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Abstract

We propose a novel framework for visual saliency de-
tection based on a simple principle: images sharing
their global visual appearances are likely to share similar
salience. Assuming that an annotated image database is
available, we first retrieve the most similar images to the
target image; secondly, we build a simple classifier and we
use it to generate saliency maps. Finally, we refine the maps
and we extract thumbnails. We show that in spite of its
simplicity, our framework outperforms state-of-the-art ap-
proaches. Another advantage is its ability to deal with vi-
sual pop-up and application/task-driven saliency, if appro-
priately annotated images are available.

1. Introduction

Image thumbnailing consists in the identification of one

or more regions of interest in an input image: salient parts

are aggregated in foreground regions, whereas redundant

and non informative pixels become part of the background.

The range of applications where thumbnailing can be em-

ployed is broad. It includes traditional problems like image

compression, visualization, summarization and more recent

applications like variable data printing [24], assisted content

creation [3], etc.

Thumbnailing and more generally visual saliency detec-

tion are intrinsically challenging problems. In fact, despite

the many theories recently formulated [15, 17], it is still

not completely clear how the human visual attention pro-

cesses work. However, all theories seem to agree upon the

fact that : subjects selectively direct attention to objects in a

scene using both bottom-up, image-based saliency cues and

top-down, task-dependent cues.

Bottom-up saliency can be considered task-independent.

In fact, if a stimulus is sufficiently salient, it will pop-up

from a scene as in Figure 1, image on the left. In this case,

saliency is fairly unambiguous. However, in a more clut-

Figure 1. Left, sample image from MRSA dataset [19], saliency

is fairly unambiguous. Right, sample from PASCAL dataset [10],

in this case, saliency is more complex, ambiguous and application

dependent.

tered image (e.g. see Figure 1 on the right), multiple objects

make the saliency analysis subjective and more ambiguous.

This ambiguity might be reduced if we take into account the

final intent of the thumbnailing operation (e.g. a thumbnail

containing the person might be salient for albuming appli-

cations, whereas the dog might be more relevant for high-

lighting the query results in image retrieval applications).

We designed a generic framework able to deal with vi-

sual pop-up and task-driven saliency, respectively using

images annotated with salient thumbnails [19] or salient

thumbnails and semantic labels [10].

The framework was built upon a simple idea: images

sharing global visual appearance are likely to share simi-

lar salient regions. Following this principle, we approach

thumbnailing as a learning by example problem, and we

show that the visual similarity is advantageous to detect

saliency and to build thumbnails. Finally, we show that in

spite of its simplicity, our approach outperforms state-of-the

art saliency detection methods.

The rest of the paper is organized as follows. Firstly, in

section 2 we study the literature around visual saliency and

image thumbnailing. Then, we describe in detail in section

3 our framework. Section 4 presents the experimental val-

idations and finally in section 5 we discuss the advantages

of the methods and the future challenges.
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2. State-of-the-art
Most models for visual saliency detection and thumb-

nail extraction were inspired by the human visual system

and can be grouped in bottom-up, top-down and hybrid ap-

proaches.

Bottom-up. Methods falling in this category are

stimulus-driven. Then, the idea is to seek for the so-called

“visual pop-out” saliency. In fact, human attention is in-

terpreted by some, as a cognitive process that selectively

concentrate on the most unusual aspects of an environment

while ignoring more common things. To model this be-

havior, various approaches were proposed such as center-

surround operation [16] or graph based activation maps

[12]. Gao et al [11] reformulated the “center-surround” hy-

pothesis in a decision theoretic framework. Hou and Zhang

in [13] proposed a method based on residual of images in

the spectral domain.

Top-down. Top-down visual attention processes are con-

sidered driven by voluntary control, and related to the ob-

server’s goal when analyzing a scene [32]. Object detection

can be seen as a particular case of top-down saliency detec-

tion, where the predefined task is given by the object class

to be detected [21].

Hybrid. Most of the saliency detection methods are hy-

brid models leveraging the combinations of the bottom-up

and top-down approaches [15, 4, 31, 33]. In general, they

are structured in two levels, a top-down layer filters out

noisy regions in saliency maps created by the bottom-up

layer. In most part of the cases, the top-down component is

actually a human face detector [15, 31]. However, Chen

et al [4] combined a face and text detector finding opti-

mal solutions efficiently through a branch and bound algo-

rithm. Instead, Wang and Li combines spectral residual for

bottom-up analysis with features capturing similarity and

continuity based on Gestalt principles [33].

