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Abstract

In this paper, we introduce a new approach for modeling
visual context. For this purpose, we consider the leaves of a
hierarchical segmentation tree as elementary units. Each
leaf is described by features of its ancestral set, the re-
gions on the path linking the leaf to the root. We con-
struct region trees by using a high-performance segmen-
tation method. We then learn the importance of different
descriptors (e.g. color, texture, shape) of the ancestors for
classification. We report competitive results on the MSRC
segmentation dataset and the MIT scene dataset, showing
that region ancestry efficiently encodes information about
discriminative parts, objects and scenes.

1. Introduction

The role of context in visual perception has been studied
for a long time in psychology [20, 3, 11]. Visual context can
be defined by the scene embedding a particular object [20],
and by the semantic relations among different objects [3].
Thus, contextual information for a table is provided by the
dining room where it lies, but also by the presence of chairs
around it and dishes on its top.

In the computer vision community, despite early at-
tempts as in [26], the importance of context has only re-
cently been widely acknowledged. Its operationalization
often relies on the definition of a holistic descriptor of the
image. For instance, the seminal work of Oliva and Tor-
ralba [19] aimed at capturing the “gist” of the scene. In the
case of multi-class segmentation, many recent approaches
express relations among objects as pairwise potentials on a
probabilistic model [9, 14, 25, 23, 30, 2, 8, 13, 22].

However, contextual cues are naturally encoded through
a “partonomy” of the image, the hierarchical representation
relating parts to objects and to the scene. In this paper, we
argue in favor of using the hierarchy of regions produced by
a generic segmentation method in order to model context.

Concretely, given an image, we first construct a region
tree using the publicly available hierarchical segmentation
algorithm of [1]. The leaves of the tree are the regions of the

Figure 1. Region ancestry encodes discriminative parts, objects
and scenes. Each column shows one leaf of the segmentation tree
(top) and three of its ancestors. We measure similarity between
leaves by comparing their ancestors and learn their importance on
a discriminative framework.

finest segmentation considered; the root is the entire image
and the nodes represent regions ordered by inclusion.

We consider the leaves of the tree as elementary units.
Each leaf is represented by features on the set of regions on
the path linking it to the root. Borrowing a metaphor from
genealogy, we call this set of regions the ancestral set of the
leaf, with the noteworthy difference that ancestors are in our
case spatial, rather than temporal.

By progressively enlarging the window of analysis, the
ancestral set of a leaf region encodes information at all
scales, ranging from local parts of objects, to the whole
scene. When making a decision about the category of a
leaf or the scene, we expect discriminative features to be
different at each level. For instance, in the example of Fig.
1, shape information may be informative for the immediate
ancestors of the leaf, but color and texture may be more im-
portant at the scene level. In order to take into account such
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differences, we define the dissimilarity between leaves as
a weighted sum of distances among ancestral features and
learn their importance in a discriminative framework.

In order to illustrate the power of region ancestries as
a model of context, we address two different tasks: class-
specific segmentation, where a category label is assigned to
each pixel in the image, and scene classification, where the
whole image is labeled according to the type of scene de-
picted. We report results on the MSRC dataset for the for-
mer and on the MIT scene dataset for the latter, obtaining
competitive performance on both tasks. Our experiments
show that including contextual information modeled by re-
gion ancestry provides a significant improvement of 20% in
performance on the MSRC dataset, as shown in Table 1.

The rest of the paper is organized as follows. Section 2
reviews previous work. Section 3 introduces the building
blocks of our approach. Section 4 describes the learning
frameworks considered. Section 5 presents our method for
classifying leaves based on ancestry. Section 6 is devoted to
experiments. Finally, Section 7 contains some concluding
remarks.

