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Figure 3. PrI(Sn < Sm) for the structure and motion segmenta-

tion problem.

computation complexity was evaluated. To generate the

motion hypotheses, for each matched image feature the

fundamental matrix was computed from its neighborhood.

Matches in the neighborhood were used to compute the fun-

damental matrix using “Structure and Motion Toolkit” from

[15]. Similar to RANSAC, outliers and inliers were selected

for each fundamental matrix with a threshold. To avoid re-

peated hypothesis which are similar, non maximal suppres-

sion was carried out for the matches based on the number of

inliers. Finally, the surviving hypotheses were arranged in

decreasing order of the number of inliers. The Bayesian in-

formation criterion (BIC) was optimized for these hypothe-

ses to select the optimal hypotheses combination.

The proposed branch and bound model selection ap-

proach was tested with synthetic data. For the experiments,

100 random 3D motions were generated. At a time four

motions were combined together to form an experimental

data sets. Also, randomly selected motion samples remain-

ing motions were added to the data as outliers. Since the

number of hypotheses Nh cannot be explicitly controlled,

Nh varies as number of motion samples and their spatial

configuration changes. For our experiments, we selected

50 samples per motion which gave us Nh close to 20 to

30. To estimate the probabilities PrT (Sm < Sn) for the

MSaM problem, we randomly generated pair of hypotheses

and compared their BIC values. To calculate the probabil-

ities PrI(Sm < Sn), BIC value of a randomly generated

hypothesis was compared to bound on BIC value of another

randomly generated hypothesis. Figures 2 and 3 show the

probability matrices PrT (Sm < Sn) and PrI(Sn < Sm)
respectively.

Once probability matrices PrT (Sm < Sn) and

PrI(Sn < Sm) are known from sampling, the complex-

ity for the branch and bound search can be estimated by

evaluating (7). Figure 4 shows the estimated expected com-

plexity for the MSaM problem along with other tree search

problems when edge weights are uniform iids and squared

Gaussian iids. The worst case complexity which is equiv-

alent to a brute force search is also shown for comparison.

Clearly, the expected complexity of the branch and bound

search depends on the distribution of the edge weights. This

distribution is captured by probabilities PrT (Sm < Sn) and

PrI(Sn < Sm).

As seen from the plots, although the expected complex-

ity is much lesser than the worst case complexity for the

branch and bound, still it is exponential for the most part.

The rate of exponential depends on how quickly the off di-

agonal values of probability matrices PrT (Sm < Sn) and

PrI(Sn < Sm) drop to near zero/ rise close to one. On

the other hand, for the structure and motion problem, the

increase in the complexity as Nh > 15 is not as drastic as

Nh < 15. This again is a result of the off diagonal values

of probability matrices PrT (Sm < Sn) and PrI(Sn < Sm)
almost all of which drop to near zero/ rise close to one for

Nh > 15.

Figure 5 compares the estimated expected complexity of

the problem with the experimentally observed complexity

of the problem. We ran 400 experiments with different data

sets to find the number of nodes explored before optimal

solution was found. These experiments were then separated

based on value Nh and sorted according to increasing com-

plexity. The lengths of plots were normalized horizontally

to 100 for easy comparison of complexity for various values

of Nh. As seen in Figure 5, although the expected complex-

ity is slightly overestimated, it still provides a satisfactory

estimate for the expected complexity.
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6. Conclusion

In this paper, we analyzed the average complexity of a

branch-and-bound algorithm for model selection in com-

puter vision problems. It can be seen from the experi-

ments that the average complexity of the algorithm is than

the worst case complexity. Thus branch-and-bound based

model selection algorithms are practical for hypothesis se-

lection process which has moderate number of hypothesis

and when size of optimal subset is small. With problem

specific bounds and/or added heuristics, the computational

complexity of the branch-and-bound algorithm can be im-

proved further.
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