Recent approaches suggest that saliency can be learned

from manually labeled examples. Liu et al. in [19] formu-

late salient object detection as an image segmentation prob-

lem, where they separate the salient object from the image

background.

Other approaches targeting thumbnailing applications

can be found in the state-of-the-art, however they use stan-

dard bottom-up saliency maps or they discuss the advan-

tages of auto-crop over simple image resizing methods

through user preference experiments [31, 9, 27]. An alterna-

tive to thumbnailing has been recently studied in computer

graphics [28, 1, 29] and it consists in intelligent rescaling

and re-targeting of several relevant regions.

3. The Framework
We assume, the existence of an annotated image

database representing a wide variety of subjects, where in

Figure 2. On-line saliency detection. Given an image to thumb-

nail, we retrieve the K most similar images (see section 3.2) and

we train a simple classifier to detect salient (foreground) and non-

salient (background) regions. Saliency maps are generated and

thumbnails extracted (see section 3.4).

each image we have salient and non-salient regions man-

ually annotated. Our framework operates in two different

phases:

1. Off-line database indexation. For each image in the

database we extract local patches and associated low

level descriptors. In the low level feature space, we

build a visual vocabulary. We then compute high level

image representations for salient and non salient re-

gions. Finally, for each image in the dataset, we store

a signature based on the high level representations (see

details in section 3.1).

2. On-line saliency detection and thumbnail. Given a

new image, we apply the steps sketched in Figure 2:

(1) we retrieve the K most similar images from the

indexed database (see section 3.2), (2) we compute

a salient (foreground) and non-salient (background)

model, (3) we classify each image patch as salient/non-

salient, (4) we propagate the result of classification to

pixels generating a saliency map, (5) we refine the map

and we extract the thumbnail.

3.1. High Level Visual Features

In the image classification literature, the traditional ap-

proach to transform low-level features into high-level repre-

sentations is the bag-of-visual-words (BOV) [30, 6]. How-

ever, Perronnin et Dance [23] showed that Fisher Kernel

outperforms bag-of-words in image categorization scenar-

ios. Additionally, Fisher representation was successfully

used in image retrieval [5] and semantic segmentation [7].
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For this reason, we employed Fisher vectors as high level

image descriptors. Given a generative model p with param-

eters λ, Fisher kernel [23] consists in deriving a fixed-length

representation of variable length sample sets X = {xt, t =
1...T} using the following gradient vector: ∇ log p(X |λ).
This Fisher representation can be interpreted as the direc-

tion in which the parameters λ of the generative model

should be modified to best fit the data set X .

If we further assume independence between the samples

and using the linearity of the gradient we can write:

∇ log p(X |λ) =
T∑

t=1

∇ log p(xt|λ) (1)

In our case, we employ a Gaussian mixture model

(GMM) to build a visual vocabulary in some low level fea-

ture space where each Gaussian corresponds to a visual

word. Let λ = {wi, μi, σi, i = 1...N} denote the set of

parameters of the GMM, where N is the number of Gaus-

sians and wi, μi and σi are respectively the weight, the

mean vector and the variance vector (representing the diag-

onal covariance matrix Σi of the ith Gaussian). The GMM

vocabulary is trained using maximum likelihood estimation

(MLE) considering all or a random subset of the low level

descriptors extracted from the training set.

Given a new low level descriptor xt, the probabil-

ity that it was generated by the GMM is p(xt|λ) =∑N
i=1 wipi(xt|λ), where:

pi(xt|λ) =
exp

{− 1
2 (xt − μi)′Σ−1

i (xt − μi)
}

(2π)D/2|Σi|1/2
,

The partial derivatives of log p(xt|λ) according to the

GMM parameters can be computed by the following for-

mulas [23]:

∂log p(xt|λ)
∂μd

i

= γi(xt)
[
xd

t − μd
i

(σd
i )2

]
, (2)

∂log p(xt|λ)
∂σd

i

= γi(xt)
[
(xd

t − μd
i )

2

(σd
i )3

− 1
σd

i

]
. (3)

where the superscript d denotes the d-th dimension of a vec-

tor and γi(xt) is the occupancy probability given by:

γi(xt) =
wipi(xt)∑N

j=1 wjpj(xt)
.