2. Related Work

Many recent approaches to multi-class segmentation
address the problem using a probabilistic framework
and, more specifically, conditional Markov random fields
(CRFs) [9, 14, 25, 23, 30, 2, 8, 13, 22]. These methods
reason on a graph, where the nodes are usually entities ex-
tracted from the image, e.g. pixels or patches [9, 25], super-
pixels [8, 2], or regions from multiple segmentations [13].
Context is in this case understood as relations between en-
tities and modeled by a pairwise potential between nodes.
This term is often defined between adjacent entities and is
used to enforce spatial consistency on the labels [9, 25].
Other approaches consider a fully connected graph and
can therefore model larger-range connections [14, 22, 23].
Some recent methods apply CRFs after an initial estimation
of the labels and are therefore able to express more seman-
tic relations. For example, in [23], the pairwise potential
captures the co-occurrence of categories in the same image,
which is learned, either from the training data, or from ex-
ternal resources. Gould et al. [8] introduce a local feature
that encodes relative location among categories. Similarly,
[14] proposes a two-layer CRF, the first one acting on pixels
and the second one modeling relations between categories.

A second type of methods introduces contextual cues by
considering a holistic image descriptor or a prior on the cat-
egories present in the image. In [24], this prior is provided
by a global image classifier. In [21], regions are obtained
from multiple segmentations, and contextual information is
included by describing each region with features computed
on the region mask and on the whole image.

Hierarchical approaches are much less common in the

literature. In [28], the image classification task is addressed
by matching transitive closures of segmentation trees. Zhu
et al. [31] do inference on a structure composed by a fixed
hierarchy (a quad-tree) and a set of segmentation templates.
In [4], features for boosting are constructed from the lower
levels of a bottom-up segmentation hierarchy. However, by
restricting regions to belong to a single category, contextual
information is not fully exploited in this reference.

Context has also been used to improve object detection.
In [18], a holistic descriptor is used to narrow the search
space of an object detector to a set of likely locations. Heitz
and Koller [10] improve the detection of rigid objects by
learning spatial relations with amorphous categories. A dif-
ferent approach for modeling context is the work of Hoeim
et al. [12], who estimate the three dimensional layout of a
scene by labeling pixels according to surface orientations.
A similar problem is addressed by Sudderth et al. [27], by
using a hierarchical version of Dirichlet porcesses. Graphi-
cal models are also used in [16] in order to infer scene cat-
egories.

3. Comparing Leaves by Ancestry

In this section, we first define and describe how we ob-
tain ancestral sets from a segmentation tree and the method
to compare them.

We use the segmentation algorithm of [1] that constructs
a region tree starting from a contour detector. This method
is a fast and parameter-free generic grouping engine. Fur-
thermore, when applied on the output of the high-quality
contour detector gPb [17], it significantly outperforms other
segmentation approaches, occupying the first place in the
Berkeley Segmentation Dataset and Benchmark [6].

The output of the low-level segmenter is an image of
weighted boundaries (see Fig. 2). When thresholded, the
weighted boundary image produces the segmentation cor-
responding to a uniform cut in the tree.

We define the ancestral set, or ancestry, of a region R

in a tree T as the set of regions on the path linking R to the
root:

A(R) = {R′ ∈ T |R ⊆ R′} (1)

The elementary units of our approach are the leaves of a
segmentation tree, often referred as superpixels. They are
the elements of the finest partition of the image considered.
Figure 2 presents an example. Note that the finest partition
can be any level in the hierarchy, depending on the task.

We describe each region node in the tree using various
features (e.g. color, texture, shape) and represent each leaf
r by the descriptors of its ancestral set, F (r),

F (r) = {f1, . . . , fM}, (2)

where M = |A(r)|·Q, and Q is the total number of features
per region.
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Figure 2. Example of ancestral set. From left to right: • Schematic representation of segmentation tree and example of ancestral set;
the leaves are in this case the nodes {A, B, C, D, E, F, G, H} and the ancestral set of leaf D is A(D) = {D, J, M, O}. • Example of
ancestral set on a real image. • Original image. • Hierarchical boundaries produced by the segmentation algorithm. • Finest segmentation,
containing the leaves of the tree.

In order to measure the similarity between two leaves,
we first consider elementary distances between region de-
scriptors of the same type. For simplicity, we use a single
notation d(·, ·), although they can be different depending on
the type of descriptor.

We define the dissimilarity vector of a leaf s with re-
spect to a fixed leaf r as:

dr(s) = [d1
r(s), . . . , d

M
r (s)], (3)

where:

di
r(s) = min

fj∈F (s)
d(fi, fj), i = 1, . . . , M. (4)

and the comparison is done only among features of the same
type.

We then define the dissimilarity of s with respect to r as
a weighted sum of elementary distances:

Dr(s) =

M∑

i=1

wi di
r(s) = 〈w,dr(s)〉, (5)

where w is the weight vector learned using the framework
of the next section. Note that, in general, D is not symmet-
ric, i.e., Dr(s) �= Ds(r).

4. Learning the Importance of Ancestors

As motivated in the introduction, in an ancestry, descrip-
tors of ancestors in various scales contribute differently to
the dissimilarity measures. For instance, the shape descrip-
tor could be the most predominant cue for the body of an
aeroplane, whereas its ancestor, the scene of the plane in
the sky, could be best described by color. We address this
issue by learning a set of weights for the leaf as well as its

ancestors from the training data. It is worth noting that the
learning framework assigns high weights to the most repeat-
able regions, making our approach robust to possible errors
from the low-level segmenter.

We adopt an exemplar-based matching framework for
our purpose. Precisely, given an exemplar leaf r of
class C(r), and a set of leaves {s1, . . . , sN} of classes
{C(s1), . . . , C(sN )}, all from the training set, first we
compute the dissimilarity vectors of si with respect to r,
{dr(s1), . . . ,dr(sm)}. We also denote Dr(si), the dissim-
ilarity of si with respect to r, by w

T
dr(si).

We introduce and compare three learning approaches in
the following, all of which attempt to decrease Dr(si) and
increase Dr(sj) for C(r) = C(si) and C(r) �= C(sj).

4.1. Logistic Regression

The first method to find the weight vector w is to use a
binary logistic classifier to learn directly a mapping from the
input vector dr(s) to a probabilistic output that measures
the probabilities of two leaves having the same class:

P (C(s) = c|C(r) = c,w) =
1

1 + exp{−wTdr(s)}
(6)

Given dr(si), i = 1, 2, . . . , N , the L2-regularized large-
margin optimization is formulated as follows:

min
w

1

2
w

T
w + C

N∑

i=1

log(1 + exp(−yiw
T
dr(si))), (7)

where

yi = 2 · 1[C(si)=C(r)] − 1, i = 1, 2, . . . , N (8)

Logistic regression is also used in the two other methods
below but as a post-processing, in order to normalize a raw
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dissimilarity to the range [0, 1]. More details will be stated
in Section 5.

4.2. Support Vector Machines

A second option is to consider a binary linear support
vector machine, using dr(si), i = 1, 2, . . . , N as feature
vectors and yi’s defined in Equation (8) as binary labels.
Compared to the logistic regression classifier, we replace in
this case the loss function in (7) for a hinge loss:

min
w,ξ

1

2
w

T
w + C

N∑

i=1

ξi (9)

s.t. : yiw
T
dr(si) ≥ 1 − ξi, ξi ≥ 0, i = 1, . . . , N (10)

4.3. Rank Learning

A third approach for learning the importance of ances-
tors is the framework of [7]. Unlike the linear-SVM ap-
proach that enforces a maximum margin between two sets
of data, this learning algorithm enforces maximum margins
between pairs of data points from two sets.