Here, we use only the gradient with respect to the mean and

standard deviation1.

The Fisher gradient vector ft = ∇ log p(xt|λ) of the

descriptor xt is by definition the concatenation of the par-

tial derivatives shown in equations (2) and (3) leading to a

1According to [23], adding the gradient with respect to the mixture

weights does not add significant information.

2xDxN dimensional vector, where D is the dimension of the

low level feature space. While the Fisher representation is in

general high dimensional, it can be made relatively sparse,

as only a small number of components (relevant Gaussians)

have non-negligible values.

From (1) the Fisher Vector of the set of descriptors X =
{xt, t = 1...T} is the sum of individual Fisher vectors:

∇ log p(X |λ) = fX =
T∑

t=1

ft (4)

3.2. Image Indexation and Retrieval

For each image in the database, we extract a set of lo-

cal image patches and we label each of them according to

their overlap2 with the manually annotated salient regions.

This leads to two sets of annotated descriptors X+ and X−

(salient and non-salient). Using equation (4), we compute

the two corresponding Fisher vectors fX+ and fX− and we

use them as a pair of signatures for each image.

Given a new image to thumbnail, we retrieve the K
most similar images as follows. First, we extract a set

of local image patches with their low level descriptors

Y = {y1, y2, ...yM}. We use the visual vocabulary (GMM)

trained off-line for image indexation and we compute a

Fisher vector fY using equation (4). To compute the similar-

ities between two images, we use the following normalized

L1 similarity measure:

sim(X, Y ) = −||̂fX − f̂Y ||1 = −
∑

i

|f̂ i
X − f̂ i

Y | (5)

where f̂ is the vector f normalized to norm L1 equal 1

(||̂f ||1 = 1) and fX = fX+ + fX− represents the global

set of descriptors (salient and non salient) of image X .

3.3. Saliency Detection

For each image to thumbnail, in analogy with [34], we

retrieved the K most similar images as described in section

3.2.

Nearest neighborhood images were used in the past for

several related problems such as scene classification [8],

similar images alignment [18] and object detection [26]. We

have seen that for each retrieved image Xj we have two

available Fisher vectors: fX+
j

and fX−
j

corresponding to the

salient and to the non salient regions. We sum all Fisher

vectors associated to the K similar images for salient and

non-salient regions:

fFG =
K∑

j=1

fX+
j

and fBG =
K∑

j=1

fX−
j

(6)

2The patch is labeled as salient if its overlap with the salient region is

above 50% of its area and non relevant otherwise.

2234



and we call them (abusively) foreground and background

Fisher models.

A patch xi then is considered salient, if its normalized

L1 distance to the foreground Fisher model is smaller than

to the background Fisher model:

||̂fxi − f̂FG||1 < ||̂fxi − f̂BG||1 (7)

However, this classifier is too dependent on a single local

patch which makes it locally unstable. Therefore, in order

to increase the model’s robustness, instead of considering a

single patch we sum Fisher vectors of patches over a neigh-

borhoodN :

fN =
∑

xi∈N
fi (8)

Furthermore, we replace the binary classifier with non-

binary score which is a simple function of the normalized

L1 distances:

s(N ) = ||̂fN − f̂FG||1 − ||̂fN − f̂BG||1 (9)

The proposed method is based on a simple distance met-

ric and can be replaced by more complex patch classifiers

[7]. However, the method proposed here has two main ad-

vantages. It is simple and computationally efficient. More-

over, it requires neither pre-trained patch class models, nor

the pre-processing of the retrieved images to extract patch

descriptors, but it uses directly the pair of image signatures.

Finally, to build a “saliency map” S we can consider that

each pixel in the neighborhood region N takes the value

sN = s(N ). However, this is not a good strategy especially

if we consider overlapping regions. Instead, we assign the

value sN to the center pixel of each region N and then we

either interpolate the values between these centers or we

use a Gaussian propagation of these values. The latter can

be done by averaging over all Gaussian weigthed scores:

s(p) =
∑
N sNwN (p)∑
N wN (p)

(10)

where wN is the value in pixel p of the Gaussian centered in

the geometrical center of each the regionN . In our experi-

ments we used a diagonal isotropic covariance matrix with

values (0.6 ∗R)2, RxR being the size ofN .