Again, given the exemplar r, we consider a second leaf
s with the same category as r, and a third leaf t belonging
to a different category, we have:

Dr(t) > Dr(s) (11)

⇒ 〈w,dr(t)〉 > 〈w,dr(s)〉 (12)

⇒ 〈w,x〉 > 0, (13)

where x = dr(t) − dr(s).
A set of T such triplets, {x1, . . . ,xT }, is constructed

from {s1, . . . , sN}. The large-margin optimization is then
formulated as follows:

min
w,ξ

1

2
w

T
w + C

T∑

i=1

ξi (14)

s.t. : w
T
xi ≥ 1 − ξi, ξi ≥ 0, ∀i = 1, . . . , T (15)

w 
 0. (16)

5. Leaf Classification

We use the learned dissimilarities between exemplars
and test data for leaf classification. When a test leaf is
compared to each one of the exemplar leaves, the associated
dissimilarities are not directly comparable because they are
derived from different learned weights and thus their val-
ues may have different ranges. To address this issue, we
do a second round of training for each exemplar by fitting a
logistic classifier to the binary training labels and dissimi-
larities, so that dissimilarities are converted to probabilities.
We omit this procedure when the weights are learned using

the logistic regression because the optimization automati-
cally returns probability outputs that are directly compara-
ble.

To predict the category label for a leaf, we define the con-
fidence score of the leaf s to a category c as the average of
the probabilities from the exemplar leaves of that category.
That is:

Score(s|c) =
1

|C|

∑

j:C(j)=c

pj(s), (17)

where pj(s) is the probability of s with respect to exemplar
j from the logistic classifier.

The test leaf is assigned to the category label with the
largest confidence score. The final segmentation is then ob-
tained by assigning to each pixel the predicted category la-
bel of the leaf where it lies.

In practice, in order to make the confidence score more
robust to outliers, we compute the average by using only
the top r% of the probabilities, and multiply them by the
weight of each class, m(c). Both r and m are learned on
the validation set.

In Figure 3, we show the confidence maps for four cat-
egories and the final segmentation. Each category’s confi-
dence map is obtained by assigning the leaf region with the
confidence score.

6. Experiments

6.1. Implementation Details

Since our purpose is to explore the power of our con-
text model, we describe each region in the segmentation tree
with standard features.

We represent color by concatenating the marginal his-
tograms in the CIELAB space. Texture is encoded by
following the texton approach [15], where filter-bank re-
sponses are clustered with the k-means algorithm. In the
experiments presented, we consider a codebook of 250 uni-
versal textons and 30 bins per color channel.

Shape is encoded by placing an n×n grid on the bound-
ing box of the region and measuring oriented contour en-
ergy on each grid cell. We use both gPb and Sobel filters
for this purpose. We then concatenate the responses in each
cell to obtain a single shape descriptor. In the results below,
we consider 8 orientations and n = 3, for a total of 144
dimensions.

Additionally, for the regions on an ancestral set, we con-
sider the normalized coordinates of the leaf’s centroid as
absolute location features. We compare histogram features
using χ2 as elementary distance and location features using
Euclidean distance.

We use the linear SVM and logistic regression imple-
mentations of LibLinear [5].
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Figure 3. Example of merging the per category confidence maps into a single segmentation. Top: Original image, initial partition, ground
truth and final segmentation. Bottom: Confidence maps for the categories grass, tree, sky and aeroplane. The confidence maps of all the
categories are used to produce the final segmentation.

Figure 4. Confusion matrix for MSRC dataset. Average perfor-
mance is 67%

6.2. Class-specific Segmentation

We conduct experiments on the MSRC database [25],
containing 591 images, with objects from 21 categories. In
order to compare our results with other methods, we use
the standard split of the database and measure performance
by computing the average pixelwise classification accuracy
across categories. This metric is preferable to the overall
classification accuracy because it does not favor the more
common categories.

Figure 4 presents the confusion matrix of our method.
Figure 5 presents some qualitative results.