3.4. Map Refinement and Thumbnail Extraction

The aim of this step is to build one or more thumbnails

from the saliency map S. A straightforward option is to

binarize S with an appropriate threshold thbin leading to

a the binarized saliency map SB . Note that by increasing

or decreasing the threshold, we can give more importance

respectively to precision or to recall. The drawback of this

simple approach is that it does not take into account the

contours of the salient object.

However, we can overcome this drawback using a seg-

mentation method inspired by [25]. The main idea is to

use the saliency map SB to initialize the Graph-Cut algo-

rithm, then iterate between energy minimization based re-

gion labeling and foreground and background GMM up-

dates. First, we choose two thresholds (one positive th+ and

one negative th−) that separate the saliency map S into 3

different regions: pixels u labeled as salient (S(u) > th+),

pixels v labeled as non-salient (S(v) < th−) and unknown

(the others). Two Gaussian Mixture Models (GMMs) Ω1

and Ω0 are created, one using RGB values of salient (fore-

ground) pixels and one using RGB values of non salient

(background) pixels. Then the following energy is mini-

mized:

E(L) =
∑
u∈P

Du(u) +
∑

(u,v)∈C
Vu,v(u, v) (11)

where the data penalty function Du(u) =
− log p(u|lu, Ωlu) is the negative log likelihood that

the pixel u belongs to Ωlu , with lu ∈ 0, 1 and the contrast

term:

Vu,v(u, v) = γ
∑

(u,v)∈C
δlu,lv exp

(− ‖u− v‖2
2 ∗ β

)
(12)

with δlu,lv = 1 if lu = lv, C representing 4-way cliques,

and β = E(‖u− v‖2) (see further details in [25]).

The energy (11) is minimized using the min-cut/max-

flow algorithms proposed in [2] leading to a binary anno-

tation of the image. Using the new labels, we update the

two GMM parameters and similarly to [25] iterate between

energy minimization (11) and GMM updates until no modi-

fications are made to the binary labels. This binary map can

be considered as a new saliency map, denoted by SG.

Note, that the above minimization methods works well if

we have a relatively good initialization, but might fail other-

wise. Therefore, we want to keep the refined map SG only

when the risk to deteriorate SB is low. Seen that (a) we

cannot directly estimate this risk and (b) Graph Cut does

not reuse information about saliency during iterations, we

introduce a simple decision mechanism to choose a poste-

riori between SB and SG: if the overlap between the two

maps is above a certain threshold thd (i.e. we did not di-

verge too much from initialization), we choose SG other-

wise keep SB :

S∗ =
{

SG if SB∩SG

SB∪SG
> thd

SB otherwise

with 0 < thd < 1 (set to thd = 0.1 in our experiments).

Finally, different strategies can be designed to extract a

thumbnail from the binary map: we can select the biggest,

most centered salient region as thumbnail or, alternatively,

all the detected salient regions and re-target them into a sin-

gle thumbnail as proposed in [28].

2235



4. Experimental Results
The main objectives of the experiments were (1) to

show that image similarity is advantageous for detecting

saliency, (2) to prove that our approach can compete with

state-of-the-art methods and (3) to test the behavior of the

framework in more challenging scenarios where saliency is

“target/application-dependent”.

4.1. The datasets

We used two state-of-the-art datasets with thumbnails

manually annotated by one or several users:

• MRSA. The dataset described in [19] is composed of

two parts: Part A (15000 natural images) and part

B (5000 images) with good variety of different sub-

jects. Only Part B was used, as it is the only one

currently made available by the authors. The anno-

tation are highly consistent with generally small vari-

ance over 9 thumbnails. This dataset was used to test

the performances of the framework in the case of “vi-

sual pop-up” saliency (i.e unambiguous and objective

thumbnails). In fact, MRSA is composed by images

containing a wide range of different objects, neverthe-

less in most cases there is a single object per image

that “pops-out” from a relatively simple background.