Leaf Only Ancestral Set Improvement

LR 47% 67% +20%
SVM 48% 62% +14%
RL 45% 57% +12%

Table 1. Results on MSRC. Comparison of the performance of
our method with the different learning approaches considered in
Section 4 and by using only the leaves or the full ancestral set.
Contextual information provided by the ancestry significantly im-
proves performance in all cases. The best result is obtained with
the simple logistic classifier. (LR: Logistic Regression, SVM:
Support Vector Machines, RL: Rank Learning)

Table 1 shows the improvement obtained by using the
ancestral set instead of the leaves for the learning frame-
works considered. The improvement in performance is con-
siderable in all the cases, regardless of the learning method.
Figure 5 presents some qualitative results.

Tables 2 and 3 compare our method against recent ap-
proaches. It’s worth noting that in amorphous and com-
mon categories such as grass, tree, sky or road, the inclu-
sion context does not necessarily increase performance with
respect to the leaf only model. However, our approach pro-
vides a significant improvement over the state-of-the-art in
10 structured object categories where the context is rela-
tively more important (aeroplane, car, bicycle, flower, sign,
book, chair, dog, boat).

6.3. Scene classification

We test our system on the MIT scene dataset for the
scene classification task. The dataset is composed by 2688
images belonging to 8 scene categories. It is divided in 800

∗These results were obtained on different splits of the dataset and are
therefore not directly comparable.
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Method [25] [2] [21] [30] [8] [24] [29] [31] Ours
Performance 58 55 60 64∗ 64∗ 67 68 74 67

Table 2. Comparison of our average performance with other recent methods on MSRC. In MSRC, there are two different evaluation
methods and we use the average classification per category.
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[25] 62 98 86 58 50 83 60 53 74 63 75 63 35 19 92 15 86 54 19 62 7
[2] 68 94 84 37 55 68 52 71 47 52 85 69 54 5 85 21 66 16 49 44 32
[21] 68 92 81 58 65 95 85 81 75 65 68 53 35 23 85 16 83 48 29 48 15
[24] 49 88 79 97 97 78 82 54 87 74 72 74 36 24 93 51 78 75 35 66 18
[29] 69 96 87 78 80 95 83 67 84 70 79 47 61 30 80 45 78 68 52 67 27
LO 34 74 66 49 46 83 56 49 85 34 55 50 44 37 28 16 61 33 35 28 16
AS 30 71 69 68 64 84 88 58 77 82 91 90 82 34 93 74 31 56 54 54 49

Table 3. Comparison of our results on each category with other recent methods in MSRC. We obtain the best performance in 10/21
categories, all of them objects. Results reported for our method correspond to weight learning with logistic regression, using only the
leaves (LO) and the ancestral set (AS). [31] is not included in this table, because their confusion matrix is not available.
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[19] 82 90 89 87 79 71 81 91 84
Ours (LO) 89 27 83 44 80 67 48 96 67
Ours (AS) 93 81 88 64 77 79 80 96 82

Table 4. Results on MIT scene dataset. Using the ancestral set pro-
vides a significant boost in performance of 15% for this task. Re-
sults reported for our method correspond to weight learning with
logistic regression, using only the leaves (LO) and the ancestral set
(AS).

images for training, with 100 per category, and 1888 images
for testing. In this case, instead of assigning a label to each
pixel, we assign to the image the label of the confidence
map with highest average value.

Table 4 presents the results. We perform comparably to
[19]. Also, it is shown that by using ancestral sets, our per-
formance significantly improves.

7. Conclusions

We introduced a simple yet effective approach for mod-
eling contextual information by considering the ancestral
sets of leaves in a segmentation tree. Our approach ob-
tains competitive results on both multi-class segmentation
and scene classification tasks.

While the main emphasis of this paper is to understand
the power of inclusion relationship among regions, other
relationships, such as co-occurrence and adjacency, are also
important cues for modeling context [23, 8]. Extending our

current framework to incorporate these relationships would
be an interesting direction for future work.
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