Ground truth data consist of 9 different thumbnails an-

notated for each image by 9 different users (see Figure

1 on the left). The users manually selected a thumb-

nail containing the region of interest, which is typically

represented by a full object or, in some cases by a sub-

part of the object (e.g. head of the dog). In average, the

MRSA thumbnails represent the 35% of the total area

of the image and the distance of their center of mass

from the center of the image is within 42 pixels.

• PASCAL VOC. To quantify the performances in the

case of “targeted” visual saliency, we opted for PAS-

CAL Visual Object Classes Challenge data [10]. In-

deed, no other dataset is currently available for this

kind of analysis. Moreover, PASCAL has some fea-

tures which fit well our purpose: (1) Images are anno-

tated (see Figure 1 on the right) with multiple thumb-

nail regions as well as thumbnail labels for 20 object

classes (person, bird, cat, cow, dog, horse, sheep, aero-

plane, bicycle, boat, bus, car, motorbike, train, bot-

tle, chair, dining table, potted plant, sofa, tv monitor).

(2) The images are much more challenging with re-

spect to visual complexity; they contain multiple, am-

bigous, often small objects and very cluttered back-

grounds. In our experiments, we used the VOC 2008
Trainval dataset to build our indexed database and the

VOC 2007 Test Dataset to perform the tests. The main

reason for this choice was to have independent train-

ing and test set and hence to avoid any bias in the per-

formances which might be caused by near duplicate

images (especially as our method is based on nearest

neighbor search).

4.2. Experimental Set-up

In all the experiments, we used two types of low level

descriptors: SIFT-like gradient orientation histograms [20]

and simple local color statistics (RGB mean and variations).

They were computed on local patches extracted on multi-

scale grid. The dimensionality of the original features were

subsequently reduced to 50 by PCA. A GMM composed by

32 Gaussian was computed in both PCA projected feature

spaces leading to two visual vocabularies. Hence, for each

patch, we computed two separate Fisher vectors: one for

SIFT features and the second for color features. Finally, the

two Fisher Vectors were normalized and concatenated. The

saliency maps S were created by setting the dimensions of

the neighborhood N to 50x50 pixels (close to the average

patch size).

To evaluate the performance we followed the startegy

proposed in [19], and we computed precision, recall, Fα

with α = 0.5 and BDE (Bounding Box Displacement Er-

ror) [22].

In the case of the MSRC database, we used a leave-one-

out startegy and then we averaged the performances over the

whole dataset. In PASCAL, we used independent training

and test data and the average was evaluated per category.

4.3. Detecting saliency through visual similarity

First, we tested the performances of the saliency detector

by varying the parameter K (number of most similar images

considered). To quantify the advantage of visual similarity

in cases of visual pop-up saliency, we performed the follow-

ing test: instead of taking into account the K most similar

images, we selected in the indexed database, K random im-

ages.

These results are plotted in Figure 3, the upper curve

shows Fα with K nearest neighbor images and the bottom

curve Fα with K random images. First, we notice that for

all tested values of K , we improve the performance using

visual similarity. As expected, we increase in both cases

the performance by increasing K . While we have large

improvement for low Ks, after K = 20 the performance

increases less. Beyond K = 50 the improvement becomes

negligible. Moreover, we know that even if both curves con-

tinue to sligthly increase after 100, they begin to decrease

with large Ks arriving both to Fα = 0.64 for K = 4999
(i.e. all dataset except the test image). As we didn’t tested

K bigger that 100, we do not have the ideal K (max of the

curve). Nevertheless, this is not a very significant value as

it will vary from database to database. In fact, what is more

important is to find a good compromise between accuracy
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Figure 3. Performances of the saliency detector by varying the pa-

rameter K, using nearest neighbor images and random images.
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Figure 4. Thumbnail extraction strategies compared: Pixel Con-

nectivity only, Pixels Connectivity + Graph-Cut.

and cost. To this end, we believe that K = 50 is a good

choice and we used it in the rest of the experiments.

Finally, we evaluated the refinement of the saliency maps

through Graph-Cut. In figure 4, we plot Fα obtained by

varying the binarization threshold3 thbin from 0.1 to 1 with

step 0.1. As expected, Graph-Cut combined with pixel con-

nectivity provides better results for all values of thbin with

a global maximum for thbin = 0.6. We used this parame-

terization in the rest of the tests.

In Figure 5 and 6 we show some qualitative results ob-

tained on the MRSA dataset.

3As the range of the scores vary in the images, we first normalize the

value to be between 0 and 1. This allows to select the same threshold for

different images.

Figure 5. Some qualitive results collected in MRSA dataset ob-

tained using Graph-Cut refinement.

Figure 6. Some qualitive results collected in MRSA dataset where

the decision mechanism rejected Graph-Cut refinement.

4.4. Comparison with State-of-the-art methods

We compared our framework with three state-of-the-art

methods designed for saliency and thumbnail detection:

• ITTI: a classical approach based on Itti’s method [14],

that leverages a neuromorphic model simulating which

elements are likely to attract visual attention4,

• SR: a more recent method described in [13] based on

the analysis of the residual of an image in the spectral

domain5.

• CRF: a learning method proposed in [19], based on

Conditional Random Field.

As the first two methods evaluate only saliency maps, we

extracted thumbnails to make the comparison possible. In

particular, we applied the thumbnail strategy described in

section 3.4 and we chose the most performing parameter

configurations for our method (see section 4.3). For the

third method, we directly reported the results given by [19]

on the same dataset.

4We used the Matlab implementation available at

http://www.saliencytoolbox.net/
5Matlab implementation available at http://bcmi.sjtu.edu.cn/ houxiaodi
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Figure 7. Above, comparison of our method with (SR), (ITTI) and

(CRF) using precision, recall, Fα measures. Below, comparison

of the same methods using BDE (Bounding Box Displacement Er-

ror).

As Figure 7 (above) shows, our method outperforms

ITTI) and (SR) with a consistent margin on Precision, Re-

call and Fα-measure, and it gives slightly better results

than (CRF). Comparisons using BDE (see Figure 7, below)

show similar behavior.

4.5. Target-driven Visual Saliency

The experiments were performed on each target class

c as follows: 1. Among the training samples contain-

ing at least one object of the class c, we retrieved the K
most similar images (K=50). 2. When we build the fore-

ground/background model, we consider as salient only the

bounding boxes labeled with the class c. 3. We average

the results taking into account the labels available for the

test images. This is motivated by the fact that in many ap-

plicative scenarios such as variable data printing or image

retrieval, we only need to localize the most representative

thumbnail for the targeted class . 4. We apply the same

strategy used for processing the MRSA dataset to extract

the thumbnails.

Figure 8 shows the quantitative results of the experi-

ments performed on the PASCAL dataset with and without

Graph-Cut. Instead, in Figure 9 we display examples of

qualitative results (with Graph-Cut). Not surprisingly, the

performances are in general lower in comparison to MRSA.

In fact, PASCAL is a more challenging database character-

Figure 8. Performances (Fα) in the PASCAL dataset [10] with and

without Graph-Cut).

Figure 9. Some qualitive results collected in PASCAL dataset.

ized by high visual complexity6. Also, Graph-Cut improves

only a few categories because we have in most cases clut-

tered background and occluded objects.

In this experiment, we cannot directly compare the re-

sults with other methods as there is no available bench-

mark data or quantitative results reported in the literature

for this specific problem. Object detection could be consid-

ered as the closest scenario, however the comparison would

be unfair because here we solve a different problem. In-

deed, while object detection aims at detecting and localiz-

ing every object individually, target-driven thumbnailing is

less restrictive: it consists in higlighting region(s) contain-

ing one or multiple instance of the targeted objects.

5. Conclusions

We proposed a framework for image thumbnailing based

on visual similarity. The underlying assumption was that

images sharing their global visual appearance are likely to

share similar salience. Through exhaustive experimental

setup we showed that in spite of its simplicity, the frame-

work achieves satisfactory results with respect to other

state-of-the art methods. In addition we showed that the

6This is also confirmed by the very low detection and segmentation

results (about 25% accuracy) reported in the literature on this dataset.
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framework can be used in various thumbnailing scenarios,

based on “visual pop-ups” and “target oriented” salency. At

present, we took into account only natural images, however

the framework is generic enough to be applicable to other

type of images such as medical or document images provid-

ing that appropriate training data is available.
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